最新物质结构与性质知识点总结(1)
- 格式:doc
- 大小:2.95 MB
- 文档页数:14
《选修三物质结构与性质》知识点总结第一节原子结构与性质知识点一原子核外电子排布原理1.能层和能级(1)能层:原子核外电子是分层排布的,根据电子的能量差异,可将核外电子分成不同的能层。
(2)能级:在多电子原子中,同一能层的电子,能量也可能不同,不同能量的电子分成不同的能级。
(3)能层一二三四五……符号K L M N O……能级1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p……最多电子数2 2 6 2 6 10 2 61014 2 6……电子离核远近近→远电子能量高低低→高2.电子云与原子轨道(1)电子云①由于核外电子的概率分布图看起来像一片云雾,因而被形象地称为电子云。
②电子云轮廓图称为原子轨道。
(2)原子轨道原子轨道⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧轨道形状⎩⎪⎨⎪⎧s电子的原子轨道呈球形对称p电子的原子轨道呈哑铃形各能级上的原子轨道数目⎩⎪⎨⎪⎧s能级 1 个p能级 3 个d能级5个f能级7个……能量关系⎩⎪⎨⎪⎧①相同能层上原子轨道能量的高低:n s<n p<n d<n f②形状相同的原子轨道能量的高低:1s<2s<3s<4s……③同一能层内形状相同而伸展方向不同的原子轨道的能量相等,如2p x、2p y、2p z轨道的能量相等3.基态原子核外电子排布(1)排布原则[提醒] 当能量相同的原子轨道在全满(p6、d10、f14)、半满(p3、d5、f7)、全空(p0、d0、f0)时原子的能量最低,如24Cr的电子排布式为[Ar]3d54s1,29Cu的电子排布式为[Ar]3d104s1。
(2)填充顺序——构造原理(3)表示方法以硫原子为例电子排布式1s22s22p63s23p4简化电子排布式[Ne]3s23p4电子排布图(或轨道表示式)价电子排布式3s23p44.电子的跃迁与原子光谱(1)电子的跃迁(2)不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。
物质结构与性质I、知识点总结一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
高中化学《选修三物质结构与性质》知识归纳选修三《物质结构与性质》是高中化学课程中的一本重要教材。
本书主要介绍了物质的结构与性质的关系,以及有机化合物、配位化学、无机材料等内容。
下面是关于该教材的知识归纳。
第一章物质的结构和性质1.物质的微观结构:原子、离子和分子是物质的微观结构。
2.物质的宏观性质:密度、熔点、沸点、导电性、导热性、溶解性等是物质的宏观性质。
3.物质的宏观性质与微观结构的关系:物质的性质与其微观结构相关,如金属的导电性、晶体的硬度等。
第二章有机化合物的结构和性质1.有机化合物的元素组成:有机化合物主要由碳、氢和少量氧、氮、硫等元素组成。
2.有机化合物的结构:有机化合物由分子构成,分子由原子通过共价键连接。
3.有机化合物的性质:有机化合物具有燃烧性、酸碱性、氧化还原性、流动性、挥发性等特性。
4.有机物的分类:根据分子中所含的官能团,有机物可分为醇、酮、醛、酸、酯、醚、芳香化合物等不同类型。
第三章有机反应与有机合成1.有机反应的定义:有机反应是指有机化合物在适当条件下发生变化,形成具有新性质的有机化合物。
2.脱水反应:脱水反应是指有机化合物中的水分子与有机分子发生反应,生成新的有机化合物。
3.氢化反应:氢化反应是指有机化合物中的氢气与有机分子发生反应,生成新的有机化合物。
4.酸碱催化:酸碱催化是指在酸碱存在的条件下,有机化合物的反应速率增加。
第四章金属配合物1.配位化合物的概念:配位化合物是指由一个或多个给体与一个或多个受体之间通过配位键结合形成的化合物。
2.配位键:配位键是指由配体中的一个或多个电子对与金属离子形成的共价键。
3.配位数:配位数是指一个金属离子周围配位体的数目。
4.配位化合物的性质:配位化合物具有明显的颜色、溶解度、稳定性等特性。
第五章无机材料1.无机材料的分类:无机材料可分为金属材料、非金属材料和无机非金属材料。
2.无机材料的性质:金属材料具有导电性、延展性、塑性等特性;非金属材料主要用于绝缘材料、陶瓷材料等;无机非金属材料具有耐高温、耐腐蚀等特性。
化学选修三物质结构与性质知识重点总结化学选修三的内容主要涉及物质的结构与性质,包括原子结构、分子结构和晶体结构的相关知识。
下面将对这些重点知识进行总结,并探讨它们在化学领域中的应用。
一、原子结构原子是物质的基本单位,它包含有质子、中子和电子三种基本粒子。
质子带正电荷,是原子核的组成部分;中子没有电荷,与质子一起组成原子核;电子带负电荷,围绕原子核旋转。
原子的结构可以用质子数(即原子序数)和中子数来描述。
在原子结构方面,我们需要了解的重点知识包括:原子序数、质子数、中子数以及电子排布规则。
比如,氢的原子序数为1,它的原子核中只有一个质子,没有中子,电子的排布规则遵循来自于泡利不相容原理、安培右手定则和洪特规则。
原子结构的理解对于进一步研究分子结构和反应机理非常重要,它可以帮助我们预测化学性质和物理性质,从而指导实验操作和化学反应的发展。
二、分子结构分子是由两个或多个原子通过共享电子形成的稳定结构。
分子结构包括键长、键角和分子形状等方面的特征。
在研究分子结构时,我们需要了解以下几个重点知识。
1. 共价键共价键是由两个原子之间共享电子形成的。
共价键可以进一步划分为单键、双键和三键。
单键的键能较小,稳定性较弱,而双键和三键的键能更高,稳定性更强。
2. 极性键与非极性键极性键是由两个成键原子的电负性差引起的,它会导致电子在分子中不均匀分布,使分子具有极性。
非极性键是电负性相近的原子形成的,其电子分布均匀,使分子无极性。
3. 分子形状分子的形状决定了其性质和化学反应的方式。
常见的分子形状包括线性、三角形、四面体等。
分子形状的确定可以通过VSEPR理论来推导。
分子结构与化学性质密切相关,通过研究分子结构,我们可以预测分子的稳定性、反应性和物理性质。
三、晶体结构晶体是由具有规则排列的原子、分子或离子组成的固体。
晶体结构的确定对于研究物质的性质和特性非常重要。
以下是晶体结构的重点知识。
1. 晶体结构类型晶体结构可以分为离子晶体、共价晶体和金属晶体等类型。
高中化学选修3物质结构与性质全册知识点总结一、物态变化1.固体、液体和气体的特点和微观结构。
2.相变的概念及其条件。
3.气体的压力、体积和温度的关系(气体状态方程)。
4.确定气体的压强、体积和温度的实验方法。
二、物质的分子结构1.分子的结构和性质的关系。
2.分子的极性与非极性。
3.分子的键型及其特点。
4.共价键的键能和键长的关系。
三、化学键的性质1.同种键和异种键的定义和举例。
2.键能的概念及其在化学反应中的表现。
3.键长的测定方法及其在化学反应中的影响。
4.共价键的极性和电性的概念及其与键型的关系。
四、物质的热稳定性1.温度和物质的热稳定性的关系。
2.物质的热分解与热合成的条件和特点。
3.确定物质的热分解和热合成的方法。
五、物质的电解性1.电解质和非电解质的区别和举例。
2.电解质的导电性及其与离子的浓度和动力学的关系。
3.强电解质和弱电解质的区别和举例。
六、分子与离子的形成1.分子化合物和离子化合物的区别和举例。
2.确定分子和离子的产生与存在的条件。
七、氢键和离子键1.氢键的特点和举例。
2.氢键的性质和应用。
3.离子键的特点和举例。
4.离子键的性质和应用。
八、离子晶体和共价晶体1.离子晶体的特点和举例。
2.确定离子晶体的特性和存在的条件。
3.共价晶体的特点和举例。
4.确定共价晶体的特性和存在的条件。
九、化学键的杂化1.杂化的概念和种类。
2.方向性杂化的概念和应用。
3.确定方向性杂化的条件和特点。
十、分子结构的测定1.确定分子结构的方法。
2.确定分子结构的仪器。
3.确定分子结构的实验步骤和原理。
综上所述,以上是高中化学选修3《物质结构与性质》全册的知识点总结。
通过对这些知识点的学习,我们可以了解物质的分子结构和性质的关系,从而深入理解化学反应的本质和原理。
希望对你的学习有所帮助!。
物质的结构和性质知识点总结物质是构成我们这个世界的基础,了解物质的结构和性质对于我们理解自然界的各种现象以及推动科学技术的发展都具有重要意义。
下面我们来详细总结一下物质的结构和性质方面的重要知识点。
一、物质的结构1、原子结构原子是化学变化中的最小粒子。
原子由原子核和核外电子构成,原子核又由质子和中子组成。
质子带正电荷,中子不带电,电子带负电荷。
质子数决定了元素的种类,质子数和中子数共同决定了原子的质量数。
原子的核外电子排布遵循一定的规律。
电子按照能量的高低分层排布,离核越近的电子能量越低。
最外层电子数决定了元素的化学性质,当最外层电子数小于 4 时,元素通常容易失去电子;当最外层电子数大于 4 时,元素通常容易得到电子。
2、分子结构分子是保持物质化学性质的最小粒子。
分子由原子通过一定的化学键结合而成。
化学键包括共价键、离子键和金属键等。
共价键是原子之间通过共用电子对形成的化学键。
共价键又分为极性共价键和非极性共价键。
极性共价键中电子对偏向电负性较大的原子,非极性共价键中电子对均匀分布在两个原子之间。
离子键是通过阴阳离子之间的静电作用形成的化学键。
通常由金属元素和非金属元素组成的化合物中存在离子键。
金属键存在于金属单质或合金中,是由金属阳离子和自由电子之间的相互作用形成的。
3、晶体结构晶体具有规则的几何外形和固定的熔点。
常见的晶体类型有离子晶体、原子晶体、分子晶体和金属晶体。
离子晶体由阴阳离子通过离子键结合而成,具有较高的熔点和沸点,硬度较大,在熔融状态或水溶液中能导电。
原子晶体中原子之间通过共价键形成空间网状结构,具有很高的熔点和沸点,硬度很大,一般不导电。
分子晶体中分子之间通过分子间作用力结合,熔点和沸点较低,硬度较小,一般不导电。
金属晶体中金属阳离子和自由电子通过金属键结合,具有良好的导电性、导热性和延展性。
二、物质的性质1、物理性质物理性质是指物质不需要发生化学变化就表现出来的性质,如颜色、状态、气味、密度、熔点、沸点、溶解性、导电性、导热性等。
物质结构与性质知识点1. 原子结构- 原子由原子核和环绕其周围的电子云组成。
- 原子核包含质子和中子,质子带正电,中子不带电。
- 电子带负电,存在于不同的能级轨道上。
2. 元素周期表- 元素周期表按照原子序数(质子数)排列所有已知的化学元素。
- 元素周期表分为7个周期和18个族(组)。
- 元素的性质(如原子半径、电负性、离子化能)在周期表中呈周期性变化。
3. 化学键- 化学键是原子之间的相互作用,使它们结合在一起形成分子或晶体结构。
- 有三种基本类型的化学键:离子键、共价键和金属键。
- 离子键由电荷相反的离子间的静电吸引力形成。
- 共价键由两个或多个非金属原子共享电子对形成。
- 金属键是金属原子之间的特殊类型的化学键,涉及“电子海”的形成。
4. 分子结构- 分子是由两个或多个原子通过化学键结合而成的稳定组合。
- 分子的几何形状受到化学键和孤对电子的排布影响。
- 价层电子对互斥理论(VSEPR)用于预测分子的形状和极性。
5. 晶体结构- 晶体是由原子、离子或分子按照规则的几何图案排列形成的固体。
- 晶体结构的类型包括分子晶体、离子晶体、金属晶体和共价晶体。
- 晶体结构的对称性和排列方式决定了材料的物理性质,如硬度、熔点和电导率。
6. 物质的相变- 物质可以在固态、液态和气态之间转换,这种转换称为相变。
- 相变过程中,物质的物理性质会发生显著变化,如体积、密度和热容。
- 相变通常伴随着能量的吸收或释放,如熔化、蒸发和凝结。
7. 化学性质- 化学性质描述物质在化学反应中的行为。
- 包括氧化还原反应、酸碱反应、沉淀反应等。
- 化学性质受到原子的电子排布和化学键类型的影响。
8. 物理性质- 物理性质是物质不需要发生化学变化就能表现出来的性质。
- 包括密度、熔点、沸点、硬度、颜色、导电性和热导率等。
- 物理性质可以通过测量和观察直接获得。
9. 热力学性质- 热力学性质涉及物质在热力学过程中的能量变化。
- 包括焓、熵、自由能和热容等。
第一部分 原子结构(一).原子结构(1)原子的组成及各微粒间的关系的含义:代表一个质量数为A ,质子数为Z ,中子数为(A-Z )的原子(核素)。
质量数(A )=质子数(P )+中子数(N ) 原子序数=质子数=核电荷数=核外电子数 (2)核素与同位素①核素:具有一定数目的质子和一定数目的中子的某一元素的一种原子叫做核素。
②同位素:具有相同质子数,而中子数不同的同一元素的各种原子互称同位素(限制的范围是原子)。
即:同一元素的不同核素之间互称同位素。
③同一元素的各种同位素的化学性质几乎完全相同④天然存在的某种元素,不论是游离态,还是化合态,其各种同位素所占的原子个数百分比一般不变。
(3)相对原子质量②元素的相对原子质量:按各种天然同位素在该元素中原子个数百分数计算求得的平均相对原子质量。
即:其中: 是各种同位素的相对原子质量; 是指各种同位素的天然原子百分比③元素的近似相对原子质量是按各种天然同位素的质量数及原子个数所占的一定百分比算出的平均值。
例: 符号 质量数 同位素的原子量 x% 35Cl 35 34.969 75.77% 37Cl 37 36.966 24.23% 氯元素的相对原子质量:34.969 × 75.77% + 36.966 ×24.23% = 35.4531122Ar A x A x A x n n=⋅+⋅+⋅⋅⋅+⋅1A A n⋅⋅⋅1x x n ⋅⋅⋅氯元素的近似相对原子质量:35 ×75.77% + 37 ×24.23% = 35.48二、原子核外电子的排布1、核外电子是分层排布的电子的能量由低到高运动区域离核由近到远n = 1 2 3 4 5 6 7 …….符号K L M N O P Q …….2、每个电子层最多容纳2n2个电子(n表示第几层)。
•最外电子层不能超过8个,次外层不能超过18个,倒数第三层不能超过32个。
•3、遵循能量最低原理:电子首先排满能量低的电子层,然后再能量高的电子层;即先排满K层,再排L层,再排M层等。
高中化学选修3物质结构与性质重点知识归纳及易错点归纳第一章重点知识归纳一、原子结构1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域,这种电子云轮廓图称为原子轨道。
同一能层内形状相同而伸展方向不同的原子轨道的能量相等,如n p x、n p y、n p z轨道的能量相等。
2.原子核外电子的排布规律(1)能量最低原理:即电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态,所有电子排布规则都需要满足能量最低原理。
下图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图,由构造原理可知,从第三能层开始各能级不完全遵循能层顺序,产生了能级交错排列,即产生“能级交错”现象,能级交错指电子层数较大的某些能级的能量反而低于电子层数较小的某些能级的能量的现象,如:4s<3d、6s<4f <5d,一般规律为n s<(n-2)f<(n-1)d<n p。
注意排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。
(2)泡利原理:每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
如2s轨道上的电子排布为,不能表示为。
因为每个原子轨道最多只能容纳2个电子且自旋方向相反,所以从能层、能级、原子轨道、自旋方向四个方面来说明电子的运动状态是不可能有两个完全相同的电子的。
如氟原子的电子排布可表示为1s22s22p2x2p2y2p1z,由于各原子轨道中的电子自旋方向相反,所以9个电子的运动状态互不相同。
(3)洪特规则:当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据一个轨道,且自旋状态相同。
物质结构与性质知识点物质是构成宇宙万物的基本要素,其结构和性质直接驱动着我们周围世界的运行和变化。
通过深入了解物质的结构与性质,我们可以更好地理解自然界中的现象,并为工程技术、药学、材料科学等领域的发展提供基础。
本文将介绍一些关于物质结构与性质的知识点。
1. 原子结构:原子是物质的基本组成单位,由原子核和电子云组成。
原子核由质子和中子组成,而电子云则是围绕原子核运动的轨道。
原子的结构决定了物质的性质,例如原子核中的质子数确定了元素的原子序数,而电子的数量和排布则影响了物质的导电性和化学反应性。
2. 分子结构:分子是由原子通过共价键连接而成的,是化学反应和物质性质变化的基本单位。
不同的元素可以形成不同的化合物,因为化合物的性质取决于分子内原子的种类、数量和排列方式。
例如,水分子由一个氧原子和两个氢原子组成,因此具有特定的化学性质,如溶解度和表面张力。
3. 晶体结构:晶体是由原子、离子或分子周期性排列而成的固体。
晶体结构的不同导致了晶体的各种性质差异,例如硬度、折射率和导电性等。
晶体结构可以通过X射线衍射等方法进行研究和表征,从而揭示了物质内部的有序排列规律。
4. 材料结构与性能:材料是应用于工程和技术中的物质,其结构与性能直接关系到材料的用途和可靠性。
例如,金属材料的导电性和延展性取决于其晶体结构中的电子云和格点缺陷。
聚合物材料的力学性能则与分子链的长度、支链密度和交联程度密切相关。
5. 固-液-气相变:物质在不同的温度和压力下会发生相变,从固体到液体再到气体。
这些相变背后的机制与原子或分子之间的相互作用有关。
例如,固态的冰在加热时会融化成液态水,这是因为加热使水分子的振动增加,从而破坏了分子之间的氢键。
总结起来,物质结构与性质的研究是科学和工程领域的基础工作。
通过深入了解物质的微观结构,我们可以揭示自然界中的规律,并且为材料设计和应用提供指导。
此外,物质结构与性质的研究也为新材料的开发和性能的改进提供了理论基础。
物质结构与性质知识点总结专题一了解测定物质组成和结构的常用仪器(常识性了解)。
专题二第一单元1.认识卢瑟福和玻尔的原子结构模型。
2.了解原子核外电子的运动状态,了解电子云的概念。
3.了解电子层、原子轨道的概念。
4.知道原子核外电子排布的轨道能级顺序。
知道原子核外电子在一定条件下会发生跃迁。
5.了解能量最低原理、泡利不相容原理、洪特规则,能用电子排布式、轨道表示式表示1-36号元素原子的核外电子排布。
第二单元1.理解元素周期律,了解元素周期律的应用。
2.知道根据原子外围电子排布特征,可把元素周期表分为不同的区。
3.了解元素第一电离能、电负性的概念及其周期性变化规律。
(不要求用电负性差值判断共价键还是离子键)4.了解第一电离能和电负性的简单应用。
专题三第一单元1.了解金属晶体模型和金属键的本质。
2.能用金属键理论解释金属的有关物理性质。
了解金属原子化热的概念。
3.知道影响金属键强弱的主要因素。
认识金属物理性质的共性。
4.认识合金的性质及应用。
注:金属晶体晶胞及三种堆积方式不作要求。
第二单元1.认识氯化钠、氯化铯晶体。
2.知道晶格能的概念,知道离子晶体的熔沸点高低、硬度大小与晶格能大小的关系。
3.知道影响晶格能大小的主要因素。
4.离子晶体中离子的配位数不作要求。
第三单元1.认识共价键的本质,了解共价键的方向性和饱和性。
2.能用电子式表示共价分子及其形成过程。
认识共价键形成时,原子轨道重叠程度与共价键键能的关系。
3.知道σ键和π键的形成条件,了解极性键、非极性键、配位键的概念,能对一些常见简单分子中键的类型作出判断。
注:大π键不作要求4.了解键能的概念,认识影响键能的主要因素,理解键能与化学反应热之间的关系。
5.了解原子晶体的特征,知道金刚石、二氧化硅等常见原子晶体的结构与性质的关系。
第四单元1.知道范德华力和氢键是两种最常见的分子间作用力。
2.了解影响范德华力的主要因素,知道范德华力对物质性质的影响。
3.了解氢键的概念和成因,了解氢键对物质性质的影响。
能分析氢键的强弱。
注:范德华力的分类不要求。
分子内氢键不要求。
专题四1.初步认识简单分子的空间构型、键角、极性分子、非极性分子、手性分子等概念。
2.认识分子的空间构型与极性的关系,能判断一些简单分子的极性,了解“相似相溶规则”的具体应用。
3.理解物质结构与性质之间的辩证关系、性质与应用之间的纽带关系。
注:杂化轨道理论、价电子对互斥理论不要求。
不要拓展等电子原理。
不要用偶极距来衡量分子极性大小。
专题五——了解即可。
一、原子结构与性质.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图。
小黑点不代表电子。
离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q。
原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1)原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2)原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3)掌握能级交错图和1-36号元素的核外电子排布式.②根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
基态原子核外电子的排布按能量由低到高的顺序依次排布。
电子排布式:、基态锌:1s22s22p63s23p63d104s2 →简化电子排布式[Ar]3d104s2外围电子排布式:3d104s2基态钠:外围电子排布式3s1基态铁26Fe:1s22s22p63s23p63d64s2规范,1s22s22p63s23p64s23d6 不规范。
亚铁离子26Fe2+:1s22s22p63s23p63d6(失电子时,先失去最外层电子)铁离子26Fe3+:1s22s22p63s23p63d5轨道表示式:如Na:几个名词:1.原子实:原子核外内层电子已达到稀有气体结构的部分2.外围电子:过渡元素省去原子实的剩余部分。
主族、零族元素的最外层电子。
3.价电子:主族元素的外围电子排布式,也就是主族元素的最外层电子。
副族还通常包括次外层的d电子(不一定是全部)。
4.基态:最低能量状态。
如处于最低能量状态的原子称为基态原子。
5.激发态:较高能量状态(相对基态而言)。
如基态原子的电子吸收能量后,电子跃迁至较高能级成为激发态原子。
6.光谱:不同元素的原子发生跃迁时会吸收(基态→激发态)和放出(基态→激发态)能量,产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
光是电子释放能量的重要形式。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
二、元素性质递变规律1.根据元素原子外围电子排布的特征,可将元素周期表分成5个区域。
具体地说是根据最后一个电子填充在何原子轨道上来分区(1)s区元素:外围电子只出现在s轨道上的元素。
价电子排布为ns1~2,主要包括ⅠA 和ⅡA族元素,这些元素除氢以外都是活泼的金属元素,容易失去1个或2个电子形成+1价或+2价离子(2)p区元素:外围电子出现在p轨道上的元素(s 轨道上的电子必排满)。
价电子排布为ns2np1~6,主要包括周期表中ⅢA到ⅧA和0族共6个主族元素,这些元素随着最外层电子数的增加,原子失去电子变得越来越困难,得到电子变得越来越容易。
除氢以外的所有非金属元素都在p区(3)d区元素:外围电子出现在d轨道上的元素。
价电子排布为(n-1)d1~9ns1~2,主要包括周期表中ⅢB到ⅦB和Ⅷ族,d区元素全是金属元素。
这些元素的核外电子排布的主要区别在(n-1)d的d轨道上。
由于d轨道未充满电子,因此d轨道可以不同程度地参与化学键的形成。
(4)ds区元素:ds区元素与s区元素的主要区别是s 元素没有(n-1)d电子,而ds区元素的(n-1)d轨道全充满,因此ds区元素的价电子排布是(n-1)d10ns1~2。
包括ⅠB和ⅡB,全是金属元素(5)f区元素:包括镧系元素和锕系元素,它们的原子的价电子排布是(n-2)f0~14(n-1)d0~2ns2,电子进入原子轨道(n-2)f中。
由于最外层的电子基本相同,(n-1)d的电子数也基本相同,因此镧系元素和锕系元素的化学性质非常相似。
包括元素外围电子排布化学性质s区ⅠA ⅡA族ns1~2除氢外,都是活泼金属p区ⅢA~ⅦA 0族ns2np1~6非金属性增强、金属性减弱d区ⅢB~ⅦB Ⅷ族(n-1)d1~9ns1~2均为金属,d轨道上的电子可参与化学键的形成ds区ⅠB ⅡB族(n-1)d10ns1~2均为金属,d轨道上的电子不参与化学键的形成f区镧系锕系(n-2)f0-14(n-1)d0~2n 镧系元素化学性质相似锕系元素化学性质相似3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的最低能量叫做第一电离能。
常用符号I1表示,单位为kJ/mol。
(1)原子核外电子排布的周期性.随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.(2)元素第一电离能的周期性变化.随着原子序数的递增,元素的第一电离能呈周期性变化:★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;★同主族从上到下,第一电离能有逐渐减小的趋势.说明:①同周期元素,从左往右第一电离能呈增大趋势。
②基本规律:当原子核外电子排布在能量相等的轨道上形成全空(p0、d0、f0)、半满(p3、d5、f7)和全满(p6、d10、f14)结构时,原子的能量较低,该元素具有较大的第一电离能。
即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。
(第二周期3Li<5B <4Be<6C <8O <7N<9F <10Ne )②.元素第一电离能的运用:a.电离能是原子核外电子分层排布的实验验证.b.用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱.(3).元素电负性的周期性变化.元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。
元素电负性的周期性变化规律1.同周期:从左到右,元素电负性由小到大(稀有气体不考虑)。
2.同主族:从上到下,元素电负性由大到小有以上规律得出:元素周期表中,右上角氟元素的电负性最大,左下角铯元素的电负性最小(放射性元素除外)电负性的运用:a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素).b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键).c.判断元素价态正负(电负性大的为负价,小的为正价).d.电负性是判断金属性和非金属性强弱的重要参数(表征原子得电子能力强弱).注意:电负性的大小与电离能的大小有一定的一致性,但没有绝对的一致,如镁的电负性比铝小,但镁的电离能比铝大二.化学键与物质的性质.金属共同的物理性质:容易导电、导热、有延展性、有金属光泽等。
金属键构成微粒:金属阳离子和自由电子金属键:金属阳离子和自由电子之间的较强的相互作用成键特征:自由电子被许多金属离子所共有;无方向性、无饱和性金属键对金属通性的解释离子键――离子晶体1.理解离子键的含义,能说明离子键的形成.了解NaCl型和CsCl型离子晶体的结构特征,能用晶格能解释离子化合物的物理性质.(1).化学键:相邻原子之间强烈的相互作用.化学键包括离子键、共价键和金属键.(2).离子键:阴、阳离子通过静电作用形成的化学键.离子键无方向性、无饱和性离子键强弱的判断:离子半径越小,离子所带电荷越多,离子键越强,离子晶体的熔沸点越高.离子键的强弱可以用晶格能(符号为U)的大小来衡量,晶格能是指拆开1mol离子晶体使之形成气态阴离子和阳离子所吸收的能量.晶格能越大,离子晶体的熔点越高、硬度越大.用电子式表示NaCl、K2S的形成过程小结:用电子式表示离子键的形成过程1.左边是组成离子化合物的各原子的电子式, 右边是离子化合物的电子式2.”3.用表示电子转移的方向离子晶体:通过离子键作用形成的晶体.典型的离子晶体结构:NaCl型和CsCl型.氯化钠晶体中,每个钠离子周围有6个氯离子,每个氯离子周围有6个钠离子,每个氯化钠晶胞中含有4个钠离子和4个氯离子;氯化铯晶体中,每个铯离子周围有8个氯离子,每个氯离子周围有8个铯离子,每个氯化铯晶胞中含有1个铯离子和1个氯离子.NaCl型晶体CsCl型晶体每个Na+离子周围被6个C1—离子所包围,同样每个C1—也被6个Na+所包围。