LCMS原理详细讲解.
- 格式:ppt
- 大小:587.50 KB
- 文档页数:60
lcms质谱仪原理
LCMS质谱仪原理。
LCMS(液相色谱-质谱联用)是一种高效的分析仪器,它将液相色谱和质谱联用,能够快速、准确地分析样品中的化合物。
LCMS质谱仪的原理是基于液相色谱和质谱的原理相结合,下面我们来详细了解一下LCMS质谱仪的原理。
首先,液相色谱部分。
样品通过进样器被引入到色谱柱中,色谱柱中的填料会将样品中的化合物分离出来。
不同的化合物会在不同的时间点到达检测器,从而实现了化合物的分离和纯化。
液相色谱的主要原理是通过不同化合物在固定填料中的分配系数不同,从而实现了化合物的分离。
接下来是质谱部分。
色谱柱分离出的化合物进入质谱部分,被离子源电离产生离子,然后进入质谱仪中的质子飞行管。
在飞行管中,离子根据质量-电荷比进行分离,不同质量-电荷比的离子会在不同时间到达检测器。
通过检测不同时间到达的离子,可以得到化合物的质谱图谱,从而确定化合物的分子结构和质量。
LCMS质谱仪的原理是将液相色谱和质谱相结合,通过液相色谱实现样品的分离和纯化,然后通过质谱实现化合物的鉴定和分析。
这种联用技术大大提高了分析的准确性和灵敏度,可以应用于药物分析、环境监测、食品安全等领域。
总结一下,LCMS质谱仪的原理是基于液相色谱和质谱的原理相结合,通过色谱分离和质谱分析,实现了对样品中化合物的快速、准确分析。
这种分析技术在科学研究和工业生产中具有重要意义,为我们提供了强大的分析工具。
液质联用(LCMS)原理简析1.质谱法质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质谱的样品一般要汽化,再离子化。
不纯的样品要用色谱和质谱联用仪,是通过色谱进样。
即色谱分离,质谱是色谱的检测器。
离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列成谱被记录下来,以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。
2.质谱仪质谱仪由以下几部分组成数据及供电系统┏━━━━┳━━━━━╋━━━━━━┓进样系统离子源质量分析器检测接收器┗━━━━━╋━━━━━━┛真空系统质谱仪一般由进样系统、离子源、分析器、检测器组成。
还包括真空系统、电气系统和数据处理系统等辅助设备。
(1)离子源:使样品产生离子的装置叫离子源。
液质的离子源有ESI,APCI,APPI,统称大气压电离(API)源,实验室常用液质的离子源为ESI源。
电喷雾(ESI)的特点通常小分子得到[M+H]+ ]+,[M+Na]+ 或[M-H]-单电荷离子,生物大分子产生多电荷离子。
电喷雾电离是最软的电离技术,通常只产生分子离子峰,因此可直接测定混合物,并可测定热不稳定的极性化合物;其易形成多电荷离子的特性可分析蛋白质和DNA等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)得到化合物的部分结构。
(2)质量分析器: 由它将离子源产生的离子按m/z分开。
离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z离子聚焦在一起,组成质谱。
质量分析器有:磁场和电场、四极杆、离子阱、飞行时间质谱、傅立叶变换离子回旋共振等。
实验室目前液质的质量分析器类型:三重四极杆(QqQ):离子源→第一分析器→碰撞室→第二分析器→接收器MS1 MS2Q1 q2 Q3QqQ仪器可以方便的改变离子的动能,因此扫描速度快,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限,不能进行高分辨测定,只能做到单位质量分辨。
lcms质谱仪原理
LC-MS质谱仪是一种联合液相色谱(LC)和质谱(MS)技术的仪器,主要用于分析和鉴定复杂样品中的化合物。
LC-MS
质谱仪的基本原理如下:
1. 液相色谱(LC)部分:在LC部分,样品溶液通过进样器
被注入进一个色谱柱中。
在色谱柱内,样品中的化合物会与柱填料上的固定相互作用,并在流动相的作用下,根据其化学性质的不同以不同的速率进行分离。
2. 质谱(MS)部分:在MS部分,离子化源将样品中的化合
物转化为荷电的离子。
这通常通过电离技术(如电喷雾(ESI)或化学电离(APCI))实现。
3. 离子聚焦:离子化后,离子被引入质谱仪中的离子门。
离子门的作用是选择性地传输特定质量/荷比(m/z)的离子。
这样,仪器可以选择性地传递特定的离子种类,以便进一步分析。
4. 分析和检测:离子在进入质谱部分之前可能需要进行解离和/或聚焦。
在质谱仪的分析部分,离子会遭受一系列的分析步骤,如质谱分析器中的离子解离,以及质谱检测器的荧光检测。
这些步骤将离子按照其质量和荷电比分开并检测。
5. 数据分析:最后,仪器会生成一个离子流谱图,其中离子的质量和相对丰度用图形显示。
这个谱图可以用于鉴定和分析样品中的化合物。
这是LC-MS质谱仪的基本原理。
通过结合液相色谱和质谱技术,LC-MS质谱仪可以对复杂样品进行高效、高灵敏度、高选择性的分析。
LCMS液质联用仪原理及基础知识介绍LC-MS是液相色谱-质谱联用技术,是将液相色谱(LC)与质谱(MS)两种分析技术结合起来,对化合物进行分离和定性定量分析。
液相色谱将混合物中的化合物分离开来,而质谱则对分离后的单个化合物进行分子结构和组成的分析。
LC-MS的原理是首先通过液相色谱将混合物中的化合物分离开来。
液相色谱采用一个固定相(如柱子内的填料)和一个移动相(溶剂),将待分离的化合物通过不同的亲和性与固定相进行交互,从而使化合物逐步分离。
分离后的化合物进入质谱部分进行分析。
质谱主要是通过离子化技术将分离后的化合物转化为离子,并在电场作用下进行分离和检测。
常见的离子化技术包括电喷雾离子源(ESI)和化学电离(CI)等。
在质谱仪中,离子化的化合物被加速到一定能量,通过一个磁场进行分离,根据离子的质量与荷比(m/z)比值,可以得到化合物的分子质量。
LC-MS的基础知识包括液相色谱和质谱。
液相色谱(LC):液相色谱是一种在液体流动相中通过固定相分离化合物的技术。
在液相色谱中,通过调节流动相的组成、温度、流速等参数,可以改变溶剂在固定相上的极性和亲和力,从而实现化合物的分离。
常见的液相色谱技术包括高效液相色谱(HPLC)、气相色谱(GC)、离子色谱(IC)等。
质谱(MS):质谱是一种通过分析分子离子的质荷比来确定化合物的结构和组成的分析技术。
质谱主要包括离子化、质量分析和信号检测等步骤。
离子化可以通过不同的技术实现,如电喷雾离子源(ESI)、化学电离(CI)等。
质量分析部分主要通过加速离子,使其通过磁场分离,根据离子质量与荷比,可以得到化合物的质量。
信号检测主要是在质谱仪内部检测加速离子之后的荷电粒子。
LC-MS在许多领域中有广泛的应用。
例如,在生物医药领域,LC-MS 可以用于药物代谢和药物残留的研究;在环境科学中,LC-MS可以用于检测水体和土壤中的有机污染物;在食品安全监测中,LC-MS可以用于检测食品中的农药残留和添加剂等。
液质联用(LCMS)原理简析1.质谱法质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质谱的样品一般要汽化,再离子化。
不纯的样品要用色谱和质谱联用仪,是通过色谱进样。
即色谱分离,质谱是色谱的检测器。
离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列成谱被记录下来,以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。
2.质谱仪质谱仪由以下几部分组成数据及供电系统┏━━━━┳━━━━━╋━━━━━━┓进样系统离子源质量分析器检测接收器┗━━━━━╋━━━━━━┛真空系统质谱仪一般由进样系统、离子源、分析器、检测器组成。
还包括真空系统、电气系统和数据处理系统等辅助设备。
(1)离子源:使样品产生离子的装置叫离子源。
液质的离子源有ESI,APCI,APPI,统称大气压电离(API)源,实验室常用液质的离子源为ESI源。
电喷雾(ESI)的特点通常小分子得到[M+H]+ ]+,[M+Na]+ 或[M-H]-单电荷离子,生物大分子产生多电荷离子。
电喷雾电离是最软的电离技术,通常只产生分子离子峰,因此可直接测定混合物,并可测定热不稳定的极性化合物;其易形成多电荷离子的特性可分析蛋白质和DNA等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)得到化合物的部分结构。
(2)质量分析器: 由它将离子源产生的离子按m/z分开。
离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z离子聚焦在一起,组成质谱。
质量分析器有:磁场和电场、四极杆、离子阱、飞行时间质谱、傅立叶变换离子回旋共振等。
实验室目前液质的质量分析器类型:三重四极杆(QqQ):离子源→第一分析器→碰撞室→第二分析器→接收器MS1 MS2Q1 q2 Q3QqQ仪器可以方便的改变离子的动能,因此扫描速度快,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限,不能进行高分辨测定,只能做到单位质量分辨。
LC-MS解析基础以及常见问题剖析LCMS是有机合成中重要的分析工具,解析LCMS谱图也是一项基本技能。
LCMS基本原理和特性1)LCMS的特性:是HPLC和MS的结合,有两者的功能,有没有两者精确。
2)流动相方法:常见0-30,0-60,10-80,30-90四种方法,0,10,30都是指乙腈的含量,乙腈含量越大,流动相极性越小,出峰越靠前。
3)正离子源适用于碱性化合物:含氮化合物更容易粘附氢正离子,在正离子源中容易出分子离子峰。
负离子源适合酸性化合物:酸性化合物更容易轰击掉氢正离子,如酸,酚类化合物。
看LCMS步骤1)先看MS部分,看有没有所要离子峰,并且要看清楚该化合物是否有MS信号,是否掩盖周围的峰。
2)再看HPLC部分,看含量有多少,并且要看清楚该化合物是否有强的HPLC信号,是否掩盖周围的峰。
3)两者结合起来看,推测反应进行的程度和反应产生的杂质。
常见加合离子峰1)正离子模式:[M+Na]+ = [M+23]+加钠离子;[M+K]+ = [M+39]+加钾离子;[M+NH4]+ = [M+18]+加铵离子;[M+H+H2O]+ = [M+19]+加水;[M+X]+这里X是指溶剂缓冲液中的阳离子;如加硝酸根:[M+NO2]+ = [M+46]+[M+H+Solvent]+溶剂加合峰,如[M+H+CH3CN]+= [M+42]+是CH3CN加合离子,[M+H+CH3OH]+ = [M+33]+是CH3OH加合离子;2)负离子模式[M-H]- = [M-1]-减氢负离子[M+35Cl]- = [M+35]-加氯负离子[M+37Cl]- = [M+37]-加氯同位素负离子[M+HCOO]- = [M+45]-加甲酸根负离子[M+CH3COO]- = [M+59]-加乙酸根负离子[M+CF3COO]- = [M+113]-加三氟乙酸根负离子减峰M-56(脱叔丁基)和M-100(脱Boc),M-16(脱NH3)和M-17(脱水)以及M+2/2(比较常见),其他少见。
液质联用(LCMS)原理简析1.质谱法质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质谱的样品一般要汽化,再离子化。
不纯的样品要用色谱和质谱联用仪,是通过色谱进样。
即色谱分离,质谱是色谱的检测器。
离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列成谱被记录下来,以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。
2.质谱仪质谱仪由以下几部分组成数据及供电系统┏━━━━┳━━━━━╋━━━━━━┓进样系统离子源质量分析器检测接收器┗━━━━━╋━━━━━━┛真空系统质谱仪一般由进样系统、离子源、分析器、检测器组成。
还包括真空系统、电气系统和数据处理系统等辅助设备。
(1)离子源:使样品产生离子的装置叫离子源。
液质的离子源有ESI,APCI,APPI,统称大气压电离(API)源,实验室常用液质的离子源为ESI源。
电喷雾(ESI)的特点通常小分子得到[M+H]+ ]+,[M+Na]+ 或[M-H]-单电荷离子,生物大分子产生多电荷离子。
电喷雾电离是最软的电离技术,通常只产生分子离子峰,因此可直接测定混合物,并可测定热不稳定的极性化合物;其易形成多电荷离子的特性可分析蛋白质和DNA等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)得到化合物的部分结构。
(2)质量分析器: 由它将离子源产生的离子按m/z分开。
离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z离子聚焦在一起,组成质谱。
质量分析器有:磁场和电场、四极杆、离子阱、飞行时间质谱、傅立叶变换离子回旋共振等。
实验室目前液质的质量分析器类型:三重四极杆(QqQ):离子源→第一分析器→碰撞室→第二分析器→接收器MS1 MS2Q1 q2 Q3QqQ仪器可以方便的改变离子的动能,因此扫描速度快,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限,不能进行高分辨测定,只能做到单位质量分辨。
岛津lcms2020原理
岛津LCMS2020是一种质谱仪器,其原理基于液体色谱和质
谱相结合的技术。
它是通过以下步骤实现样品的分析:
1.液体色谱(LC)分离:岛津LCMS2020首先使用液体色谱
技术对样品进行分离。
样品从进样口进入流动相中,然后通过色谱柱进行分离。
液体色谱可以根据样品的不同特性(如极性、化学性质等)将其分离为不同的组分。
2.样品离子化:液体色谱分离后的溶液进入电喷雾离子源(ESI),通过电喷雾将样品溶液草莓化成带电荷的离子化合物。
电喷雾会将样品溶液加速到高速,并通过喷雾锥进行泄放,使样品溶液中的溶剂挥发,留下带电荷的离子。
3.质谱分析:带电荷的离子进入质谱仪的四极杆中,质谱仪根
据离子的质量和电荷比进行分离和检测。
质谱仪使用四极杆中的电场和磁场,根据离子在电场和磁场中的受力情况,将离子按质量进行分离和分析。
离子在质谱仪中通过四极杆进行分离后,到达离子检测器,并生成质谱图谱。
4.数据分析:通过质谱图谱,可以对样品的组分进行定性和定
量分析。
使用相应的质谱数据库和分析软件,可以识别质谱图中的峰和峰面积,并将其与已知的化合物进行匹配,从而确定样品中的组分和浓度。
综上所述,岛津LCMS2020通过液体色谱将样品分离,然后
通过质谱仪进行离子化和分析,最终实现对样品的定性和定量分析。
液质联用(LCMS)原理简析1.质谱法质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质谱的样品一般要汽化,再离子化。
不纯的样品要用色谱和质谱联用仪,是通过色谱进样。
即色谱分离,质谱是色谱的检测器。
离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列成谱被记录下来,以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。
2.质谱仪质谱仪由以下几部分组成数据及供电系统┏━━━━┳━━━━━╋━━━━━━┓进样系统离子源质量分析器检测接收器┗━━━━━╋━━━━━━┛真空系统质谱仪一般由进样系统、离子源、分析器、检测器组成。
还包括真空系统、电气系统和数据处理系统等辅助设备。
(1)离子源:使样品产生离子的装置叫离子源。
液质的离子源有ESI,APCI,APPI,统称大气压电离(API)源,实验室常用液质的离子源为ESI源。
电喷雾(ESI)的特点通常小分子得到[M+H]+ ]+,[M+Na]+ 或[M-H]-单电荷离子,生物大分子产生多电荷离子。
电喷雾电离是最软的电离技术,通常只产生分子离子峰,因此可直接测定混合物,并可测定热不稳定的极性化合物;其易形成多电荷离子的特性可分析蛋白质和DNA等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)得到化合物的部分结构。
(2)质量分析器: 由它将离子源产生的离子按m/z分开。
离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z离子聚焦在一起,组成质谱。
质量分析器有:磁场和电场、四极杆、离子阱、飞行时间质谱、傅立叶变换离子回旋共振等。
实验室目前液质的质量分析器类型:三重四极杆(QqQ):离子源→第一分析器→碰撞室→第二分析器→接收器MS1 MS2Q1 q2 Q3QqQ仪器可以方便的改变离子的动能,因此扫描速度快,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限,不能进行高分辨测定,只能做到单位质量分辨。
LCMS基础LCMS是有机合成中重要的分析工具,解析LCMS谱图也是一项基本技能。
LCMS基本原理和特性1)LCMS的特性:是HPLC和MS的结合,有两者的功能,有没有两者精确。
2)流动相方法:常见0-30,0-60,10-80,30-90四种方法,0,10,30都是指乙腈的含量,乙腈含量越大,流动相极性越小,出峰越靠前。
3)正离子源适用于碱性化合物:含氮化合物更容易粘附氢正离子,在正离子源中容易出分子离子峰。
负离子源适合酸性化合物:酸性化合物更容易轰击掉氢正离子,如酸,酚类化合物。
看LCMS步骤1)先看MS部分, 看有没有所要离子峰, 并且要看清楚该化合物是否有MS信号, 是否掩盖周围的峰。
2)再看HPLC部分, 看含量有多少, 并且要看清楚该化合物是否有强的HPLC信号, 是否掩盖周围的峰。
3) 两者结合起来看, 推测反应进行的程度和反应产生的杂质。
常见加合离子峰[M+Na]+ = [M+23]+ 加钠离子;[M+K]+ = [M+39]+加钾离子;[M+NH4]+ = [M+18]+加铵离子;[M +H +H2O]+ = [M+19]+加水;[M+X]+ 这里X 是指溶剂缓冲液中的阳离子;[M+H+Solvent]+溶剂加合峰,如[M+H+CH3CN]+ =[M+42 ]+ 是CH3CN加合离子,[M+H+CH3OH]+ = [M+33 ]+ 是CH3OH加合离子;减峰:M-56(脱叔丁基)和M-100(脱Boc),M-16(脱NH3)和M-17(脱水)以及M+2/2(比较常见),其他少见。
同位素峰特别注意精确分子量和摩尔分子量的区别常见氯和溴同位素的表现: 一个氯峰高比M+2/M=1:3;一个溴为峰高比M+2/M=1:1;多个同位素的表现可以用Chemdraw精确模拟。
注意事项1.在LCMS报告中,MS响应强的组分有可能掩盖MS响应弱的组分,可通过提取离子流或扣除背景等方式进行判断,LCMS报告必须将LC和MS两部分结合,相互佐证。