正比例函数
- 格式:pptx
- 大小:17.91 MB
- 文档页数:10
正比例函数知识点整理一、正比例函数的定义。
1. 定义形式。
- 一般地,形如y = kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数。
例如y = 2x,y=(1)/(3)x都是正比例函数,这里k = 2和k=(1)/(3)分别是它们的比例系数。
2. 对定义的理解。
- 函数表达式必须是y = kx这种形式,x的次数为1,且不能有其他项。
比如y = 2x+1就不是正比例函数,因为它多了常数项1;y=x^2也不是,因为x的次数是2。
- k不能为0,如果k = 0,那么函数y = 0× x=0,它是一个常数函数,而不是正比例函数。
二、正比例函数的图象与性质。
1. 图象。
- 正比例函数y = kx(k≠0)的图象是一条经过原点(0,0)的直线。
- 当k>0时,例如y = 2x,图象经过一、三象限,从左向右上升;当k < 0时,比如y=-2x,图象经过二、四象限,从左向右下降。
2. 性质。
- 增减性。
- 当k>0时,y随x的增大而增大。
例如在y = 3x中,如果x_1 = 1,y_1 = 3×1 = 3;当x_2=2时,y_2 = 3×2 = 6,因为2>1且6 > 3,所以y随x增大而增大。
- 当k < 0时,y随x的增大而减小。
例如在y=-2x中,若x_1 = 1,y_1=-2×1=-2;当x_2 = 2时,y_2=-2×2=-4,因为2 > 1且-4<-2,所以y随x增大而减小。
- 倾斜程度。
- | k|越大,直线越靠近y轴,即直线越陡。
例如y = 5x比y = 2x的图象更陡,因为|5|>|2|;y=-5x比y=-2x的图象更陡,同样是因为| - 5|>|-2|。
三、正比例函数解析式的确定。
1. 方法。
- 因为正比例函数y = kx(k≠0),只需要知道一个点的坐标(除原点外)就可以确定k的值,从而确定函数解析式。
物理中的正比例反比例函数关系正比例函数和反比例函数是物理学中非常重要的概念,被广泛应用于各种物理学问题中。
正比例函数指的是两个变量之间存在着线性关系,而反比例函数则指的是两个变量之间存在着倒数的关系。
在物理学中,这些函数关系经常出现在各种实验测试和数据记录中,因此了解和理解这些函数关系是非常重要的。
一、正比例函数的定义正比例函数是指,存在两个变量之间的线性关系,即当一个变量的值增加时,另一个变量也随之增加,且两个变量在图表上形成一条直线。
具体地说,一个变量的值随着另一个变量的值增加而增加,且增加的幅度与另一个变量的值成比例。
当我们测量一个运动物体的速度时,如果我们将时间和速度作为两个变量绘制成图表,我们会发现,当时间增加时,速度也随之增加,并形成一条经过原点的直线。
这种关系就是正比例函数关系,表达式为:v = k*t,其中v表示速度,t表示时间,k是速度和时间的比例系数。
三、正比例函数和反比例函数的应用正比例函数和反比例函数在物理学中有广泛的应用,下面分别介绍一些常见的应用:(1)正比例函数的应用在机械学中,正比例函数关系最广泛地应用于速度和加速度之间的关系。
当一个物体的速度越快,它的加速度也会越大,它受到的阻力也会越大。
而这种关系可以用正比例函数来表示,表达式为:a = k*v,其中a表示加速度,v表示速度,k是加速度和速度的比例系数。
在空气中飞行的飞机所受到的空气阻力就是一个正比例函数关系。
电阻与电流的关系也可以用正比例函数来表示。
当电路中的电流增加时,电阻也会随之增加,这是因为电流的增加会导致电路中的热量增加,而热量又会引起电阻的增加。
这种关系可以用欧姆定律来表示,即R = V/I,其中R表示电阻,V表示电压,I表示电流。
压力和体积之间的关系也可以用反比例函数来表示。
根据波义尔定理,当温度不变时,气体的体积和压力呈反比例关系,即P1V1 = P2V2,其中P1和V1表示气体压力和体积的初始值,P2和V2表示气体压力和体积的末值。
第十五讲正比例函数、反比例函数、几何证明复习正比例函数:解析式:y=kx(k为常数,k≠0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0)和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;yx倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;反比例函数:解析式:y=k/x(k为常数,k≠0)图像:双曲线(图像无限靠近坐标轴,但永不相交。
)所在象限:k>0图像经过一三象限;k<0图像经过二四象限。
kx增减性:k>0,y随x的增大而减小;k<0,y随x的增大而增大;1. 已知:点P (m ,4)在反比例函数xy 12=的图像上,正比例函数的图像经过点P 和点Q (6,n ).(1)求正比例函数的解析式;(2)在x 轴上求一点M ,使△MPQ 的面积等于18. 1.函数12-+x x 的定义域是 2.已知函数53)(-=x xx f ,那么=)(x f . 3. 如果反比例函数的图像经过点(-8,3),那么当0〉x 时y 的值随x 的值的增大而··( ) (A) 增大 (B)不变; (C) 减小 (D)无法确定 4.某人从甲地行走到乙地的路程S (千米)与时间t (时)的函数关系如图所示,那么此人行走3千米,所用的时间 (时)5. 在同一坐标系中,正比例函数y=x 与反比例函数的图象大致是( )A .B .C .D .6. 已知反比例函数y=(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A. y1<y2B. y1>y2C. y1=y2D.不能确定7. 请写出符合以下条件的一个函数的解析式.①过点(3,1);②当x>0时,y随x的增大而减小.8. 如图,已知点P(x,y)是反比例函数图象上一点,O是坐标原点,PA⊥x轴,S△PAO=4,且图象经过(1,3m﹣1);求:(1)反比例函数解析式.(2)m的值.9. 假定甲乙两人在一次赛跑中,路程S(米)与时间t(秒)的关系式如图所示,那么可以知道:(1)这是一次米赛跑.(2)甲乙两人中,先到达终点的是.(3)乙在这次赛跑中的速度为.10. 如图,直线y=x与双曲线y=(k>0)交于A点,且点A的横坐标为4,双曲线y=(k>0)上有一动点C(m,n),(0<m<4),过点A作x轴垂线,垂足为B,过点C作x轴垂线,垂足为D,连接OC.(1)求k的值.(2)设△COD与△AOB的重合部分的面积为S,求S关于m的函数解析式.(3)连接AC,当第(2)问中S的值为1时,求△OAC的面积.命题和证明1、我们现在学习的证明方式是演绎证明,简称证明2、能界定某个对象含义的句子叫做定义3、判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题4、数学命题通常由题设、结论两部分组成5、命题可以写成“如果……那么……”的形式,如果后是题设,那么后市结论证明举例平行的判定,全等三角形的判定逆命题和逆定理1、在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理线段的垂直平分线1、线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
正比例函数简介:正比例函数是数学中常见的一类函数,它们的图像是一条通过原点的直线。
本文将介绍正比例函数的定义、特点以及相关示例,以帮助读者更好地理解和应用正比例函数。
定义正比例函数是指一种函数关系,其中两个变量的比例保持不变。
设x和y是两个变量,若存在常数k使得对于任意的x,有y=kx成立,则称y是x的正比例函数。
k被称为比例系数。
通常用符号y ∝ x表示两者成比例的关系。
特点1.直线关系:正比例函数的图像是一条通过原点的直线。
这是因为当x为0时,y=k×0=0,因此原点(0,0)必然在图像上。
2.比例系数:比例系数k决定了直线的斜率。
斜率为正值时表示正相关关系,斜率为负值时则表示负相关关系。
斜率的绝对值越大,变化越快,反之则变化越慢。
3.例外情况:当比例系数k为0时,该函数不再成立。
因为此时代表变量无法通过相等的乘法关系相互联系。
示例以下是几个正比例函数的示例:示例1:函数表达式:y = 2xx | -2 | 0 | 3 | 5 |y | -4 | 0 | 6 | 10 |这个函数描述了一个正相关关系,且比例系数k为2。
当x增加1个单位时,y也增加2个单位。
以原点(0,0)为起点,连接所有的点就得到了一条通过原点的直线。
示例2:函数表达式:y = 0.5xx | -4 | 0 | 2 | 6 |y | -2 | 0 | 1 | 3 |这个函数仍然描述了一个正相关关系,但比例系数k为0.5。
即当x增加1个单位时,y增加0.5个单位。
通过连接所有的点,我们得到一条斜率较小的直线。
示例3:函数表达式:y = -3xx | -3 | 0 | 2 | 5 |y | 9 | 0 | -6 | -15 |这个例子展示了一个负相关关系,当x增加1个单位时,y减少3个单位。
我们可以通过连接所有的点得到一条斜率为负的直线。
应用正比例函数在实际生活中有许多应用。
例如:1.比例尺:地图上的比例尺可以用正比例函数来表示,其中地图上的距离与实际距离之间存在着直接成比例的关系。
正比例函数一般地,•形如y=•kx•(k 是常数,•k ≠0•)的函数,•叫做正比例函数(proportional function ),其中k 叫做比例系数.也就是说,形如y=•kx+b ,且b ≠0的函数是正比例函数。
[正比例函数图象和性质]一般地,正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点和(1,k )的直线.我们称它为直线y=kx.•当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y=kx (k 是常数,k ≠0)(2) 必过点:(0,0)、(1,k )(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴[正比例函数解析式的确定]——待定系数法一次函数[一次函数]一般地,形如y=kx+b(k 、b 是常数,k ≠0)函数,叫做一次函数. 当b=0时,y=kx +b 即y=kx ,所以正比例函数是一种特殊的一次函数.[一次函数的图象及性质]一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-k b ,0) (3)走向: k>0,图象必经过第一、三象限;k<0,图象必经过第二、四象限b>0,图象必经过第一、二象限;b<0,图象必经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.[直线y=k 1x+b 1与y=k 2x+b 2的位置关系](1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2[确定一次函数解析式的方法]:待定系数法(1)根据已知条件写出含有待定系数的函数解析式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数解析式中得出结果.[一次函数建模]函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线. 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义.从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型;(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义.解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数.反比例函数知识梳理知识点l. 反比例函数的概念重点:掌握反比例函数的概念 难点:理解反比例函数的概念一般地,如果两个变量x 、y 之间的关系可以表示成xk y =或y=kx -1(k 为常数,0k ≠)的形式,那么称y 是x 的反比例函数。