3-04-04-思想方法:用“假设思维法”巧解动力学问题
- 格式:ppt
- 大小:1.40 MB
- 文档页数:10
动力学问题解析与解题技巧动力学是物理学中的一个重要分支,研究物体运动的原因和规律。
在学习和解决动力学问题时,我们需要运用一定的解析与解题技巧,以便更好地理解问题和找到正确的解决方法。
本文将介绍一些常用的技巧和方法,帮助读者更好地应对动力学问题。
一、问题分析在解决动力学问题之前,首先需要仔细分析问题。
对于给定的问题,我们应该明确所求的量和已知的条件,理解物体的受力情况和运动规律。
准确的问题分析是解决动力学问题的关键,它有助于我们更好地选择适当的解题方法。
二、自由体图自由体图是解决动力学问题时常用的图形工具,在问题分析的基础上,我们可以画出物体受力的示意图。
通过绘制自由体图,我们可以清晰地了解物体所受的力以及它们的作用方向和大小。
自由体图有助于我们更好地理解问题,并为后续的计算和解决提供便利。
三、牛顿运动定律牛顿运动定律是解决动力学问题的基础,也是最常用的解题方法之一。
根据牛顿第二定律,物体的加速度与作用在它上面的合外力成正比,与物体的质量成反比。
利用这一定律,我们可以计算物体的加速度、力的大小等信息,从而解决动力学问题。
四、平衡问题平衡问题是动力学问题中的一类特殊情况,它通常描述物体受到的合外力为零的情况。
在解决平衡问题时,我们可以利用牛顿运动定律,并结合受力分析和几何条件来求解未知量。
平衡问题常见于静力学和刚体力学中,需要灵活运用相关定律和原理。
五、碰撞问题碰撞问题是动力学问题中的另一类重要情况,描述物体间相互作用的过程。
在解决碰撞问题时,我们需要考虑物体的质量、速度、动量守恒等因素。
通过分析碰撞前后物体的状态和能量转化,我们可以解决碰撞问题,求解物体间的相对速度、系数等信息。
六、运动规律在解决动力学问题时,我们需要了解和运用物体的运动规律。
不同类型的运动问题可能涉及到匀速直线运动、曲线运动、周期运动等不同的运动规律。
掌握和灵活运用这些规律,可以帮助我们更快、更准确地解答问题。
七、样例分析对于动力学问题,通过样例分析可以更好地理解和运用解题技巧。
解初中力学题常用的几种思维方法假设法假设法,是以科学的事实为基础,对物理模型、物理条件、物理命题等进行合理的假设,然后根据物理规律进行分析、讨论、判断和计算,得出正确结论;或在研究某些物理量、物理状态、物理过程的变化时,也可先提出一个假设,接着由假设进行推理论证,进而找出其变化规律。
假设法是科学研究中的一种常用方法。
如果题中给予的物理情景应用初中所学的规律无法求出物理量时,可以运用假设法思想重新创设一个新的合理的物理情景,使物理情景明朗化、具体化,迅速得到正确的答案。
假设法适用于难度较大的选择题、作图题或计算题的求解,同时假设法也是求解判断题最有效的方法之一。
例1.如图1所示,完全相同的木块A和B叠放在水平桌面上,在12N的水平推力F 作用下,A、B一起作匀速直线运动,此时木块A所受的摩擦力为________N。
图1解析:由图可知木块A和B叠放在水平桌面上时,F只作用在B上,木块B肯定受到力的作用,而木块A受力情况却不清楚,与A接触的物体只有B,所以我们可以假设A受到B对它的摩擦力,然后再分析、推理:如果A受到B对它的摩擦力,同时又没有其他物体对它有力的作用,那么A就是受到非平衡力的作用,运动状态会发生改变,这与题设A、B一起做匀速直线运动不相符,故A没有受到摩擦力的作用。
估计法估计法是根据题目给定的条件或数量关系,不精确计算,而经分析、推理或进行简单的心算就能找出答案的一种解题方法。
它的最大优点是,在解析带有一定计算因素的选择、填空题时,往往不需要精确计算,只要对数据进行粗略的估计或模糊计算,就能使问题迎刃而解。
笔者总结解决估算问题的基本思路是:从信息中排除干扰信息。
有些估算题往往文句简洁,显性已知条件少或已知条件比较隐蔽,乍一看题,好像缺条件,只有认真审题,仔细推敲,才能挖掘出隐蔽的已知条件。
从题设条件出发,运用有关数学工具,并借助于物理常数及日常生活常识,进而得到满足实际需要的结果。
例2.图2为某举重运动员在0.5s内由支撑到起立将杠铃举起过程中拍摄的两张照片,杠铃的质量为100kg,则杠杆重为________N。
初中物理解题四大思想方法(物理)初中物理解题四大思想方法初中物理是一门关于物质、能量和运动的科学,通过研究物理可以培养思维能力和解决问题的方法。
在解题过程中,初中生可以运用一些常见的思维方法,提高解题效率。
以下是初中物理解题时常用的四大思想方法:1. 分析思维方法分析思维方法是一种将问题拆分成更小、更简单部分的方法。
通过认真分析问题,找出问题的关键点和要素,可以更好地理解问题的本质,从而更好地解决问题。
在初中物理解题时,学生可以运用分析思维方法将复杂的问题分解成几个简单的子问题,然后逐步解决每个子问题,最终得出整个问题的解答。
2. 实验思维方法实验思维方法是一种通过实验来验证理论或解决问题的方法。
在初中物理中,许多问题需要通过实验来验证或解决。
通过设计实验、观察实验现象和测量实验数据,可以得出结论并验证答案的正确与否。
实验思维方法可以帮助学生更好地理解物理概念和定律,并提高解题的准确性。
3. 模型思维方法模型思维方法是一种通过建立模型来解决问题的方法。
在初中物理中,通过建立适当的模型,可以更好地理解和描述问题,并通过模型进行计算和预测。
模型可以是物理模型、数学模型或计算机模型等。
通过运用模型思维方法,学生可以将问题转化为数学运算或图像表示,从而更好地解决问题。
4. 比较思维方法比较思维方法是一种通过比较不同事物的共同点和不同点来解决问题的方法。
在初中物理中,我们经常需要比较不同物体或现象之间的特点和规律。
通过比较思维方法,学生可以找出差异和联系,从而更好地理解问题的本质和解决问题的方法。
比较思维方法可以帮助学生深入分析问题,并提高解题的综合能力和创造力。
通过运用以上四大思想方法,初中生可以更好地解决物理问题,并提高解题的效率和准确性。
在学习初中物理的过程中,鼓励学生多运用这些思维方法,并灵活应用到不同的解题过程中。
小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的;逆向思维是不依据题目内条件出现的先后顺序,而是从反方向或从结果出发而进行逆转推理的一种思维方式;逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答;正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘;列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的;如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:同上掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展;二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一;对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的;例1 小红有7个三角,小明有5个三角,小红比小明多几个三角这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角;一般对应随着知识的扩展,也表现在以下的问题上;这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时;这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解;在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础;这是因为在较复杂的应用题里,间接条件较多,在推导过程中,利用对应思维所求出的数,虽然不一定是题目的最后结果,但往往是解题的关键所在;这在分数乘、除法应用题中,这种思维突出地表现在实际数量与分率或倍数的对应关系上,正确的解题方法的形成,就建立在清晰、明确的量率对应的基础上;这是一道“已知一个数几分之几是多少,求这个数”的分数除法应用题,题中只有20本这唯一具体的“量”,解题的关键是要找这个“量”所对应的“率”;如图:的“率差”,找出“量”所对应的“率”,是解答这类题的唯一思考途径,按照对应的思路,即可列式求出结果;答:书架上原有书240本;如果没有量率对应的思维方法,用20除以而得的不是所对应的率,必然导致错误的计算结果;因此,培养并建立对应的思维方法,是解答分数乘除法应用题一把宝贵的钥匙;三、假设思维方法这是数学中经常使用的一种推测性的思维方法;这种思维方法在解答应用题的实践中,具有较大的实用性,因为有些应用题用直接推理和逆转推理都不能寻找出解答途径时,就可以将题目中两个或两个以上的未知条件,假设成相等的数量,或者将一个未知条件假设成已知条件,从而使题目中隐蔽或复杂的数量关系,趋于明朗化和简单化,这是假设思维方法的一个突出特点;当“假设”的任务完成后,就可以按照假设后的条件,依据数量的相依关系,列式计算并做相应的调整,从而求出最后的结果来;各长多少米解答这道题就需要假设思维方法的参予;如果没有这种思维方法,将难以找到解题思路的突破口;题目中有两数的“和”;而且是直接条件,两数的“倍”不仅是间接条件,并且附加着“还”多0.4米的条件,这是一道较复杂的和倍应用题,思考这道题,必须进行如下的假设;是直接对应的,至此,就完全转化成简单的和倍应用题;根据题意,其倍数关系如图:答:第一块4.36米,第二块3.3米;电线各长多少米两个标准量的分率一旦一致,就可以用共长的米数乘以假设后的统一分率,求出假设后的分量,这个分量与实际8.6米必有一个量差,这个量差与实际的率差是相对应的;这样就可以求出其中一根电线的长度,另一根电线的长度可通过总长度直接求出;列式计算为:长度;列式计算为:答:同上;上述两种解法都是从率入手的,此题如从量入手也有两种解法,无论从率从量入手,都需要假设的思维方法作为解题的前提条件;由此可见,掌握假设的思维方法,不仅可以增加解题的思路,在处理一些数量关系较抽象的问题时,往往又是创造性思维的萌芽;四、转化思维方法在小学数学的应用题中,分数乘、除法应用题既是重点,又是难点;当这类应用题的条件中,出现了两个或两个以上的不同标准量,从属于这些标准量的分率,就很难进行分析、比较以确定它们之间的关系;运用转化的思维方法,就可以将不同的标准量统一为一个共同的标准量;由于标准量的转化和统一,其不同标准量的分率,也就转化成统一标准量下的分率,经过转化后的数量关系,就由复杂转化为简单,由隐蔽转化为明显,为正确解题思路的形成,创造了必要的条件;培养转化的思维方法,必须具备扎实的基础知识,对基本的数量之间的相依关系以及量率对应等关系,都能做到熟练地掌握和运用,没有这些作为基础,转化的思维方法就失去了前提;转化的思维方法,在内容上有多种类型,在步骤上也有繁有简,现举例如下;从题意中可知,求这批货物还剩下几分之几,必须先知道三辆车共运走全部的几分之几,全部看作标准量“1”,但条件中的标准量却有三个,“全部”、“甲车”和“乙车”,如果不把“甲车”和“乙车”这两个标准量,也统一成“全部”这个标准量,正确的思路将无法形成;上面的转化的思维方法,都是分率在乘法上进行的,简称“率乘”;乙两人年龄各多少岁从题目中的条件与问题来分析,这是一道和倍应用题,但标准量却有两个甲年龄与乙年龄,不通过转化来统一标准量,则无法确定甲乙年龄之间的倍数关系;两人年龄和是60岁,就可以求出甲乙两人各自的年龄;答:甲36岁,乙24岁;如果把甲乙年龄不同的标准量,通过转化统一为乙年龄的标准量,把乙龄则是:如果根据题意画出线段图,还可以转化成另外一种思路;倍,通过这个转化,就可以确定甲乙年龄的倍数关系;答:甲36岁,乙24岁;如果结合对图形中相等部分的观察,转化一下思维的角度,可以将这道较复杂的分数和倍应用题转化为按比例分配的应用题;2,有了两人年龄的“和”,又有了两人年龄“比”的关系,按比例分配应用题的条件已经具备;上述的四种解法,前两种运用了分率转化法,第三种运用了倍比转化法,第四种是将原题转化为按比例分配的应用题,这几种思路,在算法上大同小异,在算理上也有难有易,但都有一个明显的共同点:与转化的思维方法紧密相连;五、消元思维方法在小学数学中,消元的思维方法,也叫做消去未知数的方法;在一些数量关系较复杂的应用题里,有时会出现由两种或两种以上物品组合关系所构成的问题,而已知条件只给了这几种物品相互混合后的数量和总值,如果按照其他的思维方法,很难找到解决问题的线索;这就需要运用消元的思维方法,即:依据实际的需要,通过直接加、减或经过乘、除后,再间接加、减的方法,消去其中一个或一个以上未知数的方法,来求出第一个结果,然后再用第一个结果推导出第二个或第三个结果来;运用消元的思维方法,是从求两个未知数先消去其中一个未知数开始的,然后过渡到求三个未知数,首先消去其中两个未知数;例 1 有大小两种西红柿罐头,第一次买了2个小罐头,3个大罐头,、小罐头每个各重多少公斤根据题目中的条件,排列如下:从条件排列中观察到:两次买罐头的总重量是不一样的,关键在于两次买的大罐头的个数不一样,如果用第二次的总重量减去第一次的总重量,所得到的量差与两次买的大罐头的个数差是直接对应的;这样一减,实际上就消去了2个小罐头的重量,所得的结果就是7-3=4个大罐头的重量,据此,可以求出每个大罐头的重量,有了每个大罐头的重量,再代入原题中任何一个条件,就可以求出每个小罐头的重量;列式计算为:例2 食堂买盐、酱、醋,第一次各买2斤,共付0.96元,第二次买4斤盐、3斤酱、2斤醋共付1.48元,第三次买5斤盐、4斤酱和2斤醋,共付1.82元,求每斤各多少元根据第三次和第二次所买的物品数量,醋的斤数一样,两次付出钱数相减,就把醋消去了;所得的结果就是两次盐、酱斤数差所对应的钱数;考虑到第一次各买2斤付出0.96元,用0.96元除以2,所得的0.48元,正是各买1斤应付的钱数;再用0.48元减去1斤盐、1斤酱的0.34元,就可求出1斤醋的价钱;每斤醋的价钱已求出,再想办法消去盐和酱,如果先消去酱,可用:0.34元×3=1.02元,这1.02元是3斤盐和3斤酱的价钱和,再用第二次共付的1.48-0.14×2=1.2元,这1.2元是消去2斤醋的价钱,也就是4斤盐、3斤酱的价钱之和,由于1.02元里也有3斤酱的价钱,这两个数相减,即可求出每斤盐的价钱;如果求出每斤醋的价钱后,也可以先消去盐,即用:0.34×4=1.36元,这是4斤盐与4斤酱的价钱和;然后按上述求出4斤盐与3斤酱的价钱和1.2元,即可求出每斤酱的价钱;如下式:通过以上两例说明:解答上面这类应用题,按照一般的常规思路,会感到不得其门而入;运用消元的思维方法,就会发现解答上面这类题的规律;由于解题步骤和分析消元的角度上,不是唯一的,因此,消元的思维方法也会促进整个思维的发散性;小学数学中的消元思维方法与中学代数中的消元法是一致的,所不同的是小学数学中的消元没有字母,都是具体的数量;六、发散思维方法发散的思维方法,是依据题目中的条件与条件、条件与问题的相依关系,从不同的角度去分析,从不同的途径去思考,在推理中寻求正确的答案,在比较中选择最佳思路,从而使学生的求异思维得到锻炼和发展;求同思维是求异思维的前提,没有求同就没有真正的求异,或者说就没有真正的发散,但求异思维不是求同思维的自然发展,重要的是教师有计划、有重点地进行发散思维方法的培养;让学生在“同中求异”和“异中求同”,使求同思维与求异思维协同配合,做到培养中的同步发展;是一个正确答案,却是从不同角度进行发散思维的结果;出1300公斤;倍,小数点向右移动三位,结果是1300公斤;上述的三种思路,其与旧知识的联系不尽相同,所以形成了不同的发散加的方法,实际上在运算中使用了乘法的分配律;思路②是用求一个数是另一个数的几又几分之几倍的分数乘法则来进行计算的;思路③是先将分数化成小数,然后在乘法中,根据小数点移位所引起的小数大小变化的规律,从而简便、准确、迅速地求出结果;例2 当分数、百分数应用题学完后,可通过变直接条件为间接条件的表述,来进行发散思维方法的培养;甲储蓄80元,乙储蓄50元;如果把乙储蓄的这个直接条件改为间接条件,并用分数或百分数的形式进行表述,可能有几种表述方式:……如果把甲储蓄的钱数转化为间接条件,仍用分数或百分数的形式进行表述,可有以下几种表述方式:类似的表述方法还有多种,解答步骤也会由简到繁;由此可见,发散思维方法的形成,对于应用题中的数量关系或量率关系,能够进行多角度、多侧面的发散性思考,这种自觉习惯的养成,将是一种宝贵的思维品质;七、联想思维方法联想思维方法是沟通新旧知识的联系,在处理新问题的数量关系时,能够对已掌握的旧知识与新问题之间,产生丰富的联想,并运用知识的正迁移规律,变换审题的角度,使问题得到更顺利、更简捷的解决;例如:当学完分数和比例应用题后,下面的一组数量关系,就可以显示联想思维方法在开阔思路上的作用;行驶一段路程,甲车与乙车速度的比是5∶4;①甲车与乙车的速度比是5∶4,甲车与乙车所用的时间比就是4∶5;这是依据速度与时间成反比关系而联想出来的;如果原题的后面条件是给了甲或乙行完全路的时间,按原来速度比去思考,此题将是反比例应用题,通过联想,将速度比转化为时间比,此题便由反比例应用题转化为正比例应用题;是依比与除法关系联想的结果;如果原题条件的后面给了乙车的速度求甲车速度是多少,就可以用求一个数几又几分之几倍的方法,将原题的正比例应用题转化成分数乘法的应用题;如果原题给了甲车的速度去求乙车的速度,就可以用已知一个数的几又几分之几倍是多少,求这个数的方法,将原题转化成分数除法的应用题;依据分数与比的关系联想的结果;如果后面给了甲车速度,求乙车速度,则转化成求一个数几分之几是多少的乘法应用题;反之,则转化成已知一个数的几分之几是多少,求这个数的除法应用题;在比与除法关系的基础上,联想到求一个数比另一个数多几分之几;乙车速个差率直接对应,那么,用分数除法就可以直接求出乙车的速度;是依据求一个数比另一个数少几分之几而联想出来的;甲车作为标准量,如除法可求出甲车的速度;⑥根据甲车与乙车速度的比是5∶4,则甲乙两车的速度和为5+4据按比例分配应用题所进行的联想;如果原题后面给出两车速度和是多少的条件,就可以用分数乘法分别求出甲车和乙车的速度;⑦根据甲车与乙车速度的比是5∶4,在速度与时间成反比的基础上,联想到甲车与乙车的时间比是4∶5,并由此联想出甲车每小时行完全路的出发,相向而行,求中途的相遇时间,那么,把全路作为标准量,这道题又转化成分数的工程问题;从上例可以看出:联想的面越广,解题思路就越宽,解题的步骤也就会越加准确和敏捷;由此可见,联想思维方法所带来的效益,不仅可以促进学生思维力的发展,也可以直接、有效地提高解答应用题的能力;实践证明:联想思维方法往往是创造性思维的先导;八、量不变思维方法在一些较复杂的分数应用题中,每个量的变化都会引起相关联的量的变化,就如同任何一个分量的变化都会引起总量变化一样,这种数量之间的相依关系,常常出现以下情况:即在变化的诸量当中,总有一个量是有恒的,不论其他量如何变化,而这个量是始终固定不变的;有了量不变的思维方法,就能在纷繁的数量关系中,确定不变量,理顺它们之间的关系,理清解题的思路,从而准确、迅速地确定解答的步骤与方法;运用量不变思维方法,处理应用题时,大体上有以下三种情况:1分量发生变化,总量没有变;2总量发生变化,但其中的分量没有变;3总量和分量都发生了变化,但分量之间的差量没变;因此,要结合题目内容,区别不同情况,做出具体的分析;从题意分析中可以得出:这是一道总量不变的应用题,乙给甲12元后,二人的存款数分量都发生了变化,但二人存款的总钱数总量却始终不变,抓住了这个不变量,就抓住了解题的关键,把乙的存款数看作“1”,如下图所示;元后,乙存款数所占总存款的分率也发生了变化,如图所示;或者根据甲为“1”,先求甲占总存款数的几分之几,把标准量转化为总存化,就在于拿出了12元,这12元所对应的正是总存款数的分率差,据此,=32元,甲原来的存款数是:80-32=48元;此题中,尽管标准量前后不同,中间并经过几度转化,解题过程也较复杂,但总量不变的特点一旦抓住,就会保证思维过程的条理和清晰;这是一道分量不变的应用题,科技书的增加,必然引起两种书总数的增加,也就是一个分量和总量都发生了变化,但有另一个分量始终没变,这就是文艺书的本数,抓住这个不变量,就找到了解题的突破口;当科技书增加后,文艺书仍然是504本,不过它所占两种书总数的分率却发生了变化,这是科技书的增加所引起总本数增加的结果,这时文艺书所占的分率就相应减少;720-630=90本,由于文艺书没变,这90本就是科技书后来又买进的本数;这是一道差量不变的应用题,张华年龄增加的同时,李丽的年龄也在增加,年龄之和也相应增加,张华所占两人年龄和的分率,也必然发生变化,但这个分量的差量,即张华与李丽的年龄差却始终未变;可以形成下面的解题思路;岁;这所差的8岁,对他们两人是固定不变的,当张华36岁时,李丽则是36-8=28岁;。
《高中物理思维方法集解》参考系列——高中物理解题常用的几种思维方法高中物理解题常用的几种思维方法中学物理解题中涉及到许多科学思维方法,由此而产生的解题方法和解题技巧很多,这里将高中物理解题中经常要用到的几种科学思维方法作一些介绍。
1.等效法等效法是从效果的等同的角度出发把复杂的物理现象、物理过程转化为理想的、简单的、等效的物理现象和过程来研究和处理问题的一种科学思维方法。
中学物理中,等效的思想应用很广泛,如力的合成与分解、运动的合成与分解、单摆的等效摆长和等效重力加速度等都是等效法的具体应用。
在学习物理的过程中,若能将等效法渗透到对物理过程的分析中去,不仅可以使我们对物理问题的分析和解答变得简捷,而且对灵活运用知识,促进知识、技能和能力的迁移,都会有很大的帮助。
①力的等效。
合力与分力具有等效性,利用这种等效性,可将物体所受的多个恒力等效为一个力,也可将一个力按力的效果等效分解为多个力,从而降低解题的复杂性和难度,使问题得到快速、简捷的解答。
②运动的等效。
建立等效运动的方法是多样的。
利用合运动与分运动的等效性,可将一个复杂的运动分解为几个简单的、熟知的运动。
通过发散思维将间断的匀加速运动等效为一个完整的、连续的匀加速运动。
通过逆向思维将匀减速运动等效为一个相反方向的匀加速运动等。
③电路的等效。
有关电路分析和计算的题目,虽然涉及到的物理过程和能量的转化情况较为单一,但是在元器件确定的情况下,线路的连接方式却是千变万化的。
多数电路中电子元件的串并联关系一目了然,不需要对电路进行等效转换,但有些电路图中的元件的连接方式并非一下就能看明白,这就需要在计算之前对电路的连接方式进行分析,并进一步画出其等效电路图。
学会画等效电路图是中学阶段必须具备的能力之一。
④物理模型的等效。
物理模型的等效就是对不熟悉的物理模型与熟悉的物理模型作分析比较,找出二者在某方面的等效性,从而将熟悉模型的已知结论应用到不熟悉的物理模型上去的过程。
动力学问题解题思路动力学问题就是解决力和运动的关系的问题,它是力学的基本问题,也是核心问题。
初中阶段该问题定性地表述为力是改变物体运动状态的原因;高中阶段给出了动量的物理规律,要求作动量的计算,要解决这个问题,就必须掌握解题规律和思路。
一、要高屋建瓴,把握力学知识体系一个物体在力的作用下,经过一段时间和位移获得速度这个过程,可以理解为力使物体产生了加速度,经过一段时间获得了速度,也可以理解为力在这段位移内对物体作了,功使物体的动能增加了,还可理解为力在这段时间内对物体施了冲量,从而改变了物体的动量。
因此,可以从三种不同的角度或用三种不同的观点,即加速度观点、能量观点、动量观点来解决它。
二、熟练掌握相应的物理规律及其解题思路解题思路是由物理规律本身决定的,加速度观点对应的物理规律是牛顿第二定律,它是质点运动学的核心规律,动能定理、动量定理均可从牛顿第二定理导出。
牛顿第二定律的数学表达式为F =ma,公式中F这一项涉及具体性质力的规律,如万有引力定律、胡克定律、摩擦定律,涉及力的合成、分解以及矢量运算遵循的平行四边形法则,a这一项涉及匀变速直线运动和匀速圆周运动等运动规律,所以全面掌握牛顿第二定律就能掌握力学中涉及的大多数规律和法则。
牛顿第二定律反映的是物体在力的作用下如何运动的问题,所以应用牛顿第二定律时,首先必须明确研究对象,即研究主体,并将其从周围环境中隔离出来(所谓隔离体法),隔离体法处理连接体问题时,在多数情况中是必不可少的,如果取连接体的整体为对象,则仍然是一个确定研究主体的问题,研究主体确定了,公式中的m这一项就确定了;第二步对研究主体进行受力分析,这是F这一项的要求;第三步分析研究对象运动状态的变化,从而由运动学规律确定a;第四步由牛顿第二定律建立方程,随后就是解方程和讨论结果了。
以上思路简单概括为:明对象、两分析、列方程、议结果。
能量观点相应的物理规律是动能定理,数学表达式为:W总=△Ek=1/2mv22-1/2mv12动量观点相应的物理规律是动量定理,数学表达式为:I合=△P=mv2-mv1这两个规律表达的是物体在同一段过程中合外力对物体所做的总功(或总冲量)与物体运动状态变化之间的关系,应用它们同样必须明确研究对象(对应公式中的m),同时还必须确定所研究的过程,该过程中合外力对物体所做的总功(或总冲量)对应公式中的W或I,该过程的的始末状态,对应公式中的v1和v2,概括为:“明对象——定过程——找总功(或总冲量) ——始末能(或动量) ——列方程——议结果。
高中物理学科主要思想方法介绍在以往的教师招聘考试过程中,往往会出现考生讲课只注重讲课形式,但是内容上空洞无内涵的情况。
这样的讲课只有外在,没有内在,就会给考官留下一种专业知识不扎实,关键问题讲不透彻的感觉。
因此在这里,给各位考生介绍一些在物理学科当中经常会遇到的思想方法,如果在试讲过程中能有所穿插,会加分不少。
1.图形/图象图解法:图形/图象图解法就是将物理现象或过程用图形/图象表征出后,再据图形表征的特点或图象斜率、截距、面积所表述的物理意义来求解的方法。
尤其是图象法对于一些定性问题的求解独到好处。
2.极限思维方法:极限思维方法是将问题推向极端状态的过程中,着眼一些物理量在连续变化过程中的变化趋势及一般规律在极限值下的表现或者说极限值下一般规律的表现,从而对问题进行分析和推理的一种思维办法。
3.平均思想方法:物理学中,有些物理量是某个物理量对另一物理量的积累,若某个物理量是变化的,则在求解积累量时,可把变化的这个物理量在整个积累过程看作是恒定的一个值---------平均值,从而通过求积的方法来求积累量。
这种方法叫平均思想方法。
物理学中典型的平均值有:平均速度、平均加速度、平均功率、平均力、平均电流等。
对于线性变化情况,平均值=(初值+终值)/2。
由于平均值只与初值和终值有关,不涉及中间过程,所以在求解问题时有很大的妙用.4.等效转换(化)法:等效法,就是在保证效果相同的前提下,将一个复杂的物理问题转换成较简单问题的思维方法。
其基本特征为等效替代。
物理学中等效法的应用较多。
合力与分力;合运动与分运动;总电阻与分电阻;交流电的有效值等。
除这些等效等效概念之外,还有等效电路、等效电源、等效模型、等效过程等。
5.猜想与假设法:猜想与假设法,是在研究对象的物理过程不明了或物理状态不清楚的情况下,根据猜想,假设出一种过程或一种状态,再据题设所给条件通过分析计算结果与实际情况比较作出判断的一种方法,或是人为地改变原题所给条件,产生出与原题相悖的结论,从而使原题得以更清晰方便地求解的一种方法。