初二数学《全等三角形、轴对称图形》练习
- 格式:pdf
- 大小:249.45 KB
- 文档页数:4
初二数学轴对称练习题及答案轴对称是初中数学中的一个重要概念,它在几何图形的研究中具有广泛的应用。
本文将为大家提供一些初二数学轴对称的练习题及答案,帮助同学们更好地理解和掌握这个知识点。
1. 练习题一在平面上,画出图形ABC,其中AB=3 cm,BC=4 cm,AC=5 cm。
找出图形的对称中心,并标出。
解答:首先,根据给定条件画出图形ABC。
由题目可知,三角形ABC是一个直角三角形,其中∠ABC=90°。
以边AC为轴,将三角形沿中点F对折,使得点B和B'重合。
连接BB',则BB'即为轴对称线,其交点F即为图形ABC的对称中心。
2. 练习题二如图所示,J、K、L、M是矩形ABCD的四个顶点,N是JL的中点,P是KN的中点,连接BM和CP,交于点O。
证明:BO=OC。
解答:根据题目所给条件,我们可以先证明三角形MBN与三角形PCO全等。
首先,由矩形ABCD的性质可知,AD∥BC,故∠NBC=∠BAN=90°。
其次,由题目可知,N是JL的中点,所以NJ=NL,结合矩形的性质可得∠NJL=∠NLF=90°,因此NFBJ是一个矩形。
同理,NEDK也是一个矩形。
由于FB=EK,NJ=NL,所以根据余角定理可知∠NBF=∠NEK。
再根据SSS全等定理,得到三角形MBN与三角形PCO全等,因此MB=PC。
又因为M和P分别是BC和KN的中点,故MB=BC/2,PC=KN/2。
所以BC/2=KN/2,即BC=KN。
由于BO和OC分别是BM和CP的中线,所以BO=BM/2,OC=CP/2。
综上所述,BO=OC。
3. 练习题三已知矩形EFGH中,AB=8 cm,BC=6 cm。
在边AB和BC上分别取两个等分点D和I,并连接DI。
求证:DI垂直于FG。
解答:根据题目中所给条件,我们可以先证明三角形GBD与三角形ACI全等。
首先,由矩形EFGH的性质可知,EF∥GH,所以∠FGB=∠AGH=90°。
图12 图9 A 'C A D B E 21图10 C A D B E F 图2 图11 12C A D B E F M N O AB DC EF 图1 图3 45321八年级数学《全等三角形》专项训练题精选1.如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 【 】.(A )2平方厘米 (B )1平方厘米 (C )12平方厘米 (D )14平方厘米2. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】.(A )HL (B )SSS (C )SAS (D )ASA3. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于【 】.(A )145° (B )180° (C )225° (D )270°4. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】.(A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长5. 如图9所示,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A的大小等于_____度.6. 如图10所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则△ABC ≌△DEF ,理由是______.7. 如图11所示,AD ∥BC ,AB ∥DC ,点O 为线段AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE =OF .图中全等的三角形共有____对.8. 如图12所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC =CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,则∠ABC =∠CDE =90°,BC =DC ,∠1=______,△ABC ≌_________,若测得DE 的长为25 米,则河宽AB 长为_________.9.在△ABC 和△DEF 中,已知AB =DE ,∠A =∠D ,若补充下列条件中的任意一条,就能判定△ABC ≌△DEF 的是( )①AC =DF ②BC =EF ③∠B =∠E ④∠C =∠F .A .①②③B .②③④C .①③④D .①②④10.如图,在等腰R t △ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E , 过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF .(1)求证:AD ⊥CF ;(2)连接AF ,试判断△ACF 的形状,并说明理由.11.已知:如图①,在△AOB 和△COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =50°(1)求证:①AC =BD ;②∠APB =50°;(2)如图②,在△AOB 和△COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,则AC 与BD 间的等量关系为 ,∠APB 的大小为12.已知:∠BAC=90°,AB=AC ,AD=DC ,AE ⊥BD ,求证:∠ADB=∠CDE13.在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,且AE 垂直BD 的延长线于E ,又AE=12BD ,求证:BE 平分∠ABC 。
初二八年级数学《轴对称图形》课后练习题(含答案)1.本文没有明显的格式错误或需要删除的段落,但可以对每段话进行小幅度改写:第一段:中国主要银行的商标设计通常融入了中国古代钱币的图案。
下图中,四大银行的商标中,哪些是轴对称图形?选项为①、②、③、④,正确答案是哪个?第二段:以下哪个图形不是轴对称图形?选项为:有两个角相等的三角形、有一个角为45度的直角三角形、有一个内角为30度和一个内角为120度的三角形、有一个内角为30度的直角三角形。
第三段:等腰三角形是轴对称图形,其对称轴是什么?选项为:过顶点的直线、顶角的平分线、底边的垂直平分线、腰上的高。
第四段:以下哪个图形不是轴对称图形?选项为:角、等边三角形、线段、不等边三角形。
第五段:正五角星有多少条对称轴?选项为:1条、2条、5条、10条。
第六段:以下哪个图形有4条对称轴?选项为:平行四边形、矩形、正方形、菱形。
第七段:以下哪个说法正确?选项为:两个全等三角形组成一个轴对称图形、直角三角形一定是轴对称图形、轴对称图形是由两个图形组成的、等边三角形是有三条对称轴的轴对称图形。
第八段:如图,ΔXXX和ΔA’B’C’关于直线对称。
以下哪些结论正确?①ΔABC≌ΔA’B’C’;②∠BAC’≌∠B’AC;③l垂直平分CC’;④直线BC和B’C’的交点不一定在l上。
正确的有哪些?第九段:如图,∠AOB内一点P,P1、P2分别是P关于OA、OB的对称点。
P1P2交OA于M,交OB于N。
如果P1P2=5cm,那么ΔPMN的周长是多少?第十段:等腰三角形的周长为15cm,其中一边长为3cm。
那么该等腰三角形的底长是多少?选项为:3cm或5cm、3cm或7cm、3cm、5cm。
填空题:11.线段轴是对称图形,它有几条对称轴?12.在等腰△ABC中,若∠A=30°,则∠B=多少度?13.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是多少?14.在等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于多少?15.如图:等腰梯形ABCD中,AD∥BC,AB=6,BC=8,且AB∥DE,则△DEC的周长是多少?16.等腰梯形的腰长为2,上、下底之和为10,底角为60°,则它的两底长分别为4和6.17.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC为60°。
人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10×3=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. (−2)m +2⋅(−2)m−1的值是( )A 、0B 、-2C 、2D 、(−2)m+1 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 4. 若二次三项式26x ax +-可分解成(x −2)(x +b),则a ,b 的值分别为( ) A . 1,3 B . 1-,3 C . 1,3- D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p 的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。
8.如图,等边三角形△ABC 的边长是6,面积是9√3,AD 是BC 边上的高, 点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、3√3D 、6√39. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5×3=15分)11. a 4b −6a 3b +9a 2b 分解因式得正确结果为 . 12. 满足(n −1)n+2=1的整数n 的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。
第二讲全等三角形与轴对称第一部分知识梳理一、全等三角形的性质和判定1.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
2.判断两个三角形全等常用的方法如下表:3.直角三角形全等的条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
4.角平分线的性质:角的平分线上的点到角的两边的距离相等。
5.角平分线的判定:角的内部到角的两边的距离相等的点在角的角平分线上。
二、轴对称1.轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么称这两个图形成轴对称。
两个图形中的对应点(即两个图形重合时互相重合的点)叫对称点。
2.等腰三角形的性质:①两底角相等。
②顶角的角平分线、底边上的中线、底边上的高互相重合。
③等边三角形各角都相等,并且都等于60°。
3.等腰三角形的判定:①等角对等边。
②有一个角是60°的等腰三角形是等边三角形。
③三个角都相等的三角形是等边三角形。
如果一个三角形的两个内角分别是80°、50°,那么这个三角形是等腰三角形。
4.等边三角形的判定:①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
第二部分例题与解题思路方法归纳类型一全等三角形的性质与判定【例题1】(2011•泰安)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.〖选题意图〗本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,难度适中.〖解题思路〗(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.〖参考答案〗解:(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又BF⊥CE,∴∠CBG+∠BCF=90°,又∠ACE+∠BCF=90°,∴∠ACE=∠CBG,∴△AEC≌△CGB,∴AE=CG,(2)BE=CM,证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC ,又∵AC=BC ,∠ACM=∠CBE=45°, ∴△BCE ≌△CAM , ∴BE=CM . 【课堂训练题】1.如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连接BE 、EC . 试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.〖参考答案〗数量关系为:BE=EC ,位置关系是:BE ⊥EC . 证明:∵△AED 是直角三角形,∠AED=90°,且有一个锐角是45°, ∴∠EAD=∠EDA=45°, ∴AE=DE , ∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=90°+45°=135°, ∠EDC=∠ADC ﹣∠EDA=180°﹣45°=135°, ∴∠EAB=∠EDC , ∵D 是AC 的中点, ∴AD=12AC , ∵AC=2AB , ∴AB=AD=DC , ∴△EAB ≌△EDC ,∴EB=EC ,且∠AEB=∠DEC ,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°, ∴BE ⊥EC .2.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.〖参考答案〗解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAE=∠CDB;∵∠AFC=∠DFH,又∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE⊥BD.故线段AE和BD的数量相等,位置是垂直关系.类型二直角三角形全等的性质与判定【例题2】课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)〖选题意图〗本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.〖解题思路〗(1)如果:“∠B=∠D”,根据∠B 与∠D 互补,那么∠B=∠D=90°,又因为∠DAC=∠BAC=30°,因此我们可在直角三角形ADC 和ABC 中得出AD=AB=√32AC ,那么AD+AB=√3AC .(2)按(1)的思路,作好辅助线后,我们只要证明三角形CFD 和BCD 全等即可得到(1)的条件.根据AAS 可证两三角形全等,DF=BE .然后按照(1)的解法进行计算即可. 〖参考答案〗证明:(1)∠B=∠D=90°, ∠CAD=∠CAB=30°, ∴AB=√32AC ,AD=√32AC . ∴AB+AD=√3AC .(2)由(1)知,AE+AF=√3AC , ∵AC 为角平分线,CF ⊥CD ,CE ⊥AB , ∴CE=CF .而∠ABC 与∠D 互补, ∠ABC 与∠CBE 也互补, ∴∠D=∠CBE . ∴Rt △CDF ≌Rt △CBE . ∴DF=BE .∴AB+AD=AB+(AF+FD )=(AB+BE )+AF=AE+AF=√3AC .【课堂训练题】1.如图,△ABC中,AD⊥BC于D,点E在AD上,△ADC和△BDE是等腰三角形,EC=5cm,求AB的长.〖参考答案〗解:∵△ADC和△BDE是等腰三角形且AD⊥BC∴△ADC和△BDE均为等腰直角三角形∴AD=DC,BD=ED∴Rt△ADB≌Rt△CDE(HL)∴AB=CE=5cm2.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).〖参考答案〗解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.类型三角平分线的性质【例题3】在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.〖选题意图〗此题考查了全等三角形的判定与性质以及等腰三角形的判定定理.此题难度适中,解题的关键是注意数形结合思想的应用.〖解题思路〗(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠ACB=2∠B,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.〖参考答案〗解:(1)猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为△ABC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD.∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB.又∠ACB=2∠B,∠FED=∠B+∠EDB,∠EDB=∠B.∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.【课堂训练题】1.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE ⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.〖参考答案〗解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,,PE=PN=2,∴MN=2+2=4.故答案为:4.2.在△ABC中,∠C=90°,BC=16cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为cm.〖参考答案〗解:∵∠C=90°,BC=16cm,∠BAC的平分线交BC于D,∴CD就是D到AB的距离,∵BD:DC=5:3,BC=16cm,∴CD=6,即D到AB的距离为6cm.故填6.类型四轴对称的性质与应用【例题4】如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,﹣3),B(4,﹣1).(1)若P(p,0)是x轴上的一个动点,则当p=时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=时,四边形ABDC的周长最短;(3)设M ,N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点M (m ,0)、N (0,n ),使四边形ABMN 的周长最短?若存在,请求出m= ,n= (不必写解答过程);若不存在,请说明理由.〖解题思路〗(1)根据题意,设出并找到B (4,﹣1)关于x 轴的对称点是B',其坐标为(4,1),进而可得直线AB'的解析式,进而可得答案;(2)过A 点做AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,﹣1),连接A'F .利用两点间的线段最短,可知四边形ABDC 的周长最短等于A'F+CD+AB ,从而确定C 点的坐标值.(3)根据对称轴的性质,可得存在使四边形ABMN 周长最短的点M 、N ,当且仅当m=52,n=﹣53;时成立.〖参考答案〗解:(1)设点B (4,﹣1)关于x 轴的对称点是B',其坐标为(4,1), 设直线AB'的解析式为y=kx+b ,把A (2,﹣3),B'(4,1)代入得:{2k +b =﹣34k +b =1,解得{k =2b =﹣7∴y=2x ﹣7, 令y=0得x=72, 即p=72.(2)过A 点做AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,﹣1),连接A'F .那么A'(2,3). 直线A'F 的解析式为y ﹣1=3﹣(﹣1)2﹣1•(x ﹣1),即y=4x ﹣5∵C 点的坐标为(a ,0),且在直线A'F 上,∴a=54.(3)存在使四边形ABMN 周长最短的点M 、N ,作A 关于y 轴的对称点A′,作B 关于x 轴的对称点B′,连接A′B′,与x 轴、y 轴的交点即为点M 、N ,∴A′(﹣2,﹣3),B′(4,1),∴直线A′B′的解析式为:y=23x ﹣53,∴M (52,0),N (0,﹣53).m=52,n=﹣53.【课堂训练题】1.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 .〖参考答案〗解:要使△PBG 的周长最小,而BG=1一定,只要使BP+PG 最短即可. 连接AG 交EF 于M .∵等边△ABC ,E 、F 、G 分别为AB 、AC 、BC 的中点,∴AG ⊥BC ,EF ∥BC ,∴AG ⊥EF ,AM=MG ,∴A 、G 关于EF 对称,∴P 点与E 重合时,BP+PG 最小,即△PBG 的周长最小,最小值是:PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.故答案为:3.2.如图,在锐角△ABC 中,AB=4√2,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 .〖参考答案〗解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,{AE=AN∠EAM=∠NAM AM=AM,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4√2,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故答案为:4.类型五线段垂直平分线的性质【例题5】公园内有一块三角形空地(如图),现要将它分割成三块,种植三种不同的花卉,为了美观,要求每块都要是轴对称图形,请你在右图中画出分割线,保留必要的画图痕迹.〖选题意图〗本题考查了利用轴对称设计图案的知识,根据等腰三角形是轴对称图形的特点,分割后得到等腰三角形,是本题的突破口.〖解题思路〗根据等腰三角形是轴对称图形,作任意两边的垂直平分线,找出垂直平分线的交点P,然后连接PA、PB、PC,把三角形分成三块等腰三角形.〖参考答案〗解:如图,分别作AB、BC的垂直平分线,相交于点P,沿PA、PB、PC进行分割,得到的△PAB、△PBC、△PAC都是等腰三角形,都是轴对称图形.【课堂训练题】1.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.〖参考答案〗证明:(1)∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=√2.2.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.〖参考答案〗解:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,∠ADC=∠ECF,DE=EF,∠AED=∠CEF,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)证明:∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).类型六等腰三角形的性质与判定【例题6】(2011•山西)如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.〖选题意图〗本题主要考查了平分线的定义,平移的性质以及全等三角形的判定与性质,难度适中.〖解题思路〗(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.〖参考答案〗(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB于D,∴∠EAD+AED=90°,∴∠CFA=∠AED,∵∠AED=∠CEF,∴∠CFA=∠CEF,∴CE=CF;(2)BE′=CF.证明:如图,过点E作EG⊥AC于G,又∵AF平分∠CAB,ED⊥AB,∴ED=EG.由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在Rt△CEG与Rt△BE′D′中,{∠GCE=∠B∠CGE=∠BD′E′CE=D′E′,∴△CEG≌△BE′D′,∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.【课堂训练题】1.(2011•日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD 延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.〖参考答案〗证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD.在△BDC与△ADC中,{BD =AD ∠CBD =∠CAD BC =AC, ∴△BDC ≌△ADC ,∴∠DCB=∠DCA ,又∵∠DCB+∠DCA=90°,∴∠DCB=∠DCA=45°.由∠BDM=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,∴∠BDM=∠EDC ,∴DE 平分∠BDC ;(2)如图,连接MC .∵DC=DM ,且∠MDC=60°,∴△MDC 是等边三角形,即CM=CD .又∵∠EMC=180°﹣∠DMC=180°﹣60°=120°,∠ADC=180°﹣∠MDC=180°﹣60°=120°,∴∠EMC=∠ADC .又∵CE=CA ,∴∠DAC=∠CEM .在△ADC 与△EMC 中,{∠ADC =∠EMC∠DAC =∠MEC AC =EC,∴△ADC ≌△EMC ,∴ME=AD=DB .2.如图,在四边形ABCD 中,∠ABC=∠ADC=90°,M 、N 分别是AC 、BD 的中点.(1)猜一猜,MN 与BD 的位置关系,并证明你的结论;(2)如果∠BAD=45°,BD=2,求MN 的长.〖参考答案〗解:(1)连接BM,DM,∵∠ABC=90°,AM=MC,AC,∴BM=12AC,同理DM=12∴BM=DM,∵BN=ND,∴MN⊥BD(2)∵AM=BM,∴∠BMC=∠MAB+∠ABM=2∠BAM,同理∠CMD=2∠CAD,∴∠BMD=2∠BAD=90°,∵BM=MD,∴△BMD是等腰直角三角形,BD=1.∴MN=12类型七等边三角形的性质与判定【例题7】图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.〖选题意图〗本题考查了SAS——两边及其夹角分别对应相等的两个三角形全等,ASA——两角及其夹边分别对应相等的两个三角形全等,同时考查了等边三角形的性质和判定.〖解题思路〗(1)等边三角形的性质可以得出△ACN,△MCB两边及其夹角分别对应相等,两个三角形全等,得出线段AN与线段BM相等.(2)平角的定义得出∠MCN=60°,通过证明△ACE≌△MCF得出CE=CF,根据等边三角形的判定得出△CEF的形状.〖参考答案〗解:(1)∵△ACM与△CBN都是等边三角形,∴AC=MC,CN=CB,∠ACM=∠BCN=60°.∴∠MCN=60°,∠ACN=∠MCB.∴△ACN≌△MCB.∴AN=BM.(2)∵△ACN≌△MCB,∴∠CAE=∠CMB.∵∠MCN=60°=∠ACM,AC=MC,∴△ACE≌△MCF.∴CE=CF.∴△CEF的形状是等边三角形.【课堂训练题】1.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.〖参考答案〗解:根据题意:BC=6,D为BC的中点;故BD=DC=3.有轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,∠BDC′=60°,故△BDC′为等边三角形,故BC′=3.故答案为:3.第三部分课后自我检测试卷A类试题:1.在平面直角坐标系中,x轴一动点P到定点A(1,1)、B(5,7)的距离分别为AP和BP,那么当BP+AP最小时,P点坐标为.2.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为.3.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P 是BC边上一动点,则DP长的最小值为.4.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB 于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.5.如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF.B类试题:6.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA 边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.7.(1)等腰直角△ABC和等腰直角△CDE的位置如图所示,连接BE,并延长交AD于F,试问AD与BE之间有什么关系?证明你的结论;(2)若保持其他条件不变,等腰直角△CDE绕C点旋转,位置如下图所示,试问AD与BE之间的关系还存在吗?若存在,给予证明,若不存在,则说明理由.8.已知:如图所示,AC⊥CD,BD⊥CD.线段AB的垂直平分线EF交AB于点E,交CD 于点F,且AC=FD,求证:△ABF是等腰直角三角形.C类试题:9.操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE 为等腰三角形时CE的长);若不能,请说明理由.10.(1)如图,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC 延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正n 边形ABCD…X ,请你作出猜想:当∠AMN= 时,结论AM=MN 仍然成立.(直接写出答案,不需要证明)课后自我检测试卷参考答案A 类试题:1.解:依题意得:B (5,7)关于x 轴的对称点是(5,﹣7)过(1,1)与(5,﹣7)的直线为y=kx+b∴{1=k +b ﹣7=5k +b ,∴{k =﹣2b =3∴y=﹣2x+3令y=0,得x=32 故P 点坐标为(32,0). 2.解:如图:C′B′与AB 交点G′,与AD 交于点H′,FC′与AD 交于点W′,则这三个点关于EF 对称的对应的点分别G 、H 、W ,由题意知,BE=EB′,BG=B′G′,G′H′=GH ,H′C′=HC ,C′W′=CW ,FW′=FW ,∴①②③④四个三角形的周长之和等于正方形的周长=4×8=32.故本题答案为:32.3.解:根据垂线段最短,当DP ⊥BC 的时候,DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC ,又∠ADB=∠C ,∴∠ABD=∠CBD,又DA⊥BA,DP⊥BC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.4.相等.证明如下:连EB、EC,∵AE是∠BAC的平分线,且EF⊥AB于F,EG⊥AC于G,∴EF=EG.∵ED⊥BC于D,D是BC的中点,∴EB=EC.∴Rt△EFB≌Rt△EGC,∴BF=CG.5.证明:连接AC,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).∴∠DAC=∠BAC.又CE⊥AD,CF⊥AB,∴CE=CF(角平分线上的点到角两边的距离相等).B类试题:6.解:连DE,如图∵沿过A点的直线折叠,使得B点落在AD边上的点F处,∴四边形ABEF为正方形,∴∠EAD=45°,由第二次折叠知,M点正好在∠NDG的平分线上,∴DE平分∠GDC,∴RT△DGE≌Rt△DCE,∴DC=DG,又∵△AGD为等腰直角三角形,∴AD=√2DG=√2CD,∴矩形ABCD长与宽的比值为√2.故答案为:√2.7.解:(1)AD⊥BE,AD=BE,∵等腰直角△ABC和等腰直角△CDE,∴DC=EC,∠DCA=∠ECB,AC=BC,∴△BEC≌△ADC,∴AD=BE,∠DAC=∠EBC,又∠BEC=∠AEF,∠BEC+∠EBC=90°,∴∠AEF+∠DAC=90°,∴∠AFB=90°,∴AD⊥BE.(2)仍存在.如图,∵等腰直角△ABC和等腰直角△CDE,∴DC=EC,AC=BC,∠DCE=∠ACB,∴∠DCA=∠ECB,∴△BEC≌△ADC∴AD=BE,∠DAC=∠EBC,又∠BOC=∠AOE,∠BOC+∠EBC=90°,∴∠AOE+∠DAC=90°,∴AD⊥BE.8.证明:∵EF是AB的垂直平分线,∴FA=FB.∵AC⊥CD,BD⊥CD,∴△ACF与△FDB是直角三角形.在Rt△ACF与Rt△FDB中,AC=FD,FA=BF,∴Rt △ACF ≌Rt △FDB (HL ).∴∠CAF=∠DFB .∵∠C=90°,∴∠CAF+∠CFA=90°,∴∠CFA+∠BFD=90°,∴∠AFB=90°.∴△ABF 是等腰直角三角形.C 类试题:9.解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE . 理由如下:连接PC ,因为△ABC 是等腰直角三角形,P 是AB 的中点,∴CP=PB ,CP ⊥AB ,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∠DPC+∠CPE=∠BPE+∠CPE ,∴∠DPC=∠BPE .∴△PCD ≌△PBE .∴PD=PE .(2)△PBE 是等腰三角形,①当PE=PB 时,此时点C 与点E 重合,CE=0;②当PB=BE 时,1)E 在线段BC 上,CE =2﹣√2,2)E 在CB 的延长线上,CE =2+√2;③当PE=BE 时,CE=1.10.解:(1)证明:在边AB 上截取AE=MC ,连接ME .正方形ABCD 中,∠B=∠BCD=90°,AB=BC .∴∠NMC=180°﹣∠AMN ﹣∠AMB=180°﹣∠B ﹣∠AMB=∠MAB=∠MAE , BE=AB ﹣AE=BC ﹣MC=BM ,∴∠BEM=45°,∴∠AEM=135°.∵N 是∠DCP 的平分线上一点,∴∠DCN=45°,∴∠MCN=135°.在△AEM 与△MCN 中,∠MAE=∠NMC ,AE=MC ,∠AEM=∠MCN , ∴△AEM ≌△MCN ,∴AM=MN .(2)结论AM=MN 还成立证明:在边AB 上截取AE=MC ,连接ME .△ABC 中,∠B=∠BCA=60°,AB=BC .∴∠NMC=180°﹣∠AMN ﹣∠AMB=180°﹣∠B ﹣∠AMB=∠MAB=∠MAE , BE=AB ﹣AE=BC ﹣MC=BM ,∴∠BEM=60°,∴∠AEM=120°.∵N 是∠ACP 的平分线上一点,∴∠ACN=60°,∴∠MCN=120.在△AEM 与△MCN 中,∠MAE=∠NMC ,AE=MC ,∠AEM=∠MCN , ∴△AEM ≌△MCN ,∴AM=MN .(3)若将(1)中的“正方形ABCD”改为“正n 边形ABCD…X ,则当∠AMN=(n ﹣2)•180°n时,结论AM=MN 仍然成立.。
第十二章全等三角形1、如图,四边形ABCD中,AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E、F.求证:BE=BF.2、如图,锐角△ABC中,∠BAC=60°,O是BC边上的一点,连接AO,以AO为边向两侧作等边△AOD和等边△AOE,分别与边AB,AC交于点F,G.求证:AF=AG.3、如图,已知AD∥BC,P为CD上一点,且AP,BP分别平分∠BAD和∠ABC.(1)判断△APB是什么三角形,证明你的结论;(2)比较DP与PC的大小,并说明理由.4、已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.(有十来种做法)5、如图,梯形ABCD中,AD∥BC,CE⊥AB于E,交梯形的对角线BD于F,连接AF.若△BDC为等腰直角三角形,且∠BDC=90°.求证:CF=AB+AF.连接法6、已知:如图,AD=BC,AC=BD.求证:∠C=∠DD COA B7、如图11-30,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点.求证:AF⊥CD.8、如图所示,BD=DC,DE⊥BC,交∠BAC的平分线于E,EM⊥AB,EN⊥AC,求证:BM=CN倍长中线9、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.10、如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC 边上的中线,连接DE.求证:DE=2AM.11、正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,∠EAF=45,求证:BE+DF=EF.FE DCB A 12、如图,AC∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB=AC+BDC13、如图,四边形ABCD 中,点E 在边CD 上,连结AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果×××,那么××),并给出证明:(2)用序号再写出三个真命题(不要求证明);(3)加分题:真命题不止以上四个,想一想,就能够多写出几个真命题,每多写出一个真命题就给你加1分,最多加2分.14、在等边ABC ∆的两边AB、AC 所在直线上分别有两点M、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC.探究:当M、N 分别在直线AB、AC 上移动时,BM、NC、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L的关系.(I)如图1,当点M、N 边AB、AC 上,且DM=DN 时,BM、NC、MN 之间的数量关系是;此时=L Q ;(II)如图2,点M、N 边AB、AC 上,且当DM ≠DN 时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III)如图3,当M、N 分别在边AB、CA 的延长线上时,若AN=x ,则Q=(用x 、L 表示).利用角平分线15、如图,在四边形ABCD 中,BC>BA,AD=CD,BD 平分ABC ∠,求证:0180=∠+∠C A 。
全等三角形与轴对称复习测试卷一、选择题(共10小题,每小题4分,满分40分)1.下列各图中,为轴对称图形的是()A.B.C.D.2.观察下列银行标志,从图案看是中心对称图形的有()个.A.1个 B.2个 C.3个 D.4个3.如图,AB=AC,EB=EC,那么图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对(第3题)(第6题)4.已知一个三角形中有两个角度数如下,其中不能构成等腰三角形的是()A.40°,70° B.60°,90° C.50°,80° D.30°,120°5.下列说法错误的是()A.全等三角形的对应边上的高相等 B.全等三角形的对应边上的中线相等C.全等三角形的对应角平分线相等 D.所有等边三角形都全等6.如图,已知AB、CD相交于O点,△AOC≌△BOD,E、F分别在OA、OB上,要使△EOC≌△FOD,添加的一个条件不可以是()A.CE=DF B.∠CEA=∠DFB C.∠OCE=∠ODF D.OE=OF7.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,-3),N(-1,-3) B.M(-1,-3),N(-1,3)C.M(-1,-3),N(1,-3) D.M(-1,3),N(1,-3)(第7题)(第8题)8.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直 B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行9.如图,在△ABC中,AB=AC,D是BC边上一点,AD=AE,∠EDC=20°,则∠BAD的度数是()A.20° B.40° C.60° D.无法确定(第9题)(第10题)(第11题)10.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二、填空题(共4小题,每小题5分,满分20分)11.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(只写一个即可,不添加辅助线)12.下列4个图形中,不是轴对称图形的是图形,对称轴最多的轴对称图形是图形.13.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=度.(第13题)(第14题)14.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是度.三、解答题(共9小题,满分90分)15.如图,AC、BD交于点E,添加怎样的两个条件,直接用AAS证明△ADE≌△BCE?16.已知:M、N分别在∠AOB的边OA、OB上.求作:以MN为底边的等腰△MNP,使点P在∠AOB的平分线OC上.(要求:用尺规作图,保留作图痕迹,不必写作法和证明)17.如图,在△ABC与△ABD中,BC=BD.设点E是BC的中点,点F是BD的中点.(1)请你在图中作出点E和点F;(要求用尺规作图,保留作图痕迹,不写作法与证明)(2)连接AE,AF.若∠ABC=∠ABD,请你证明△ABE≌△ABF.18.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.19.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,C1,D1的坐标;(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.20.如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.求证:AB=AC+CD.21.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.22.如图,已知∠B+∠D=180°,AE、BD相交于点C,AC=CE,求证:AB=DE.23.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.答案;一、选择题(共10小题,每小题4分,满分40分)1.故选C.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.故选C.考点:中心对称图形;生活中的旋转现象.分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念,观察可知,只有第四个不是中心对称图形,其它三个都是中心对称图形.故选C.点评:掌握好中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.故选C.考点:全等三角形的判定.分析:三角形全等条件中必须是三个元素,至少有一组对应边相等,根据已知条件和等腰三角形的性质可以得到三组全等三角形.做题要从已知开始找,由易到难.解答:解:∵AB=AC,EB=EC,∴∠ABC=∠ACB,∠EBD=∠ECD,∴∠ABE=∠ACE,∴△ABE≌△ACE(SAS),∴∠BAD=∠CAD,又∠ABC=∠ACB,AD=AD,△ABD≌△ACD(AAS),∴BD=CD,又∠EBD=∠ECD,EB=EC,∴△BDE≌△CDE(SAS).故选C.点评:本题考查全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知入手,结合图形由易到难寻找.4.故选B.考点:三角形内角和定理.分析:等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解答:解:A、构成等腰三角形的三个角的度数分别是40°,70°,70°;B、不能同时满足等腰三角形和三角形的内角和是180°,所以不能构成等腰三角形;C、构成等腰三角形的三个角的度数分别是50°,80°,50°;D、构成等腰三角形的三个角的度数分别是30°,120°,30°.故选B.点评:解决此类问题一定要同时满足等腰三角形的两个底角相等和三角形的内角和是180°这两个条件.5.故选D.考点:全等三角形的判定;全等三角形的性质.分析:根据全等三角形的性质进行分析可得答案.解答:解:根据题意,由全等三角形的性质,两个三角形全等,其对应的边角相等,对应的中线、角平分线、高也相等,可得A、B、C正确,D、每个等边三角形的三边都相等,由于对应边不一定相等,所以不一定全等,D错误,故选D.点评:本题考查全等三角形的性质,两个三角形全等,其对应的边角相等,对应的中线、角平分线、高也相等.6.故选A.考点:全等三角形的判定.分析:因为△AOC≌△BOD,所以要使△EOC≌△FOD,隐含的已知条件是:∠COE=∠DOF,CO=OD;据三角形的判定方法ASA、AAS、SAS,添加条件去判断即可.解答:解:∵△AOC≌△BOD,∴CO=OD,又∵∠COE=∠DOF(对顶角相等),∴要使△EOC≌△FOD,则添加的一个条件是∠CEA=∠DFB,即说明其补角是相等的,符合AAS;或∠OCE=∠ODF,符合ASA;或OE=OF,符合SAS.A选项不符合判定定理,故选A.点评:本题考查了全等三角形的判定;解题的关键是牢记三角形的判定定理,并能熟练应用.从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏7.故选C.考点:坐标与图形变化-旋转;坐标与图形变化-对称.分析:根据轴对称和中心对称图形的概念解答.解答:解:A,M关于原点对称,A的坐标是(1,3),∴M(-1,-3);∵A,N关于x轴对称,A的坐标是(1,3),∴N(1,-3).故选C.点评:两个点关于原点对称,横纵坐标均互为相反数,两个点关于x轴对称,横坐标不变,纵坐标互为相反数.8.故选B.考点:轴对称的性质;平移的性质.专题:压轴题.分析:由已知条件,根据轴对称的性质和平移的基本性质可得答案.解答:解:观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键.9.故选B .考点:三角形的外角性质.分析:根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD 的度数.解答:解:如图,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=20°,∴∠BAD=40°.故选B .点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键. 10.故选A .考点:全等三角形的判定与性质;三角形三边关系.分析:在BA 的延长线上取点E ,使AE=AC ,连接ED ,EP ,证明△ACP 和△AEP 全等,推出PE=PC ,根据三角形任意两边之和大于第三边即可得到m+n >b+c .解答:解:在BA 的延长线上取点E ,使AE=AC ,连接ED ,EP ,∵AD 是∠A 的外角平分线,∴∠CAD=∠EAD,在△ACP 和△AEP 中,⎩⎪⎨⎪⎧AE =AC ∠CAD =∠EAD AP =AP , ∴△ACP≌△AEP(SAS ),∴PE=PC,在△P BE 中,PB+PE >AB+AE ,∵PB=m,PC=n ,AB=c ,AC=b ,∴m+n>b+c .故选A .点评:本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以m 、n 、b 、c 的长度为边的三角形是解题的关键,也是解本题的难点.二、填空题(共4小题,每小题5分,满分20分)11.故填OA=OB.考点:全等三角形的判定.专题:压轴题;开放型.分析:OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解答:解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.12.故填(1).考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.解答:解:图(1)是轴对称图形,它有3条对称轴;图(2)是轴对称图形,它有2条对称轴;图(3)不是轴对称图形;图(4)是轴对称图形,它有1条对称轴;故4个图形中,不是轴对称图形的是图形(3),对称轴最多的轴对称图形是图形(1).点评:掌握好轴对称图形的有关概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,一个轴对称图形的对称轴可以不只一条.13.故填80.考点:翻折变换(折叠问题);平行线的性质.专题:计算题;压轴题.分析:根据中位线的定义得出ED∥BC,再根据平行的性质和折叠的性质即可求.解答:解:∵D、E为AB、AC的中点,∴DE为△ABC的中位线,ED∥BC,∴∠ADE=∠ABC∵∠ABC=50°,∴∠ADE=50°,由于对折前后两图形全等,故∠EDF=50°,∠BDF=180°-50°×2=80°.点评:本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.14.故填125.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.专题:压轴题.分析:根据等腰三角形的性质,依题意可得等腰三角形的顶角为110°,又根据三角形的一个外角等于和它不相邻的内角的和可求出最大角的度数.解答:解:根据等腰三角形的性质:等边对等角.以及三角形的内角和是180°,解得等腰三角形的顶角是180°-35°×2=110°.根据三角形的一个外角等于和它不相邻的内角的和求得四边形的第四个角是90°+35°=125°.比较四边形的四个内角,最大角的度数是125°.故填125.点评:本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质;利用三角形外角的性质求得四边形的内角后与其它三个角进行比较式正确解答本题的关键.三、解答题(共9小题,满分90分)15.考点:全等三角形的判定.专题:证明题;开放型.分析:在△ADE与△BCE中,∠BEC=∠AED,两三角形有一组角对应相等,添加一组角、一组边对应相等(不是两组对应角的夹边),才能用AAS证明△ADE≌△BCE.解答:解:可添加∠B=∠A,EC=ED;或∠C=∠D,BE=AE;∵∠B=∠A,EC=ED,又∠BEC=∠AED,∴△ADE≌△BCE.点评:本题考查了全等三角形的判定;是开放型题目,答案不唯一.注意应用对顶角相等这一条件.16.考点:作图—复杂作图.专题:作图题.分析:以MN为底边的等腰△MNP,则点P在MN的垂直平分线上,点P在∠AO B的平分线OC上.则又要做角的角平分线,两线的交点就是点P的位置.解答:解:点评:本题综合考查了角平分线和线段的垂直平分线的性质.17.考点:全等三角形的判定.专题:作图题.分析:(1)由作一条线段中垂线的方法作出点E和点F.(2)由题意BC=BD推出BE=BF,然后证明△ABE≌△ABF.解答:解:(1)能看到“分别以B,C为圆心,以大于12BC,长为半径画弧,两弧交于点M、N,连接MN,交BC于E”的痕迹,能看到用同样的方法“作出另一点F(或以B为圆心,BE 为半径画弧交BD于点F)”的痕迹(凡正确作出点E,F中的一个后,另一个只要在图上标注了大致位置.,(2)∵BC=BD,E,F分别是BC,BD的中点,∴BE=BF,在△ABE和△ABF中BE=BF,∠ABE=∠ABF,AB=AB,∴△ABE≌△ABF.点评:本题考查了全等三角形的判定;命题意图:掌握知识同时要培养学生的能力,尺规作图就是考查动手能力,三角形全等的证明是几何证明的基础,考查是必要的.中点作法用作垂直平分线的方法,三角形全等利用边角边定理.18.考点:等腰三角形的判定;全等三角形的判定与性质.专题:探究型.分析:要判断△AFC的形状,可通过判断角的关系来得出结论,那么就要看∠FAC和∠FCA 的关系.因为∠BAD=∠B CE,因此我们只比较∠BAC和∠BCA的关系即可.根据题中的条件:BD=BE,∠BAD=∠BCE,△BDA和△BEC又有一个公共角,因此两三角形全等,那么AB=AC,于是∠BAC=∠BCA,由此便可推导出∠FAC=∠FCA,那么三角形AFC应该是个等腰三角形.解答:解:△AFC是等腰三角形.理由如下:在△BAD与△BCE中,∵∠B=∠B(公共角),∠BAD=∠BCE,BD=BE,∴△BAD≌△BCE(AAS),∴BA=BC,∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.点评:本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.19.考点:利用旋转设计图案;利用轴对称设计图案.专题:作图题.分析:(1)关于原点对称的两个点的坐标特点是:横坐标,纵坐标都互为相反数;(2)关于x轴对称的;两个点的坐标特点是:横坐标相等,纵坐标互为相反数,根据坐标关系画图,写坐标.解答:解:(1)A1(-4,-4),B1(-1,-3),C1(-3,-3),D1(-3,-1).(正确写出每个点的坐标得4分;正确画出四边形A1B1C1D1给2分)(2)正确画出图形A2B2C2D2给(3分);(3)正确画出图形A3B3C3D3给(3分).点评:本题实际上就是坐标系里的轴对称,中心对称的问题,要明确关于原点对称,关于x 轴对称,y 轴对称的点的坐标特点;通过画图,图形由部分到整体,体现了对称的美感. 20.考点:全等三角形的判定与性质.专题:证明题.解答:证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE (等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD 和△AED 中,⎩⎪⎨⎪⎧∠CAD=∠EAD∠C =∠AED AD =AD ∴△ACD≌△AED(AAS ),∴AC=AE,CD=DE (对应边相等),∴CD=BE(等量代换),∴AB=AE+EB=AC+CD.点评:此题考查了学生对角平分线的性质及全等三角形的判定方法的理解及运用能力,要熟练掌握并灵活运用这些知识. 21.考点:全等三角形的判定.专题:证明题;开放型.分析:要找出全部的全等三角形,就要从已知的条件求出未知的条件.△ABC 是等边三角形,所以AC=BC ,又CD=CE ,所以BD=AE=EF ,很容易就可以求得△CDE,△AEF 为等边三角形,所以∠BDE=∠CEF,所以△BDE≌△FEC,从而得BE=CF ,由SSS 可得△BCE≌△FDC,因AB=BC=CF ,AE=AF ,∠BAE=∠EAF=60°,由SAS 可求△ABE≌△ACF,然后任意选择一组加以证明即可.解答:答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;证明:(以△BDE≌△FEC 为例)∵△ABC 是等边三角形,∴BC=AC,∠ACB=60°,∵CD=CE,∴△EDC 是等边三角形,∴∠EDC=∠DEC=60°,∴∠BDE=∠FEC=120°,∵CD=CE,∴BC -CD=AC-CE ,∴BD=AE,又∵EF=AE,∴BD=FE, 在△BDE 与△FEC 中,⎩⎪⎨⎪⎧DE =CE ∠EDB =∠CEF BD =EF , ∴△BDE≌△FEC(SAS ).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由已知条件快速的找出一组全等的三角形,然后求出未知的条件,作为下组全等三角形的判定条件,可出从中找出相似的三角形,试着找条件证明全等,数形结合是很重要的数学解题思路. 22.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:要求AB=DE ,而且两边分别在两个三角形中,所以只能通过全等,但由题意两三角形不全等,但根据AC=CE 知需要作辅助线AF∥DE 交BC 于F ,证得△ACF≌△EDC,再根据题中条件即可得到AB=DE .解答:证明:如图,过A 点作AF∥DE 交BC 于F ,∴∠CAF=∠CED,∠CFA=∠CDE,又∵AC=CE,∴△ACF≌△EDC,∴∠D=∠AFC,AF=DE ,∵∠B+∠D=180°,∠AFC+∠AFB=180°,∴∠B=∠AFB,∴AB=AF,∴AB=DE.点评:本题考查了两直线平行性质及全等三角形的判定和性质,要善于观察、利用题中的隐含条件,对此类题要求有一定转化思想的能力. 23.考点:等腰三角形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.专题:压轴题;探究型.分析:分析:(1)由于△ABC 是直角三角形,点O 是BC 的中点,根据直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,故有OA=OB=OC=12 BC ; (2)由于OA 是等腰直角三角形的斜边上的中线,根据等腰直角三角形的性质知,∠CAO=∠B=45°,OA=OB ,又有AN=MB ,所以由SAS 证得△AON≌△BOM 可得:ON=OM ①∠NOA=∠MOB,于是有,∠NOM=∠AOB=90°,所以△OMN 是等腰直角三角形.解答:解:(1)∵在Rt△ABC 中,∠BAC=90°,O 为BC 的中点,∴OA=12BC=OB=OC , 即OA=OB=OC ;(2)△OMN 是等腰直角三角形.理由如下:连接AO∵AC=AB,OC=OB∴OA=OB,∠NAO=∠B=45°, 在△AON 与△BOM 中⎩⎪⎨⎪⎧AN =BM∠NAO =∠B OA =OB∴△AON≌△BOM(SAS )∴ON=OM,∠NOA=∠MOB∴∠NOA+∠AOM=∠MOB+∠AOM∴∠NOM=∠AOB=90°,∴△OMN 是等腰直角三角形.点评:本题利用了等腰直角三角形的性质,全等三角形的判定和性质求解.。
八年级数学《轴对称》同步练习题基础达标】1.选择题:(1)下列说法错误的是()A.关于某条直线对称的两个三角形一定全等B.轴对称图形至少有一条对称轴C.全等三角形一定能关于某条直线对称D.角是关于它的平分线对称的图形⑵下列图形中,是轴对称图形的为()AECD⑶下图所示的图案中,是轴对称图形且有两条对称轴的是()⑴⑵2.填空题:1观察右上图中的两个图案,是轴对称图形的为,它有条对称轴.⑵如右下图,AABC与厶AED关于直线l对称,若AB=2cm,ZC=95°,则AE=ZD=度.⑶坐标平面内,点A和B关于x轴对称,若点A到x轴的距离是4.如图,AABC与厶ADE关于直线MN对称.BC与DE的交点F在直线MN1指出两个三角形中的对称点⑵指出图中相等的线段和角;⑶图中还有对称的三角形吗?5•如图,把一张纸片对折后,用笔尖在纸上扎出图⑶所示的图案,将纸打开后铺平,观察你所得的图案.位于折痕两侧的部分有什么关系?与同伴交流你的想法.匕旦 【能力巩固】6.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形。
一I◊同步训练20【基础达标】1. 选择题:⑴在锐角△ABC 内一点P 满足PA=PB=PC,则点P 是厶ABC()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点⑵厶ABC 中,AOBC ,边AB 的垂直平分线与AC 交于点D,已知AC=5,BC=4,则厶BCD 的周长是()A.9B.8C.7D.6⑶平面内到不在同一条直线的三个点A 、B 、C 的距离相等的点有()A.0个B.1个C.2个D.3个2. 填空题:⑴如右图,AABC 中,AB=AC=14cm,D 是AB 的中点,DE 丄AB 于D 交AC于E ,^EBC 的周长是24cm ,则BC 二⑵互不平行的两条线段AB 、AB '关于直线l 对称,AB 和AB '所在直线交于点P,下面结论:①AB=A 'B';②点P 在直线l 上;③若点A 、A ,是对称点,则l 垂直平分线段AA ':④若点B 、B '是对称点,则PB=PB ',其中正确的有(只填序号).3. △ABC 中,边AB 、AC 的垂直平分线交于点P.求证:点P 在BC 的垂直平分线上.能力巩固】6•现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑如图⑴,⑵所示.图(1)图(2)图(3)图(4)观察图⑴,图⑵中涂黑部分构成的图案•它们具有如下特征:①都是轴对称图形②涂黑分都是三个小正三角形.请在图⑶,图⑷内分别设计一个新图案,使图案具有上述两个特征.◊同步训练30【基础达标】1.选择题:⑴如图所示的标志中,是轴对称图形A.1个B.2个C.3个⑵下列平面图形中,不是轴对称图形的是()⑶如图所示,以下四个图形中,对称轴条数最多的一个图形是()的有()D.4个2.填空题:⑴轴对称图形中任意一组对应点的连线段的是该图形的对称轴.⑵当写有数字的纸条垂直于镜面摆放时(如图所示):□EBraEPE5!|lE3H5E1Bg|下面是从镜子中看到的一串数,它其实是3•如图,已知△ABC,请用直尺与圆规作图,将三角形的面积两等分.(不写作法,但要保留作图痕迹)4.已知图中的图形都是轴对称图形,请你画出它们的对称轴.5.分别找出具有一条对称轴、两条对称轴、三条对称轴、四条对称轴的几何图形,并画出来(包括对称轴).能力巩固】6.如图,AABC和厶AB C关于直线m对称.⑴结合图形指出对称点.⑵连接A、A',直线m与线段AA'有什么关系?⑶延长线段AC与A'C,它们的交点与直线m有怎样的关系?其它对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.轴对称答案同步训练11.1)C;⑵D;⑶D.2.(1)6;⑵2cm,95;⑶3cm.3.略.4.①A与A,B与D,C与E是对称点;②AB=AD,AC=AE,BC=DE,BF=DF,EF=CF;③△人已卩与厶ACF,AAB卩与厶ADF.5.略.6.折痕两侧的部分关于折痕轴对称。
八年级数学上册全等轴对称综合练习题1.如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是()2.若A、B是同一平面内的两点,则以AB为一边可以作出()个等腰直角三角形A.3B.4C.5D.63.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.在下列说法中,正确的是()A.如果两个三角形全等,则它们必是关于直线成轴对称的图形;B.如果两个三角形关于某直线成轴对称,那么它们是全等三角形;C.等腰三角形是关于底边中线成轴对称的图形;D.一条线段是关于经过该线段中点的直线成轴对称的图形5.如图,已知△ABC,求作一点P,使P到∠A两边的距离相等,且PA=PB.下列确定P点的方法正确的是()A.P为∠A、∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方6.在44形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个 B.2个 C.3个 D.4个7.如图,在△ABC中,∠B、∠C的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有( )①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个 B.2个 C.3个 D.4个8.如图,BC=BD,AD=AE,DE=CE,∠A=36°,则∠B=( )A.45° B.36° C.72° D.30°9.如图所示,在△ABC中,∠ABC=︒20,CE平分∠ACB,D为AC上一点,若∠100,∠ACB=︒CBD=︒20,BD=ED,则∠CED等于()A.︒5B.︒2015 D.︒10 C.︒10.如图,已知AB=AC=BD,那么()A.∠1=∠2 B.2∠1+∠2=180° C.∠1+3∠2=180° D.3∠1-∠2=180°11.如图,△ABC中,AB=AC,∠A=36o,BD平分∠ABC交AC于点D, DE∥AB交BC于E,EF∥BD交CD于F,则图中等腰三角形的个数为( )A.5个B.6个C.7个D.8个12.如图,光线L照射到平面镜Ⅰ上,然后在平面镜Ⅰ,Ⅱ之间来回反射,已知∠α=55°,∠θ=75°,则β为()A.60° B.55° C.60° D.65°13.桌面上有A、B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.614.如图,在△ABC中,AB=AC,∠A =360,AB的垂直平分线DE交 AC于点D,交AB于点E.下列结论:①BD平分∠ABC;②AD=BD=BC;③△BCD的周长等于AB+BC;④D是AC的中点.其中正确的是()A.①②③B.②③④C.①②④D.①③④15.如图,△ABC中,∠B=∠C,D在BC上,∠BAD=50º,AD=AE,则∠EDC的度数为()A.15ºB.25ºC.30ºD.50º16.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形17.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠BB.CH=CE=EFC.CH=HDD.AC=AF18.如图是一个等边三角形木框,甲虫P在边框AC上(端点A、C除外),设甲虫P到另外两边距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是()A.hd> B.hd< C.hd= D.无法确定19.在等腰三角形中,一个内角为30°,则另外两个内角为__________20.点P(-3,5)关于y轴对称的点的坐标为_____,点P(3,-2)关于直线x=2对称点的坐标是______21.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为____22.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线EF分别交AC,•AD,AB于点E,F,G,那么,点F•到△ABC•的边_______•的距离相等;•点F•到△ABC•的顶点______的距离相等.23.如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为 cm 24.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB•的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是________;若∠AOB=320,则∠EPF=25.等腰三角形两边a 、b 满足|a-b+2 |+(2a+3b-11)2=0,则此三角形的周长是_____ 26.在△ABC 中,AB =AC ,D 是AC 上一点,且AD =BD =BC ,则∠A 等于______27.△ABC 中三边为a 、b 、c ,满足关系式 (a-b )(b-c )(c-a )=0,则这个三角形一定为_______三角形。