高考数学(2021)易错题精选之线性规划
- 格式:pdf
- 大小:197.14 KB
- 文档页数:5
一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .三、约束条件设计参数形式,考查目标函数最值范围问题。
例3、在约束条件024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是()A.[6,15]B. [7,15]C. [6,8]D. [7,8]四、已知平面区域,逆向考查约束条件。
例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是()(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C)003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩五、已知最优解成立条件,探求目标函数参数范围问题。
例5已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。
六、设计线性规划,探求平面区域的面积问题例6在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)(B)4 (C) (D)2七、研究线性规划中的整点最优解问题例7、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是(A)80(B) 85 (C) 90 (D)95• • • • • •C• 八、设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为(1)求的值及的表达式;(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由。
高三数学线性规划试题答案及解析1.,满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.或B.或C.或D.或【答案】D.【解析】如图,画出线性约束条件所表示的可行域,坐出直线,因此要使线性目标函数取得最大值的最优解不唯一,直线的斜率,要与直线或的斜率相等,∴或.【考点】线性规划.2.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.3.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.4.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.5.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.【考点】线性规划6.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.7.若变量满足约束条件,则的最大值为_________.【答案】【解析】作出不等式组表示的区域如下,则根据线性规划的知识可得目标函数在点处取得最大值,故填.【考点】线性规划8.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程=(3+1)2+82=80.组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得zmax9.已知实数满足,则目标函数的取值范围是.【答案】【解析】可行域表示一个三角形ABC,其中当直线过点A时取最大值4,过点B时取最小值2,因此的取值范围是.【考点】线性规划求取值范围10.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【答案】B【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.11.(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.19【答案】B【解析】依题意作出可行性区域如图,目标函数z=3x+4y在点(4,1)处取到最小值z=16.故选B.12.若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为A.-6B.-2C.0D.2【答案】A【解析】的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y =" -" 6取最小值。
线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在实际生活中,有很多问题都可以通过线性规划来解决,比如资源分配、生产计划、运输调度等。
下面我们通过一些具体的例题来深入理解线性规划,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。
线性规划的数学模型通常可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_i$是约束条件的右端项。
二、线性规划的解题步骤1、建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件。
2、画出可行域:将约束条件在直角坐标系中表示出来,得到可行域。
3、求出最优解:在可行域内,通过寻找目标函数的等值线与可行域边界的交点,求出最优解。
三、例题分析例 1:某工厂生产甲、乙两种产品,已知生产 1 单位甲产品需要消耗 A 资源 2 单位,B 资源 3 单位,可获利 5 万元;生产 1 单位乙产品需要消耗 A 资源 3 单位,B 资源 2 单位,可获利 4 万元。
现有 A 资源12 单位,B 资源 10 单位,问如何安排生产,才能使工厂获得最大利润?解:设生产甲产品$x_1$单位,生产乙产品$x_2$单位。
线性规划问题【例2】(1)(xx·安徽高考)不等式组⎩⎨⎧x +y -2≥0x +2y -4≤0x +3y -2≥0,表示的平面区域的面积为________.(2)(xx·湖北高考)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元(3)(xx·全国新课标Ⅰ高考)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( )A .p 2,p 3B .p 1,p 4C .p 1,p 2D .p 1,p 3【解析】 (1)作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.(2)先根据题意列出约束条件和目标函数,通过平移目标函数加以解决.设租用A 型车x辆,B型车y辆,目标函数为z=1 600x+2 400y,则约束条件为⎩⎪⎨⎪⎧36x+60y≥900,x+y≤21,y-x≤7,x,y∈N,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min=36 800(元).(3)不等式组⎩⎪⎨⎪⎧x+y≥1x-2y≤4表示的平面区域如图阴影部分.设z=x+2y,当z=x+2y过(2,-1)时z取得最小值0,结合四个命题中p1,p2正确.故选C.【答案】(1)4 (2)C (3)C【规律方法】 1.线性规划问题的三种题型:一是求最值;二是求区域面积;三是知最优解或可行域确定参数的值或取值范围.2.解答线性规划问题的步骤及应注意的问题:解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.2021年高考数学二轮复习线性规划问题2.(1)(xx·陕西质检)如果实数x,y满足条件⎩⎪⎨⎪⎧x-y+1≥0y+1≥0x+y+1≤0,那么z=4-x·2y的最大值为( )A.8 B.4 C.2 D.1【解析】可行域如图(阴影部分)所示,A,B,C的坐标分别为(-1,0),(-2,-1),(0,-1),直线y=2x+t过点B(-2,-1)时,t取得最大值3,故z=4-x·2y=2-2x+y的最大值为8,选A.【答案】 A(2)(xx·忻州联考)不等式组⎩⎪⎨⎪⎧x≥0x+y≤3y≥x+1表示的平面区域为Ω,直线y=kx-1与区域Ω有公共点,则实数k的取值范围为( )A.(0,3] B.[-1,1]C.(-∞,3] D.[3,+∞)【解析】作出不等式组表示的平面区域如图中阴影部分.直线y=kx-1显然经过定点M(0,-1),由图形直接观察知,当直线y=kx-1经过直线y=x+1和直线x+y=3的交【答案】 D点C (1,2)时,k 最小,此时k CM =2--11-0=3,因此k ≥3,即k ∈[3,+∞).故选D.q28510 6F5E 潞<23514 5BDA 寚27170 6A22 樢.k22259 56F3 図32528 7F10 缐31551 7B3F 笿27001 6979 楹222621 585D塝.。
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
2017年高考数学(四海八荒易错集)专题02 不等式与线性规划文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考数学(四海八荒易错集)专题02 不等式与线性规划文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考数学(四海八荒易错集)专题02 不等式与线性规划文的全部内容。
专题02 不等式与线性规划1。
【2016高考新课标1卷】若101a b c>><<,,则( )(A)c ca b<(B)c cab ba< (C)log logb aa cb c<(D)log loga bc c<【答案】C2.【2016高考天津理数】设变量x,y满足约束条件20,2360,3290.x yx yx y-+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y=+的最小值为()(A )4-(B)6 (C)10 (D)17【答案】B【解析】可行域为一个三角形ABC及其内部,其中(0,2),(3,0),(1,3)A B C,直线z25x y=+过点B时取最小值6,选B。
3.【2016高考山东理数】若变量x,y满足2,239,0,x yx yx则22x y的最大值是( )(A)4 (B)9 (C)10 (D)12【答案】C【解析】不等式组表示的可行域是以A(0,-3),B(0,2),C(3,—1)为顶点的三角形区域,22x y+表示点(x,y)到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC=,故选C.4。
【2016高考浙江理数】在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=( ) A .22B .4C .32D .6【答案】C5。
2021年高考线性规划归类解析制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
线性规划问题是解析几何的重点,每年高考必有一道小题。
一、线性约束条件,探求线性目的关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,那么yx z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目的函数z 最大值为18点评:此题主要考察线性规划问题,由线性约束条件画出可行域,然后求出目的函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
二、线性约束条件,探求非线性目的关系最值问题例2、1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩那么22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一解。
22x y+点到原点的间隔 的平方。
由图易知A 〔1,2〕是满足条件的最优的最小值是为5。
点评:此题属非线性规划最优解问题。
求解关键是在挖掘目的关系几何意义的前提下,作出可行域,寻求最优解。
三、约束条件设计参数形式,考察目的函数最值范围问题。
图2图1例3、在约束条件024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目的函数32z x y =+的最大值的变化范围是〔〕A.[6,15]B. [7,15]C. [6,8]D. [7,8]解析:画出可行域如图3所示,当34s ≤<时, 目的函数32z x y =+在(4,24)B s s --处获得最大值, 即max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时,目的函数32z x y =+在点(0,4)E 处获得最大值,即max 30248z =⨯+⨯=,故[7,8]z ∈,从而选D; 点评:此题设计有新意,作出可行域,寻求最优解条件,然后转化为目的函数Z 关于S 的函数关系是求解的关键。
线性规划高考试题精选一一.选择题共15小题1.设x,y满足约束条件,则z=2x+y的最小值是A.﹣15 B.﹣9 C.1 D.92.若x,y满足,则x+2y的最大值为A.1 B.3 C.5 D.93.设x,y满足约束条件,则z=x+y的最大值为A.0 B.1 C.2 D.34.已知x,y满足约束条件则z=x+2y的最大值是A.﹣3 B.﹣1 C.1 D.35.若x、y满足约束条件,则z=x+2y的取值范围是A.0,6 B.0,4 C.6,+∞D.4,+∞6.设x,y满足约束条件则z=x﹣y的取值范围是A.﹣3,0 B.﹣3,2 C.0,2 D.0,37.已知x,y满足约束条件,则z=x+2y的最大值是A.0 B.2 C.5 D.68.设变量x,y满足约束条件,则目标函数z=x+y的最大值为A.B.1 C.D.39.已知变量x,y满足约束条件,则4x+2y的取值范围是A.0,10 B.0,12 C.2,10 D.2,1210.不等式组,表示的平面区域的面积为A.48 B.24 C.16 D.1211.变量x、y满足条件,则x﹣22+y2的最小值为A.B.C.5 D.12.若变量x,y满足约束条件且z=2x+y的最大值和最小值分别为m和n,则m﹣n等于A.8 B.7 C.6 D.513.设x,y满足约束条件,当且仅当x=y=4时,z=ax﹣y取得最小值,则实数a的取值范围是A.﹣1,1 B.﹣∞,1 C.0,1 D.﹣∞,1∪1,+∞14.实数x,y满足,若z=2x+y的最大值为9,则实数m的值为A.1 B.2 C.3 D.415.平面区域的面积是A.B.C.D.二.选择题共25小题16.设x,y满足约束条件,则z=3x﹣2y的最小值为.17.若x,y满足约束条件,则z=3x﹣4y的最小值为.18.已知x,y满足约束条件,则z=5x+3y的最大值为.19.若实数x,y满足,如果目标函数z=x﹣y的最小值为﹣2,则实数m= .20.已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a= .21.设z=x+y其中x,y满足,若z的最大值为6,则z的最小值为.22.已知点x,y满足不等式组,若ax+y≤3恒成立,则实数a的取值范围是.23.设实数x,y满足约束条件,若目标函数z=ax+bya>0,b>0的最大值为10,则a2+b2的最小值为.24.已知实数x,y满足,则的最小值为.25.若变量x,y满足,则x2+y2的最大值是.26.设变量x,y满足约束条件,则的取值范围是.27.在平面直角坐标系xOy上的区域D由不等式组给定,若Mx,y为D上的动点,点A的坐标为2,1,则的最大值为.28.已知动点Px,y满足:,则x2+y2﹣6x的最小值为.29.已知实数x,y满足,则的最小值是.30.设实数x,y满足,则2y﹣x的最大值为.31.设x、y满足约束条件,则目标函数z=x2+y2的最大值为.32.已知x,y满足约束条件,若z=ax+y的最大值为4,则a= .33.若x,y满足约束条件,则的最小值是.34.若x,y满足约束条件,则的范围是.35.已知实数x,y满足:,z=2x﹣2y﹣1,则z的取值范围是.36.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k= .37.若实数x、y满足不等式组,且z=y﹣2x的最小值等于﹣2,则实数m的值等于.38.设x,y满足不等式组,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为.39.已知不等式组表示的平面区域的面积为,则实数k= .40.已知变量x,y满足的约束条件,若x+2y≥﹣5恒成立,则实数a的取值范围为.线性规划高考试题精选一参考答案与试题解析一.选择题共15小题1.2017新课标Ⅱ设x,y满足约束条件,则z=2x+y的最小值是A.﹣15 B.﹣9 C.1 D.9解答解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A﹣6,﹣3,则z=2x+y 的最小值是:﹣15.故选:A.2.2017北京若x,y满足,则x+2y的最大值为A.1 B.3 C.5 D.9解答解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A3,3,目标函数的最大值为:3+2×3=9.故选:D.3.2017新课标Ⅰ设x,y满足约束条件,则z=x+y的最大值为A.0 B.1 C.2 D.3解答解:x,y满足约束条件的可行域如图:,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A3,0,所以z=x+y 的最大值为:3.故选:D.4.2017山东已知x,y满足约束条件则z=x+2y的最大值是A.﹣3 B.﹣1 C.1 D.3解答解:x,y满足约束条件的可行域如图:目标函数z=x+2y经过可行域的A 时,目标函数取得最大值,由:解得A﹣1,2,目标函数的最大值为:﹣1+2×2=3.故选:D.5.2017浙江若x、y满足约束条件,则z=x+2y的取值范围是A.0,6 B.0,4 C.6,+∞D.4,+∞解答解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C2,1,目标函数的最小值为:4目标函数的范围是4,+∞.故选:D.6.2017新课标Ⅲ设x,y满足约束条件则z=x﹣y的取值范围是A.﹣3,0 B.﹣3,2 C.0,2 D.0,3解答解:x,y满足约束条件的可行域如图:目标函数z=x﹣y,经过可行域的A,B时,目标函数取得最值,由解得A0,3,由解得B2,0,目标函数的最大值为:2,最小值为:﹣3,目标函数的取值范围:﹣3,2.故选:B.7.2017山东已知x,y满足约束条件,则z=x+2y的最大值是A.0 B.2 C.5 D.6解答解:画出约束条件表示的平面区域,如图所示;由解得A﹣3,4,此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为=﹣3+2×4=5.zmax故选:C.8.2017天津设变量x,y满足约束条件,则目标函数z=x+y的最大值为A.B.1 C.D.3解答解:变量x,y满足约束条件的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A0,3,目标函数z=x+y的最大值为:3.故选:D.9.2017大庆三模已知变量x,y满足约束条件,则4x+2y的取值范围是A.0,10 B.0,12 C.2,10 D.2,12解答解:法1:作出不等式组表示的平面区域,得到如图的四边形及其内部,其中A2,1,B0,1,设z=Fx,y=4x+2y,将直线l:z=4x+2y进行平移,可得当l经过点A时,目标函数z达到最大值,z=F2,1=10,最大值=F0,1=2当l经过点B时,目标函数z达到最小值,z最小值因此,z=4x+2y的取值范围是2,10.法2:令4x+2y=μx+y+λx﹣y,则,解得μ=3,λ=1,故4x+2y=3x+y+x﹣y,又1≤x+y≤3,故3≤3x+y≤10,又﹣1≤x﹣y≤1,所以4x+2y∈2,10.故选C.10.2017潮州二模不等式组,表示的平面区域的面积为A.48 B.24 C.16 D.12解答解:画出不等式组表示的平面区域如图阴影所示,则点A﹣2,2、B2,﹣2、C2,10,所以平面区域面积为S=|BC|h=×10+2×2+2=24.△ABC故选:B.11.2017汉中二模变量x、y满足条件,则x﹣22+y2的最小值为A.B.C.5 D.解答解:作出不等式组对应的平面区域,设z=x﹣22+y2,则z的几何意义为区域内的点到定点D2,0的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C0,1,此时z=x﹣22+y2=4+1=5,故选:C.12.2017林芝县校级三模若变量x,y满足约束条件且z=2x+y的最大值和最小值分别为m和n,则m﹣n等于A.8 B.7 C.6 D.5解答解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即C2,﹣1,此时最大值z=2×2﹣1=3,当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即B﹣1,﹣1,最小值为z=﹣2﹣1=﹣3,故最大值m=3,最小值为n=﹣3,则m﹣n=3﹣﹣3=6,故选:C13.2017瑞安市校级模拟设x,y满足约束条件,当且仅当x=y=4时,z=ax﹣y取得最小值,则实数a的取值范围是A.﹣1,1 B.﹣∞,1 C.0,1 D.﹣∞,1∪1,+∞解答解:作出约束条件所对应的可行域如图阴影,变形目标函数可得y=ax﹣z,其中直线斜率为a,截距为﹣z,∵z=ax﹣y取得最小值的最优解仅为点A4,4,∴直线的斜率a<1,即实数a的取值范围为﹣∞,1故选:B.14.2017肇庆一模实数x,y满足,若z=2x+y的最大值为9,则实数m的值为A.1 B.2 C.3 D.4解答解:作出不等式组对应的平面区域如图:阴影部分.由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最大,此时z最大,此时2x+y=9.由,解得,即B4,1,∵B在直线y=m上,∴m=1,故选:A15.2017五模拟平面区域的面积是A.B.C.D.解答解:作出不等式组对应的平面区域如图,则区域是圆心角是是扇形,故面积是.故选:A.二.选择题共25小题16.2017新课标Ⅰ设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5 .解答解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A﹣1,1.∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.17.2017新课标Ⅲ若x,y满足约束条件,则z=3x﹣4y的最小值为﹣1 .解答解:由z=3x﹣4y,得y=x﹣,作出不等式对应的可行域阴影部分,平移直线y=x﹣,由平移可知当直线y=x﹣,经过点B1,1时,直线y=x﹣的截距最大,此时z取得最小值,将B的坐标代入z=3x﹣4y=3﹣4=﹣1,即目标函数z=3x﹣4y的最小值为﹣1.故答案为:﹣1.18.2017明山区校级学业考试已知x,y满足约束条件,则z=5x+3y的最大值为35 .解答解:不等式组对应的平面区域如图:由z=5x+3y得y=﹣,平移直线y=﹣,则由图象可知当直线y=﹣经过点B时直线y=﹣的截距最大,此时z最大,由,解得,即B4,5,此时M=z=5×4+3×5=35,故答案为:3519.2017重庆模拟若实数x,y满足,如果目标函数z=x﹣y的最小值为﹣2,则实数m= 8 .解答解:画出x,y满足的可行域如下图:可得直线y=2x﹣1与直线x+y=m的交点使目标函数z=x﹣y取得最小值,故,解得x=,y=,代入x﹣y=﹣2得﹣=﹣2m=8故答案为:8.20.2017湖南三模已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a= .解答解:先根据约束条件画出可行域,设z=2x+y,将最大值转化为y轴上的截距,当直线z=2x+y经过点B时,z最小,由得:,代入直线y=ax﹣3得,a=;故答案为:21.2017山东模拟设z=x+y其中x,y满足,若z的最大值为6,则z的最小值为﹣3 .解答解:作出可行域如图:直线x+y=6过点Ak,k时,z=x+y取最大,∴k=3,z=x+y过点B处取得最小值,B点在直线x+2y=0上,∴B﹣6,3,∴z的最小值为=﹣6+3=﹣3.故填:﹣3.22.2017黄冈模拟已知点x,y满足不等式组,若ax+y≤3恒成立,则实数a的取值范围是﹣∞,3 .解答解:满足不等式组的平面区域如右图所示,由于对任意的实数x、y,不等式ax+y≤3恒成立,==﹣3,根据图形,可得斜率﹣a≥0或﹣a>kAB解得:a≤3,则实数a的取值范围是﹣∞,3.故答案为:﹣∞,3.23.2017惠州模拟设实数x,y满足约束条件,若目标函数z=ax+bya>0,b>0的最大值为10,则a2+b2的最小值为.解答解:由z=ax+bya>0,b>0得y=,作出可行域如图:∵a>0,b>0,∴直线y=的斜率为负,且截距最大时,z也最大.平移直线y=,由图象可知当y=经过点A时,直线的截距最大,此时z也最大.由,解得,即A4,6.此时z=4a+6b=10,即2a+3b﹣5=0,即a,b在直线2x+3y﹣5=0上,a2+b2的几何意义为直线上点到原点的距离的平方,则原点到直线的距离d=,则a2+b2的最小值为d2=,故答案为:.24.2017历下区校级三模已知实数x,y满足,则的最小值为.解答解:作出不等式组对应的平面区域如图,的几何意义是区域内的点与点E3,0的斜率,由图象知AE的斜率最小,由得,即A0,1,此时的最小值为=,故答案为:.25.2017平遥县模拟若变量x,y满足,则x2+y2的最大值是10 .解答解:由约束条件作出可行域如图,联立,解得B3,﹣1,x2+y2的几何意义为可行域内动点与原点距离的平方,其最大值|OB|2=32+﹣12=10,故答案为:10.26.2017遂宁模拟设变量x,y满足约束条件,则的取值范围是.解答解:不等式组表示的区域如图,的几何意义是可行域内的点与点﹣1,﹣1构成的直线的斜率问题.当取得点A0,1时,取值为2,当取得点C1,0时,取值为,故答案为:27.2017渭南一模在平面直角坐标系xOy上的区域D由不等式组给定,若Mx,y 为D上的动点,点A的坐标为2,1,则的最大值为7 .解答解:由约束条件作出可行域如图,令z==2x+y,化为y=﹣2x+z,由图可知,当直线y=﹣2x+z过B2,3时,z有最大值为2×2+3=7.故答案为:7.28.2017湖北二模已知动点Px,y满足:,则x2+y2﹣6x的最小值为.解答解:由,∵y+>y+|y|≥0,∴,∵函数fx=是减函数,∴x≤y,∴原不等式组化为.该不等式组表示的平面区域如下图:∵x2+y2﹣6x=x﹣32+y2﹣9.由点到直线的距离公式可得,P3,0区域中A的距离最小,所以x2+y2﹣6x的最小值为.故答案为:﹣.29.2017盐城一模已知实数x,y满足,则的最小值是.解答解:作出不等式组所表示的平面区域如图所示:由于可以看做平面区域内的点与原点的连线的斜率,结合图形可知,当直线过OA时斜率最小.由于可得A4,3,此时k=.故答案为:.30.2017和平区校级模拟设实数x,y满足,则2y﹣x的最大值为 5 .解答解:画出,的可行域如图:将z=2y﹣x变形为y=x+z作直线y=x将其平移至A时,直线的纵截距最大,z最大,由可得A﹣1,2,z的最大值为:5.故答案为:5.31.2017德州二模设x、y满足约束条件,则目标函数z=x2+y2的最大值为52 .解答解:作出不等式组表示的平面区域,得到如图的四边形OABC,其中A0,2,B4,6,C2,0,O为原点设Px,y为区域内一个动点,则|OP|=表示点P到原点O的距离∴z=x2+y2=|OP|2,可得当P到原点距离最远时z达到最大值因此,运动点P使它与点B重合时,z达到最大值∴z=42+62=52最大值故答案为:5232.2017镇江模拟已知x,y满足约束条件,若z=ax+y的最大值为4,则a= 2 .解答解:作出不等式组对应的平面区域如图:阴影部分.则A2,0,B1,1,若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A2,0时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A2,0时,截距最大,此时z最大为6,不满足条件,故a=2;故答案为:2.33.2017南雄市二模若x,y满足约束条件,则的最小值是.解答解:x,y满足约束条件的可行域如图:则的几何意义是可行域的点到坐标原点距离,由图形可知OP的距离最小,直线x+y﹣2=0的斜率为1,所以|OP|=.故答案为:.34.2017清城区校级一模若x,y满足约束条件,则的范围是.解答解:作出不等式组对应的平面区域如图:的几何意义是区域内的点到定点D﹣1,0的斜率,由图象知CD的斜率最小,由得C,,则CD的斜率z==,即z=的取值范围是0,,故答案为:.35.2017梅河口市校级一模已知实数x,y满足:,z=2x﹣2y﹣1,则z的取值范围是﹣,5 .解答解:不等式对应的平面区域如图:阴影部分.由z=2x﹣2y﹣1得y=x﹣,平移直线y=x﹣,由平移可知当直线y=x﹣,经过点C时,直线y=x﹣的截距最小,此时z取得最大值,由,解得,即C2,﹣1,此时z=2x﹣2y﹣1=4+2﹣1=5,可知当直线y=x﹣,经过点A时,直线y=y=x﹣的截距最大,此时z取得最小值,由,得,即A,代入z=2x﹣2y﹣1得z=2×﹣2×﹣1=﹣,故z∈﹣,5.故答案为:﹣,5.36.2017深圳一模若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k= 3 .解答解:实数x,y满足不等式组的可行域如图:得:A1,3,B1,﹣2,C4,0.①当k=0时,目标函数z=kx﹣y的最大值为12,最小值为0,不满足题意.②当k>0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y过C4,0时,Z 取得最大值12.当直线z=kx﹣y过A1,3时,Z取得最小值0.可得k=3,满足题意.③当k<0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y过C4,0时,Z 取得最大值12.可得k=﹣3,当直线z=kx﹣y过,B1,﹣2时,Z取得最小值0.可得k=﹣2,无解.综上k=3故答案为:3.37.2017夏邑县校级模拟若实数x、y满足不等式组,且z=y﹣2x的最小值等于﹣2,则实数m的值等于﹣1 .解答﹣1解:由z=y﹣2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A1,0时,直线y=2x+z的截距最小,此时z取得最小值为﹣2,即y﹣2x=﹣2,点A也在直线x+y+m=0上,则m=﹣1,故答案为:﹣138.2017阳山县校级一模设x,y满足不等式组,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为﹣2,1 .解答解:由z=ax+y得y=﹣ax+z,直线y=﹣ax+z是斜率为﹣a,y轴上的截距为z的直线,作出不等式组对应的平面区域如图:则A1,1,B2,4,∵z=ax+y的最大值为2a+4,最小值为a+1,∴直线z=ax+y过点B时,取得最大值为2a+4,经过点A时取得最小值为a+1,若a=0,则y=z,此时满足条件,若a>0,则目标函数斜率k=﹣a<0,要使目标函数在A处取得最小值,在B处取得最大值,=﹣1,则目标函数的斜率满足﹣a≥kBC即0<a≤1,若a<0,则目标函数斜率k=﹣a>0,要使目标函数在A处取得最小值,在B处取得最大值,则目标函数的斜率满足﹣a≤k=2,AC即﹣2≤a<0,综上﹣2≤a≤1,故答案为:﹣2,1.39.2017许昌三模已知不等式组表示的平面区域的面积为,则实数k= 4 .解答解:画出不等式组表示的平面区域,如图所示,由题意可知k>0,可行域的三个顶点为A0,0,B,,C,,∵AB⊥BC,|AB|=k,点C到直线AB的距离为k,=ABBC=×k×k=,∴S△ABC解得k=4,故答案为:4.40.2017白银区校级一模已知变量x,y满足的约束条件,若x+2y≥﹣5恒成立,则实数a的取值范围为﹣1,1 .解答解:由题意作出其平面区域,则x+2y≥﹣5恒成立可化为图象中的阴影部分在直线x+2y=﹣5的上方,则实数a的取值范围为﹣1,1.故答案为:﹣1,1.。
考点26二元一次不等式(组)与简单的线性规划问题
1.(2021·全国乙卷文科·T5)若x ,y 满足约束条件+≥4,-≤2,≤3,则z =3x +y 的最小值为()A .18B .10C .6D .4
【命题意图】本题考查线性规划的基本问题,运用数形结合思想求目标函数的最优解.
【解析】选C .由约束条件可得可行域如图所示,当直线z =3x +y 过点B (1,3)时,z 取得最小值6.
2.(2021·浙江高考·T5)若实数x ,y 满足约束条件+1≥0,-≤0,2+3-1≤0,则z =x -12
y 的最小值是(
)A.-2 B.-32 C.-12 D.110【命题意图】本题主要考查线性规划的基本运算及最优解的求法.考查数学直观的核心素养.
【解析】选B .由题意作出可行域,如图所示:
由z =x -12y 得y =2x -2z ,
此时-2z 表示直线y =2x -2z 在y 轴上的截距,
当z 最小时,-2z 取得最大值,
由图得,当直线过点A 时,直线y =2x -2z 在y 轴上的截距最大,
由方程
+1=0,2+3-1=0,解得A (-1,1),
所以z =x -12y 的最小值为-1-12×1=-32.。
线性规划
简单线性规划是教材中的新增内容,纵观近几年的高考试题,线性规划的试题多以选择题、填空题出现,但部分省市已出现大题,分值有逐年加大的趋势。
简单线性规划正在成为一个高考热点。
认真分析研究近年各地高考试卷,可以发现这部分高考题大致有以下四个类型。
一.求目标函数的最值问题
例1.在约束条件⎪⎪⎩⎪
⎪⎨⎧≤+≤+≥≥4
x 2y s y x 0y 0x 下,当5s 3≤≤时,目标函数y 2x 3z +=的最大值
的变化范围是(
)
A.[6,15]
B.[7,15]
C.[6,8]
D.[7,8]
解:由⎩
⎨⎧-=-=⇒⎩⎨
⎧=+=+4s 2y s 4x 42x y s y x 则由题意知A(0,2),B(s 4-,4-s 2),C(0,
s),D(0,4)。
(1)当4s 3≤≤时可行域是四边形OABC,此时,8z 7≤≤;(2)当5s 4≤≤时可行域是OAD ∆,此时,8z max =。
由以上可知,正确答案为D。
点评:本题主要考查线性规划的基础知识,借助图形解题。
例2.已知平面区域D 由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和外界组成。
若在区域D 内有无穷多个点(x,y)可使目标函数my x z +=取得最小值,则m=()
A.2
- B.1
- C.1
D.4
解:由A(1,3)、B(5,2)、C(3,1)的坐标位置知,ABC ∆所在的区域在第一象限,故0y ,0x >>。
当0m =时,z=x,只有一个点为最小值,不合题意。
当0m ≠时,由z=x+my 得m z x m 1y +-
=,它表示的直线的斜率为m
1
-。
(1)若0m >,则要使my x z +=取得最小值,必须使
m
z
最小,此时需1
33
1k m 1AC --=
=-
,即m=1;(2)若m<0,则要使my x z +=取得最小值,必须使
m
z
最大,此时需,2m ,5
321k m 1BC =--==-
即与m<0矛盾。
综上可知,m=1。
点评:本题主要考查同学们运用线性规划的基础知识与分类讨论的数学思想
综合解决问题的能力。
二.求参数的取值问题
例3.已知变量x,y 满足约束条件2y -x 4,-2y x 1≤≤≤+≤。
若目标函数
y ax z +=(其中0a >)仅在点(3,1)处取得最大值,则a
的取值范围为_________。
解:由已知变量满足约束条件4y x 1≤+≤,2y x 2≤-≤-。
在坐标系中画出可行域,如图为四边形ABCD,其中A (3,1),1k AD =,1k AB -=。
目标函数y ax z +=(其中0a >)可转化为z ,z ax y +-=表示斜率为a -的直线系中的截距的大小,若仅在点A 处取得最大值,则斜率应小于1k AB -=,即1a -<-,所以a 的取值范围为(1,∞+)
三.求约束条件问题
例4.双曲线4y x 22=-的两条渐近线与直线x=3围成一个三角形区域,表示该区域的不等式组是(
)
A.⎪⎩
⎪
⎨⎧≤≤≥+≥-3x 00y x 0
y x B.
⎪⎩
⎪
⎨⎧≤≤≤+≥-3x 00y x 0y x C.⎪⎩
⎪
⎨⎧≤≤≤+≤-3x 00
y x 0y x D.⎪⎩
⎪
⎨⎧≤≤≥+≤-3x 00
y x 0y x
双曲线4y x 22=-的两条渐近线方程为x y ±=,两者与直线3x =围成一个三角
形区域时有⎪⎩
⎪
⎨⎧≤≤≥+≥-3x 00y x 0y x ,故
选A。
点评:本题考查了双曲线的渐近线方程以及线性规划问题。
四.求面积问题
例5.在平面直角坐标系中,不等式组⎪⎩
⎪
⎨⎧≤≥+≥+2x 02x-y 02y-x ,表示的平面区域的面积是
(
)
A.24
B.4
C.22
D.2
由题知可画出可行域为ABC ∆(如上图),42
2
|04|S ABC =⨯-=
∆,故选择B。
点评:本题考查简单的线性规划的可行域(三角形)的面积,同时切记做线性规划的题目时,最关键的是不等号的处理,应考虑要求的区域是在直线的上方还是下方。
练一练
1.已知点P(x,y)的坐标满足条件⎪⎩
⎪
⎨⎧≥≥≤+1x x y 4y x 点O 为坐标原点,那么|PO|的
最小值等于_______,最大值等于_________。
2.某厂生产甲产品每千克需用原料A、原料B 分别为1a 千克、b 1千克,生产乙产品每千克需用原料A、原料B 分别为a 2千克、b 2千克,甲、乙产品每千克可获利润分别为d 1元、d 2元。
月初一次性购进本月所需原料A、B 分别为c 1千克、c 2千克,则本月生产甲产品和乙产品分别为多少千克才能使月利润总额达到最大?在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润y d x d z 21+=最大的数学模型中,约束条件为(
)
A.⎪⎪⎩⎪⎪
⎨⎧≥≥≥+≥+0
y ,0x ,c y b x b ,
c y a x a 221
121 B.⎪⎪⎩⎪⎪
⎨⎧≥≥≤+≤+0y ,0x ,c y b x a ,c y b x a 222
111C.⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0
y ,0x ,c y b x b ,c y a x a 221
121 D.⎪⎪⎩⎪⎪
⎨⎧≥≥=+=+0y ,0x ,c y b x b ,c y a x a 221
121参考答案:1.210
2.C。