数值分析上机实验思考题——误差分析
- 格式:pdf
- 大小:379.43 KB
- 文档页数:3
数值分析思考题11、 讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。
答:(1)绝对误差(限)与有效数字:若*120....10m n x ααα=⨯(a 1≠0,m 为整数) 绝对误差:*1*102m n e x x -=-≤⨯,那么*x 就有 n 个有效数字。
因此,从有效数字可以算出近似数的绝对误差限;有效数字位数越多,其绝对误差限也越小。
(2)相对误差限与有效数字:*120....10m n x ααα=⨯(a1≠0,m 为整数)相对误差限:*1111110*1210*102m n n r m x x e x αα--+-⨯-=≤=⨯⨯,*1*102m n e x x -=-≤⨯,11*10m x α-≥⨯可见*x 至少有n 位有效数字。
2、相对误差在什么情况下可以用下式代替?答:实际情况下真实值 x 是无法得到的,当测量值与真实值之间的误差可以忽略不计时,可用下式代替。
3、 查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。
r e x x e x x *****-==答:病态性:数学问题本身性质所决定的,与算法无关,却能引起问题真解很大变化。
同:都是输入数据的微小误差导致输出数据误差的增大。
异:数值稳定性是相对于算法而言的,算法的不同直接影响结果的不同;而病态性是数学模型本身的问题,与算法无关。
4、 取,计算,下列方法中哪种最好?为什么?(1)(33-,(2)(27-,(3)()313+,(4)()611,(5)99-答:)631 5.05110-≈⨯ (1)(()333332 1.41 5.83210--≈-⨯≈⨯(2)223(7(75 1.41) 2.510--≈-⨯=⨯(3331 5.07310(32 1.41)-≈≈⨯+⨯(4361 5.10410(1.411)-≈≈⨯+(5)9999700.3-≈-=方法3最好,误差最小141.≈)61。
数值分析第一章思考题第一章思考题(2012级本科学生作品)1、什么样的算法被称为不稳定算法?试列举一个例子进行说明。
在算法执行过程中,舍入算法对计算结果影响大的一类算法被称为数值不稳定的一种算法。
例如,假设初始数据有一点微小误差,就会对一个算法的数据结构产生很大的影响,造成误差扩散。
用计算公式ln 1ln n n =-,构造出的递推算法是一个数值不稳定的算法;而另一公式ln 1(1ln)/n -=-则可以构造出一个数值稳定的算法。
2、我们都知道秦九韶算法能够减少运算次数,高中也学过他的具体过程,请举出一个例子并用秦九韶算法计算。
答;一般的,一元n 次多项式的求值需要经过(1)/2n n +次乘法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法。
具体的不太会了。
3、为什么要设立相对误差的概念?答:相对误差是近似值误差与精确值的比值,用来衡量近似值的近似程度。
x=10±1,y=1000±5。
虽然x 的误差比y 的误差小,但y 的近似程度比x 更好。
这单用误差无法表现出来,而相对误差可以解决这个问题。
4、误差在生活中有什么作用?答:误差的作用不仅仅体现在数学课题研究中,在生活中误差的作用也非常大,比如在建筑行业中,设计图纸时必须要达到一定的精确度才行。
5、有效数字以及计算规则答:有效数字是指实际上能测量到的数值,在该数值中只有最后一位是可疑数字,其余的均为可靠数字。
它的实际意义在于有效数字能反映出测量时的准确程度。
例如,用最小刻度为0.1cm 的直尺量出某物体的长度为11.23cm ,显然这个数值的前3位数是准确的,而最后一位数字就不是那么可靠,医|学教育网搜集整理因为它是测试者估计出来的,这个物体的长度可能是11.24cm ,亦可能是11.22cm ,测量的结果有±0.01cm 的误差。
我们把这个数值的前面3位可靠数字和最后一位可疑数字称为有效数字。
这个数值就是四位有效数字。
数值分析重点考察内容第一章:基本概念第二章:Gauss消去法,Lu分解法第三章:题型:具体题+证明,误差分析三个主要迭代法,条件误差估计,范数的小证明第四章:掌握三种插值方法:拉格朗日,牛顿,厄尔米特,误差简单证明,构造复合函数第五章:最小二乘法计算第六章:梯形公式,辛普森(抛物线)公式,高斯公式三个重要公式,误差分析。
高斯求积公式的构造第七章:几种常用的迭代格式构造,收敛性证明。
第九章:基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。
第一章 误差1. 科学计算中的误差来源有4个,分别是________,________,________,________。
2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差?3. 0.7499作34的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字.4. 改变下列表达式,使计算结果比较精确:(1)11,||1121x x x x --++ (2)||1x (3) 1cos ,0,|| 1.x x x x -≠ (4) sin sin ,αβαβ-≈5.采用下列各式计算61)时,哪个计算效果最好?并说明理由。
(1)(2)99-(3)6(3- (46. 已知近似数*x 有4位有效数字,求其相对误差限。
上机实验题:1、利用Taylor 展开公式计算 0!kx k x e k ∞==∑,编一段小程序,上机用单精度计算x e 的函数值. 分别取 x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法.2、已知定积分10,0,1,2,,206n n x I dx n x ==+⎰,有如下的递推关系 1111100(6)61666n n n n n x x x x I dx dx I x x n ---+-===++-⎰⎰ 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -=-=取; (2) 12011),0.6n n I nI I n-=-=(取 来计算123419,,,,,I I I I I ,编程比较哪种计算的数值结果好,并给出理论分析。
一.实验目的:
1、设计绘制图形;
2、误差分析;
二.实验内容:
某车间生产工件如图1-1所示,生产过程中工人用一把普通卡尺在线测量得知弓高h,弦长l,生产完成后工厂的验收部门用高度准确的卡尺测量而得的弓高h’, 弦长l’.试求实际生产直径D的值。
三. 实验方案(程序设计说明)
车间工人用一把卡尺进行测量其弓高h,弦长l,以及弓高的系统误差h’’和弦长的系统误差l’。
测得:h=50mm, l=500mm, h’=-0.1mm, l’=-1mm
四. 实验步骤或程序(经调试后正确的源程序)
车间工人经测量得: h’=50-50.1=-0.1mm l’=500-499=1mm
误差传播的系数为: F’’/H= (L2/4h2-1)=-(5002/4*502-1)=-24
F/T=l/2h=500/2*50=5
直径的系统误差: D1=F/T*l’+F/H*h’=7.4mm
其中 D=l2/4h+h、D0= l2/4h+h=1300
所以修正后的测量结果为:
D2= D0 –D1=1300-7.4=1292.6mm
若直接用h=50.1和l=499计算得:1292.62mm
五.实验总结
本实验主要是通过测量弓高h,弦长l并测量其系统误差得出相应的修正后的测量结果测量。
在本次实验中使用MATLAB中提供的大量函数以及开放式的结构进行对题目的设计,对MATLAB的使用有了一些了解和认识。
第9章 数值分析中的误差 典型问题解析考试知识点:误差、有效数字。
(6%)学习要点:误差、有效数字。
典型问题解析:一、误差绝对误差e :e =x -x *(设精确值x *的近似值x , 差e =x -x *称为近似值x 的绝对误差(误差))。
绝对误差限ε:ε≤-=*x x e(绝对误差限ε是绝对误差e 绝对值的一个上界。
)相对误差e r :***-==x x x x e e r (绝对误差e 与精确值x *的比值,常用x e e r =计算) 相对误差限r ε:r r e ε≤(相对误差e r 绝对值的一个上界),r r x x x x e εε=≤-=||||||***,*xr εε=,常用x ε计算. 绝对误差限的估计式:(四则运算中))()()(2121x x x x εεε+=± )()()(122121x x x x x x εεε+≈22122121+=x x x x x x x )()()(εεε 二、有效数字有效数字:如果近似值x 的误差限ε 是它某一个数位的半个单位,我们就说x 准确到该位. 从这一位起到前面第一个非0数字为止的所有数字称为x 的有效数字.(1)设精确值x *的近似值x ,若m n a a a x 10.021⨯±=a 1,a 2,…,a n 是0~9之中的自然数,且a 1≠0,n l x x l m ≤≤110⨯50=≤--,.*ε 则x 有l 位有效数字.例1 设x *= π=3.1415926…,若x *的近似值x 为3.14,3.1415,3.143,求x 的有效数字位数.解:若x =3.14=0.314×101,(m =1)31105.06592001.0-*⨯≤=- x x (l =3)故x =3.14有3位有效数字。
若x =3.1415=0.31415×101,(m =1)41105.00000926.0-*⨯≤=- x x (l =4)故x =3.1415有4位有效数字。
第一章: 第一章:误差主要内容• 误差的来源与分类 误差的来源与分类 • 误差与有效数字 • 在近似计算中应注意的几个问题1. 来源与分类 ( Source & Classification )• • • •模型误差 参数误差(观测误差) 参数误差(观测误差) 方法误差(截断误差) 方法误差(截断误差) 舍入误差1.1 模型误差 (Modeling Error)用计算机解决实际问题时, 首先要建立数学 用计算机解决实际问题时 , 首先要建立 数学 模型, 各种实际问题是十分复杂的, 模型 , 各种实际问题是十分复杂的 , 而数学 模型是对被描述的实际问题进行抽象 抽象、 模型是对被描述的实际问题进行 抽象 、 简化 而得到的, 往往忽略 了一些次要因素 忽略了一些 次要因素, 而得到的 , 往往 忽略 了一些 次要因素 , 因而 近似的 是 近似 的 , 我们把数学模型与实际问题之间 出现的这种误差称为模型误差 模型误差。
出现的这种误差称为 模型误差 。
如自由落体 公式1 2 s = gt 2忽略了空气阻力。
忽略了空气阻力。
参数误差(观测误差, 1.2 参数误差(观测误差,Measurement Error) 数学模型中的物理参数的具体数值, 数学模型中的物理参数的具体数值,一般通过 实验测定或观测得到的,因此与真值之间也有 实验测定或观测得到的, 得到的 误差,这种误差称为参数误差 观测误差。
参数误差或 误差,这种误差称为参数误差或观测误差。
例如前例中的重力加速度g=9.8 米 例如前例中的重力加速度 g=9.8米 / 秒 , 这 g=9.8 个数值是由多次实验而得到的结果实际的值 有一定的误差,这时g-9.8就是参数误差。
g-9.8就是参数误差 有一定的误差,这时g-9.8就是参数误差。
1.3 方法误差 (截断误差 Truncation Error)在数学模型( 包括参数值) 确定以后, 在数学模型 ( 包括参数值 ) 确定以后 , 就要考虑 选用某种数值方法具体进行计算, 选用某种数值方法具体进行计算 , 许多数值方法 都是近似方法, 都是近似方法 , 故求出的结果与准确值之间是有 误 差 的 , 该 误 差称 为 截断 误 差 或 方 法 误 差 。
数值分析思考题11、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。
2、相对误差在什么情况下可以用下式代替?3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。
4、取,计算,下列方法中哪种最好?为什么?(1)(33-,(2)(27-,(3)()313+,(4)()611,(5)99-数值实验数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。
求解方法大致可分为直接法和迭代法两大类。
直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。
当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。
如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。
Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。
对正定对称矩阵,采用平方根方法无需选主元。
方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。
数值计算方法上机题目11、实验1. 病态问题实验目的:算法有“优”与“劣”之分,问题也有“好”和“坏”之别。
所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。
希望读者通过本实验对此有一个初步的体会。
数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。
病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。
问题提出:考虑一个高次的代数多项式re x xex x*****-==141.≈)61∏=-=---=201)()20)...(2)(1()(k k x x x x x p (E1-1)显然该多项式的全部根为l ,2,…,20,共计20个,且每个根都是单重的(也称为简单的)。
现考虑该多项式方程的一个扰动0)(19=+xx p ε (E1-2)其中ε是一个非常小的数。
思考题一:
在上述实验中我们会发现用roots函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考MATLAB的帮助。
分别使用roots函数和solve函数对多项式求根的代码如下:
roots计算方程根 solve计算方程根两种函数对同一方程的求根结果计算如下表所示,可见solve的计算精度高于roots。
roots solve
1.000000 1.000000
2.000000 2.000000
3.000000 3.000000
4.000000 4.000000
5.000000 5.000000
6.000000 6.000001
6.999973 6.999995
8.000284 8.000023
8.998394 8.999924
10.006060 10.000189
10.984041 10.999640
12.033449 12.000531
12.949056 12.999393
14.065273 14.000539
14.935356 14.999632
16.048275 16.000190
16.971132 16.999928
18.011222 18.000019 18.997160 18.999997 20.000325
20.000000
思考题三:(一个简单公式中产生巨大舍入误差的例子)
可以用下列式子计算自然对数的底数
n n n
e e )1
1(lim 1+==∞→
这个极限表明随着n 的增加,计算e 值的精度是不确定的。
现编程计算
n n
n f )1
1()(+=与exp(1)值的差。
n 大到什么程度的时候误差最大?你能解释其中的原因吗?
用代码实现了对自然常数真实值与计算值相同小数位数的计算,代码如下
容易知道,自然常数e 的真实值为2.718281828。
经代码运算得出下表数据,通过比较可以知道真实值与计算值相同的小数位数。
可以得出如下结论:当n 小于8110×时,随着n 的增大,误差越来越小;当n 大于8110×时,由于1/n 小到无法忽视舍入误差的存在,经过误差积累导致计算结果越来越偏离真实值。
n 的数量级
e 的计算值 相同位数 n 的数量级 e 的计算值 相同位数 1 2.59374246 0 9 2.718282052 5 2 2.704813829 1 10 2.718282053 5 3 2.716923932 2 11 2.718282053 5 4 2.718145927 3 12 2.718523496 3 5 2.718268237 4 13 2.716110034 2 6 2.718280469 5 14 2.716110034 2 7 2.718281694 6 15 3.035035207
0 8
2.718281798
6。