3.5电气自动化专业电子技术-模拟电子技术电子教案-4
- 格式:doc
- 大小:280.50 KB
- 文档页数:16
模拟电子技术电子教案第一章:模拟电子技术概述1.1 教学目标让学生了解模拟电子技术的基本概念、特点和应用领域。
让学生掌握常用的模拟电子元件及其功能。
培养学生对模拟电子技术的兴趣和好奇心。
1.2 教学内容模拟电子技术的定义和特点模拟电子技术的应用领域常用的模拟电子元件:电阻、电容、电感、二极管、晶体管等1.3 教学方法采用讲授法,讲解模拟电子技术的基本概念和特点。
通过实物展示和示范,介绍常用的模拟电子元件及其功能。
引导学生进行实验操作,培养学生的动手能力。
1.4 教学评估通过课堂提问,检查学生对模拟电子技术基本概念的理解。
通过对实验报告的评估,了解学生对常用模拟电子元件功能的掌握情况。
第二章:模拟电路的基本分析方法2.1 教学目标让学生掌握模拟电路的基本分析方法。
培养学生运用基本分析方法解决实际问题的能力。
2.2 教学内容模拟电路的基本分析方法:静态分析、动态分析、频率响应分析等。
常用电路分析工具:节点电压法、回路电流法、频率响应分析法等。
2.3 教学方法采用讲授法,讲解模拟电路的基本分析方法。
通过示例电路,演示常用分析方法的运用。
引导学生进行实际电路的分析,培养学生的实际操作能力。
2.4 教学评估通过课堂提问,检查学生对模拟电路基本分析方法的理解。
通过对实际电路分析的评估,了解学生对分析方法的掌握情况。
第三章:放大电路3.1 教学目标让学生了解放大电路的基本原理和特点。
培养学生掌握放大电路的设计和分析方法。
3.2 教学内容放大电路的基本原理:输入、输出和反馈关系。
放大电路的类型:共射放大电路、共基放大电路、共集放大电路等。
放大电路的设计和分析方法:晶体管参数、电压增益、频率响应等。
3.3 教学方法采用讲授法,讲解放大电路的基本原理和特点。
通过示例电路,介绍不同类型的放大电路。
引导学生进行放大电路的设计和分析,培养学生的实际操作能力。
3.4 教学评估通过课堂提问,检查学生对放大电路基本原理的理解。
模拟电子技术电子教案
教案标题:模拟电子技术电子教案
一、教学目标:
1. 了解模拟电子技术的基本概念和原理
2. 掌握模拟电子技术的基本电路设计和分析方法
3. 能够应用模拟电子技术解决实际问题
二、教学重点和难点:
1. 模拟电子技术的基本概念和原理
2. 模拟电子技术的基本电路设计和分析方法
三、教学内容和安排:
1. 模拟电子技术概述
- 介绍模拟电子技术的定义和应用领域
- 讲解模拟电子技术与数字电子技术的区别和联系
2. 模拟电子技术基本电路
- 讲解模拟电子技术中的基本电路,如放大器、滤波器等
- 分析模拟电子技术基本电路的工作原理和特点
3. 模拟电子技术应用案例分析
- 通过实际案例,展示模拟电子技术在各个领域的应用,如通信、音频处理、仪器仪表等
四、教学方法和手段:
1. 理论讲解结合实例分析,帮助学生深入理解模拟电子技术的概念和原理
2. 利用多媒体技术展示模拟电子技术的基本电路和应用案例,增强学生的学习
兴趣
3. 组织学生进行小组讨论和实验操作,培养学生的分析和解决问题能力
五、教学评估方式:
1. 课堂提问和讨论,检查学生对模拟电子技术概念和基本电路的理解
2. 布置作业,要求学生分析模拟电子技术应用案例,并提出自己的见解
3. 课程结束时进行小测验,检验学生对模拟电子技术的掌握程度
六、教学反思和改进:
1. 根据学生的学习情况,及时调整教学内容和方法,确保教学效果
2. 鼓励学生参与实践和创新,培养学生的实际应用能力
3. 不断更新教学内容,结合最新的模拟电子技术发展趋势,激发学生的学习兴趣。
模拟电子技术教案电子技术是现代科技领域中不可或缺的一部分。
它涉及到电子电路的设计、制造和应用,为人们的生活和工作带来了巨大的改变和便利。
在这篇文章中,我将为大家介绍一份模拟电子技术的教案,希望能够帮助教师们更好地开展教学工作,培养学生对电子技术的兴趣和创新能力。
一、教案概述1. 教案主题:模拟电子技术基础知识与实践应用2. 适用对象:高中电子技术课程学生3. 教案目标:- 熟悉模拟电子技术的基本概念与原理- 掌握模拟电子电路的分析和设计方法- 培养学生动手实践的能力和创新思维4. 教学时间:10节课,每节课45分钟二、教学内容1. 第一节课:引入模拟电子技术- 介绍模拟电子技术的定义和作用- 展示模拟电子技术在实际生活中的应用案例2. 第二节课:基础电子元器件- 介绍常见的电子元器件,如电阻、电容、电感等- 解释它们的基本特性和符号表示方法3. 第三节课:模拟电路分析方法- 介绍模拟电路中的基本电路理论知识,如电流、电压、功率等 - 讲解电路的基本分析方法,如KVL和KCL等4. 第四节课:放大电路设计- 介绍放大电路的基本原理和分类- 教授放大电路的设计方法和常见的放大电路拓扑5. 第五节课:滤波电路原理与设计- 介绍滤波器的基本原理和分类- 解释滤波器的设计方法和常见的滤波电路拓扑6. 第六节课:振荡器设计与实践- 介绍振荡器的基本原理和分类- 讲解振荡器的设计方法和实践技巧7. 第七节课:模拟计算机辅助设计- 介绍模拟电子电路的计算机辅助设计软件- 指导学生使用软件进行电路仿真和分析8. 第八节课:模拟电子实验- 安排学生进行一些基础的模拟电子实验- 强调实验中的安全注意事项和实验报告的书写要求9. 第九节课:模拟电路故障排除与维修- 介绍常见的模拟电路故障现象和排除方法- 培养学生独立解决问题的能力和故障排除的技巧10. 第十节课:模拟电子技术的应用与发展趋势- 展示模拟电子技术在航天、通信、医疗等领域的最新应用- 探讨模拟电子技术的发展前景和未来趋势三、教学方法1. 组织讲授:通过教师的讲解,介绍并解释模拟电子技术的基本概念和原理。
模拟电子技术电子教案第一章:模拟电子技术基础1.1 模拟电子技术的概念与发展1.2 模拟电子电路的组成与特点1.3 模拟电子技术的基本定律与分析方法第二章:放大器电路2.1 放大器的作用与分类2.2 放大器的性能指标2.3 放大器的基本电路分析2.4 常用放大器电路实例第三章:滤波器电路3.1 滤波器的作用与分类3.2 滤波器的性能指标3.3 滤波器的基本电路分析3.4 常用滤波器电路实例第四章:振荡器电路4.1 振荡器的作用与分类4.2 振荡器的性能指标4.3 振荡器的基本电路分析4.4 常用振荡器电路实例第五章:模拟电子技术的应用5.1 模拟电子技术在通信领域的应用5.3 模拟电子技术在视频设备中的应用5.4 模拟电子技术在其他领域的应用第六章:模拟集成电路6.1 集成电路概述6.2 模拟集成电路的类型与特点6.3 集成电路的封装与测试6.4 常用模拟集成电路介绍第七章:模拟信号处理7.1 信号处理的基本概念7.2 模拟信号处理技术7.3 信号处理电路实例7.4 信号处理在实际应用中的案例分析第八章:模拟电路设计方法与实践8.1 模拟电路设计的基本原则8.2 电路设计的一般步骤8.3 电路仿真与实验8.4 电路设计实例分析第九章:模拟电子技术在现代科技中的应用9.1 模拟电子技术在生物医学领域的应用9.2 模拟电子技术在工业控制领域的应用9.3 模拟电子技术在新能源领域的应用第十章:模拟电子技术的未来发展趋势10.1 模拟电子技术的发展历程10.2 当前模拟电子技术面临的挑战10.3 模拟电子技术的未来发展趋势10.4 我国在模拟电子技术领域的发展现状与展望重点和难点解析教案中的重点环节包括:1. 模拟电子技术的概念与发展:了解模拟电子技术的基本定义和发展历程,理解模拟电子技术与数字电子技术的区别。
2. 放大器电路的分析:掌握放大器的作用、性能指标和基本电路分析方法,了解不同类型的放大器电路及其应用。
模拟电子技术课程教案授课题目:第 2 章半导体三极管教学目的、要求:要知道BJT管型、共射接法BJT各电极电流关系、放大电路中对各电极电位要求、BJT放大状态下的u BE值和放大、饱和、截止状态下的u CE值。
三种组态放大电路的特点和适用场合及输入与输出的相位关系;Au、R i、R o 大小含义;EFT与BJT性能特点区别及其主要参数;频率特性及其指标含义和影响因素、多级放大电路电压放大倍数与各级Au的关系、分贝概念及换算方法。
会画出共射、共集放大电路的简化小信号模型电路会计算BJT的输入电阻r be;共射、共集、共基电路的“Q”、Au、R i、R o;共源电路的Au、R i、R o。
会识别BJT 放大电路的三种组态;各种EFT的特性和U GS(th)、U GS(off)值。
会判断u CE 、i CE与V CC、R c关系确定放大、饱和、截止状态;输出波形确定失真属性;三个极电位确定管型。
会使用光电耦合器及光电三极管。
教学重点及难点:重点1、BJT电流放大原理及其电流分配关系式;2、BJT的输入、输出特性;3、BJT三种工作状态的判断方法;4、基本放大电路静态工作点的估算;5、BJT的h参数等效模型及放大电路输入电阻、输出电阻与电压放大倍数的计算;难点1、BJT放大原理及电流分配关系式;2、BJT三种工作状态的判断方法;3、放大电路的微变等效电路的画法;4、放大电路输入电阻、输出电阻与电压放大倍数的计算;教学方法与手段:本讲以教师讲授为主。
用多媒体演示三极管的结构、输入与输出特性以及温度对三极管特性的影响等,便于学生理解和掌握。
三极管工作状态、电位和管型的判断方法可以启发讨论。
课堂教学时间分配:6学时教学基本内容:2.1双极型三极管2.1.1BJT 的结构2.1.2BJT 的电流分配与放大原理1、晶体管的主要类型和应用场合双极型晶体管BJT是通过一定的工艺,将两个PN结接合在一起而构成的器件,是放大电路的核心元件,它能控制能量的转换,将输入的任何微小变化不失真地放大输出,放大的对象是变化量。
模拟电子技术教案教案标题:模拟电子技术教案教案概述:本教案旨在引导学生学习和理解模拟电子技术的基本概念、原理和应用。
通过理论讲解、实验实践和案例分析,培养学生的实际操作能力和问题解决能力,为学生提供扎实的模拟电子技术基础。
教学目标:1. 理解模拟电子技术的基本概念和原理;2. 掌握模拟电子技术的常用电路设计方法;3. 能够运用所学知识解决实际问题;4. 培养学生的实验操作能力和团队合作精神。
教学内容:1. 模拟电子技术基础知识- 模拟信号与数字信号的区别- 基本电子元器件及其特性(电阻、电容、电感等)- 放大器的基本原理和分类- 滤波器的基本原理和分类- 可变电压源和稳压电源的设计原理2. 模拟电子技术电路设计- 放大电路设计:共射放大器、共基放大器、共集放大器等- 滤波电路设计:低通滤波器、高通滤波器、带通滤波器等- 可变电压源和稳压电源的设计3. 模拟电子技术实验与应用- 使用示波器、函数发生器等仪器进行电路测试和测量- 实验室实践:放大器实验、滤波器实验、电源设计实验等- 案例分析:应用模拟电子技术解决实际问题的案例分析教学方法与策略:1. 理论讲解:通过教师讲解、多媒体展示等方式,向学生介绍模拟电子技术的基本概念和原理。
2. 实验实践:组织学生进行电路设计和实验操作,培养他们的实际操作能力和问题解决能力。
3. 小组讨论:鼓励学生在小组内进行讨论和合作,提高他们的团队合作精神和沟通能力。
4. 案例分析:引导学生分析和解决实际问题,培养他们的应用能力和创新思维。
教学评估与反馈:1. 课堂练习:通过课堂练习检验学生对理论知识的掌握程度。
2. 实验报告:要求学生撰写实验报告,评估其实验操作能力和实验结果分析能力。
3. 个人项目:要求学生完成个人项目,评估其综合应用能力和创新能力。
4. 学生反馈:定期收集学生对教学内容和方法的反馈,及时调整教学策略。
教学资源:1. 教材:根据教学内容选择合适的模拟电子技术教材。
模拟电子技术课程教案(适用于纸介质教案)授课题目:第 6 章信号产生电路教学目的、要求:1、掌握自激振荡的概念;掌握单门限电压比较器和迟滞比较器的工作原理;2、熟悉正弦波振荡的条件,正弦波振荡电路的组成;方波、三角波发生器的工作原理,能正确画出其波形3、了解正弦波振荡电路所产生的自激振荡和负反馈放大电路中所产生的自激振荡的区别;正弦波振荡电路中选频网络的组成;教学重点及难点:重点1、产生正弦波振荡的原因和振荡的条件;能否振荡的判断和振荡频率的计算。
2、正弦波振荡电路的分析方法。
难点1、变压器反馈式振荡电路振荡频率的计算及振荡条件的推导2、石英晶体等效电路和振荡频率3、产生正弦波振荡的原因和振荡的条件;能否振荡的判断和振荡频率的计算。
4、正弦波振荡电路的分析方法。
教学方法与手段:本节以讲授为主,并借助多媒体形象、生动的特点理解基本概念。
课堂教学时间分配:6学时教学基本内容:6.1 正弦波振荡电路6.1.1 正弦波振荡电路的基本概念1) 电路振荡的物理原因:本质上与负反馈放大器的振荡相同。
若反馈信号与放大器净输人信号同相等幅,因而净输人信号靠反馈信号得以维持,则即使外加输人信号为零,输出也不会消失。
2)振荡的条件:if V V =,即:相位条件——同相,幅值条件——等幅。
用开环频率特性表示的振荡条件:幅度平衡条件 |..F A |=1相位平衡条件 ϕAF = ϕA +ϕF = ±2n π3) 正弦波振荡电路的组成和类型正弦波振荡电路由以下四部分组成:放大电路、正反馈网络、选频网络、稳幅电路。
其中放大电路保证电路能够在起振到动态平衡的过程中、使电路获得一定幅值的输出量;,放大电路和正反馈网络共同满足振荡的条件;选频网络实现单一频率振荡,选频网络往往由R 、C 和L 、C 等电抗性元件组成;反馈网络与选频网络可以是两个独立的网络,也可以合二为一。
稳幅电路使输出信号幅值稳定,一般采用非线性环节限幅。
《模拟电子技术教案》课件一、教学目标:1. 让学生了解模拟电子技术的基本概念和原理。
2. 培养学生掌握模拟电子技术的基本分析和设计方法。
3. 使学生能够运用模拟电子技术解决实际问题。
二、教学内容:1. 模拟电子技术的定义和特点2. 模拟电子技术的基本元件3. 模拟电子技术的信号处理方法4. 模拟电子技术的电路分析方法5. 模拟电子技术的应用领域三、教学方法:1. 采用讲授法,讲解模拟电子技术的基本概念、原理和分析方法。
2. 使用案例分析法,分析模拟电子技术在实际应用中的例子。
3. 利用实验法,让学生动手搭建简单的模拟电子电路,加深对知识的理解。
4. 开展小组讨论法,培养学生团队合作精神,提高解决问题的能力。
四、教学准备:1. 课件:制作关于模拟电子技术的基本概念、原理、分析和应用等方面的幻灯片。
2. 实验器材:准备一些简单的模拟电子电路元件,如电阻、电容、晶体管等,以及实验板、导线等工具。
3. 参考资料:为学生提供一些关于模拟电子技术的书籍、论文等资料。
五、教学过程:1. 引入:通过介绍一些日常生活中的模拟电子技术应用实例,引发学生对模拟电子技术的兴趣。
2. 讲解:详细讲解模拟电子技术的基本概念、原理和分析方法,结合课件中的图片和图表进行说明。
3. 案例分析:分析一些典型的模拟电子技术应用案例,让学生了解模拟电子技术在实际中的应用。
4. 实验操作:安排学生进行模拟电子电路的实验操作,让学生亲手搭建电路,加深对知识的理解。
5. 小组讨论:组织学生进行小组讨论,探讨模拟电子技术在实际应用中遇到的问题和解决方法。
7. 反馈:收集学生的反馈意见,对教学方法和内容进行调整和改进。
六、教学评估:1. 课后作业:布置与课堂内容相关的作业,巩固学生对模拟电子技术知识的理解和掌握。
2. 实验报告:评估学生在实验过程中的操作能力和对电路的分析能力,通过实验报告了解学生的学习情况。
3. 小组讨论报告:评估学生在小组讨论中的参与程度和问题解决能力,通过报告了解学生的学习进展。
模拟电子技术基础电子教案标题:模拟电子技术基础电子教案教案概述:本教案旨在帮助学生掌握模拟电子技术基础知识,包括电路基本概念、电子元器件的特性、模拟信号的处理等。
通过理论学习和实践操作,学生将能够理解和应用模拟电子技术,为将来的电子工程领域打下坚实的基础。
教学目标:1. 理解电子电路的基本概念,包括电压、电流、电阻等;2. 掌握常见电子元器件的特性和使用方法,如电容器、电感器、二极管等;3. 理解模拟信号的特点和处理方法,如放大、滤波、调制等;4. 能够设计和分析简单的模拟电路,如放大器、滤波器等;5. 培养学生的实践动手能力和解决问题的能力。
教学内容和步骤:1. 电子电路基础知识a. 介绍电子电路的基本概念和符号表示;b. 解释电压、电流、电阻的概念和单位;c. 讲解欧姆定律和基尔霍夫定律的原理和应用。
2. 电子元器件的特性和使用a. 介绍常见的电子元器件,如电容器、电感器、二极管等;b. 解释它们的特性和工作原理;c. 演示它们的使用方法和实际应用。
3. 模拟信号的处理a. 介绍模拟信号的特点和表示方法;b. 讲解模拟信号的放大、滤波、调制等处理方法;c. 演示不同处理方法的实际应用。
4. 模拟电路设计与分析a. 引导学生设计和分析简单的模拟电路,如放大器、滤波器等;b. 讲解设计原理和关键参数的选择;c. 指导学生进行实际电路搭建和测试。
5. 实践操作和问题解决a. 提供实验平台和实际电路案例;b. 引导学生进行实践操作,如电路搭建、信号测试等;c. 鼓励学生遇到问题时主动思考和解决。
评估方法:1. 参与度评估:观察学生在课堂上的积极参与程度和提问回答的质量;2. 实验报告评估:要求学生完成实验报告,评估其对实验内容的理解和实验操作的准确性;3. 设计和分析任务评估:要求学生独立完成一项模拟电路的设计和分析任务,评估其设计思路和结果的正确性。
教学资源:1. 电子教材和参考书籍;2. 电子元器件和实验设备;3. 电路模拟软件和仿真工具。
模拟电子技术课程教案(适用于纸介质教案)授课题目:第3 章集成运算放大器电路基础教学目的、要求:要知道1. 基本差分电路结构及性能特点、差模信号和共模信号含义及其分解方法、共模抑制比含义及其分解方法;2. 理想运放条件及其“虚短”、“虚断”、“虚地”概念;3. 线性和非线性工作特点、运放电路直流平衡电阻配置;4. 集成运放中恒流源的作用。
会画出集成运放反相、同相比例、加法及减法、微分和积分等运算电路结构形式。
会计算基本差分电路的差模电压放大倍数、各种运放运算电路的输出电压。
教学重点及难点:重点1.差模信号、共模信号、共模增益和共模抑制比的基本概念;2.差分放大电路的工作原理及指标计算;难点1、差分放大电路的工作原理及指标计算;2、如何运用“虚短”、“虚断”的概念进行分析运算教学方法与手段:本讲以教师讲授为主。
用多媒体演示典型差动放大电路——长尾电路的特点、静态和动态计算等,便于学生理解和掌握。
堂教学时间分配:12学时教学基本内容:3.1差分放大电路3.1.1双端输入的基本差分放大电路3.1.2单端输入的差分放大电路1、直接耦合放大电路的零点漂移直接耦合放大电路的零点漂移主要是晶体管的温漂造成的。
在基本差动放大电路中,利用参数的对称性进行补偿来抑制温漂。
在长尾电路和具有恒流源的差动放大电路中,还利用共模负反馈或恒流源抑制每只放大管的温漂。
2、差动放大电路组成及特点1)电路组成差分放大器是由对称的两个基本放大电路通过射极公共电阻耦合构成的。
“对称”的含义是两个三极管的特性一致,电路参数对应相等,即R c1=R c2,R b1=R b2,β1=β2,V BE1=V BE2,r be1= r be2,I CBO1=I CBO2。
2)电路特性(1)差动放大电路对零漂在内的共模信号有抑制作用;(2)差动放大电路对差模信号有放大作用;(3)共模负反馈电阻Re的作用:①稳定静态工作点。
②对差模信号无影响。
③对共模信号有负反馈作用:Re越大对共模信号的抑制作用越强;也可能使电路的放大能力变差。
3、差动放大电路的输入和输出方式1)差动放大电路可以有两个输入端:同相输入端和反相输入端。
根据规定的正方向,在某输入端加上一定极性的信号,如果输出信号的极性与其相同,则该输入端称为同相输入端。
反之,如果输出信号的极性与其相反,则该输入端称为反相输入端。
2)信号的输入方式:若信号同时加到同相输入端和反相输入端,称为双端输入;若信号仅从一个输入端加入,称为单端输入。
3)信号的输出方式:差动放大电路可以有两个输出端:集电极C 1和C 2。
从C 1和C 2输出称为双端输出;仅从集电极C 1或C 2对地输出称为单端输出。
按照信号的输入、输出方式,或输入端与输出端接地情况的不同,差动放大电路有四种接法:双端输入/双端输出;双端输入/单端输出;单端输入/双端输出;单端输入/单端输出;4、差模信号和共模信号1)差模信号:幅度相等、极性相反的一对输入信号。
通常为有用信号。
2)共模信号:幅度相等、极性相同的一对输入信号。
通常为温漂和干扰信号。
3)比较输入:1i u 和2u u 可以分解为一对差模信号id u ±和一对共模信号ic u 的叠加作用。
差模信号为:21i i id u u u -=;共模信号为:221i i ic u u u +=1i u 和2u u 均接地,故信号的输入方式无关,可分两种情况进行:双端输出和单端输出。
1)双端输出双端输出21CQ CQ u u =,所以,与电路有无接负载无关。
1列输入回路电压方程,并根据放大区CQBQ EQ I I I ≈+=)1(β即可求得BQI 和CQ I ;2列输出回路电压方程可求得CEQ U ;2)单端输出21BQ BQ I I =;在放大区有21CQ CQ I I =;但是,21CQ CQ U U ≠,21CEQ CEQ U U ≠。
所以,应该采用戴维南等效定理将原电路的1CQ U 和2CQ U 或1CEQ U 和2CEQ U6、差动放大电路的动态性能指标(1)差模电压放大倍数Ad :描述电路放大差模信号的能力; (2)差模输入电阻Rid :差模信号作用下的输入电阻。
(3)差模输出电阻Rod :差模信号作用下的输出电阻。
(4)共模电压放大倍数Ac :描述电路抑制共模信号的能力;(5)共模抑制比cdCMR A A K =;理想情况下,共模放大倍数为0,共模抑制比为∞。
7、差动放大电路的动态分析求解动态参数的关键是针对差模参数和共模参数,应分别画出微变等效电路进行计算。
差模和共模微变等效电路的主要区别是对R e 的处理不同:在差模等效电路中,双端输入时R e 视为短路;单端输入时R e 视为开路。
在共模信号作用下对单边电路而言,发射极等效电阻为2Re 。
虽然差动放大电路有四种接法,且有三种不同的输入信号。
由于单端输入可以转换为双端输入;比较输入可以看成是差模输入和共模输入的叠加。
实际分析计算时,只须考虑两种情况:差模信号作用下的双入—双出、双入—单出;共模信号作用下的双入—双出、双入—单出。
8、改进型为了既能采用较低的电源电压又能有很大的Re 等效电阻,可采用恒流源电路来替代Re ,这样可以大大增加电路抑制共模信号的能力。
4.2.3.2 恒 流 源电流源电路及电路及有源负载放大电路电流源是一个使输出电流恒定的电源电路,与电压源相对应。
在模拟集成电路中,常用的电流源电路有:镜像电流源、精密电流源、微电流源、多路电流源等。
1) 镜像电流源图 镜像电流源电路如上图所示镜像电流源电路,它的特点是工作三极管的集电极电流是电流源电路电流的镜像(相等)。
三极管T 1、T 2匹配,BE 2BE 1BE 21,V V V ====βββ,则I I I I I I R C BC BC ()EF =+=+=+1222212β且I V V R R CC BEEF =-,当β>>2时,I I C R 2=EF ,I C2和I REF 是镜像关系。
2)微电流源微电流源电路如下图所示,通过接入R e 电阻得到一个比基准电流小许多倍图 微电流源的微电流源,适用于微功耗的集成电路中。
由图可得:Te O O REF OREFe2T e2BE O lnln V R I I I I IR V R V I ==∆=因∆V BE 小,I O << I REF 。
同时I O 的稳定性也比I REF 好。
3.2.1 差分放大电路中恒流源的作用 3.2.2 集成运放中的恒流源 3.3 集成运算放大器1、集成运算放大电路的组成及各部分的作用集成运算放大器是一个高增益直接耦合放大电路,它的方框图如下图所示。
运算放大器方框图输入级要使用高性能的差分放大电路,它必须对共模信号有很强的抑制力,而且采用双端输入、双端输出的形式。
中间放大级要提供高的电压增益,以保证运放的运算精度。
中间级的电路形式多为差分电路和带有源负载的高增益放大器。
互补输出级由PNP和NPN两种极性的三极管或复合管组成,以获得正负两个极性的输出电压或电流。
具体电路参阅功率放大器。
偏置电流源可提供稳定的几乎不随温度而变化的偏置电流,以稳定工作点。
2、集成运算放大器的引线和符号1)集成运算放大器的符号中有三个引线端,两个输入端,一个输出端。
一个称为同相输入端,即该端输入信号变化的极性与输出端相同,用符号…+‟或…IN+‟表示;另一个称为反相输入端,即该端输入信号变化的极性与输出端相异,用符号“-”或“IN-”表示。
输出端一般画在输入端的另一侧,在符号边框内标有…+‟号。
实际的运算放大器通常必须有正、负电源端有的品种还有补偿端和调零端。
2)集成运算放大器的符号按照国家标准符号如下图所示。
(a)国家标准符号(b)原符号模拟集成放大器的符号3、F007通用集成运放电路简介4、集成运放的主要性能指标运算放大器的技术指标很多,其中一部分与差分放大器和功率放大器相同,另一部分则是根据运算放大器本身的特点而设立的。
各种主要参数均比较适中的是通用型运算放大器,对某些项技术指标有特殊要求的是各种特种运算放大器。
(1)运算放大器的静态技术指标1)输入失调电压V IO(input offset voltage) :输入电压为零时,将输出电压除以电压增益,即为折算到输入端的失调电压。
V IO是表征运放内部电路对称性的指标。
2)输入失调电流I IO(input offset current):在零输入时,差分输入级的差分对管基极电流之差,用于表征差分级输入电流不对称的程度。
3)输入偏置电流I B(input bias current):运放两个输入端偏置电流的平均值,用于衡量差分放大对管输入电流的大小。
4)输入失调电压温漂T V d d IO :在规定工作温度范围内,输入失调电压随温度的变化量与温度变化量之比值。
5)输入失调电流温漂T I d d IO :在规定工作温度范围内,输入失调电流随温度的变化量与温度变化量之比值。
6)最大差模输入电压idmax V (maximum differential mode input voltage):运放两输入端能承受的最大差模输入电压,超过此电压时,差分管将出现反向击穿现象。
7)最大共模输入电压icmax V (maximum common mode input voltage):在保证运放正常工作条件下,共模输入电压的允许范围。
共模电压超过此值时,输入差分对管出现饱和,放大器失去共模抑制能力。
(2)运算放大器的动态技术指标1)开环差模电压放大倍数d v A :运放在无外加反馈条件下,输出电压与输入电压的变化量之比。
2)差模输入电阻r id :输入差模信号时,运放的输入电阻。
3)共模抑制比K CMR :与差动放大电路中的定义相同,是差模电压增益d v A 与共模电压增益c v A 之比,常用分贝数来表示。
K CMR =20lg(A v d / A v c ) (dB)4)-3dB 带宽f H (—3dB band width) :运算放大器的差模电压放大倍数d v A 在高频段下降3dB 所定义的带宽f H 。
5)单位增益带宽f C (BW •G):d v A 下降到1时所对应的频率,定义为单位增益带宽f C。
5、集成运放电路的低频等效电路集成运放的电压传输特性理想运放的性能指标A od=∞R id=∞R o=0K CMR=∞f H=∞U OI、I OI及其温漂均为零,且无任何内部噪声。
理想运放的两个工作区线性工作区特点特点为(1)u o=A od(u P-u N)(2)具有虚短(即u P=u N)、虚断(即i P=i N=0)的特点。
非线性工作区特点为(1)当u P>u N时u o正向饱和,当u P<u N时u o负向饱和。