针尖增强拉曼散射 TERS
- 格式:pptx
- 大小:1.67 MB
- 文档页数:13
壳层隔绝纳米粒子增强拉曼光谱技术简介2016-09-11 12:09来源:内江洛伯尔材料科技有限公司作者:研发部壳层隔绝纳米粒子增强拉曼光谱技术简介拉曼光谱(Ramanspectra),是一种散射光谱。
拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
为了提高拉曼光谱技术的普适性及灵敏度,科学家在SERS基础上进行了大量的创新研究。
其技术发展主要经历了三个阶段:第一阶段是接触式借力模式,即制备一些核壳纳米结构,可在合适波长下,通过产生局域表面等离激元共振,使纳米结构表面直接接触的分子感受到光电场的作用,使其拉曼信号得到增强。
第二阶段是非接触式借力模式,即针尖增强拉曼光谱(TERS),它是将拉曼光谱和扫描探针显微技术结合起来,通过将一个Au或Ag针尖放置在距离单晶表面小于1 nm的位置进行拉曼检测激光照射纳米间隙后,针尖处被激发产生局域表面等离激元,产生很强的电磁场从而极大地增强了针尖附近吸附在单晶表面分子的拉曼信号。
拉曼光谱技术在方法学上经历了上述两个阶段的发展,其检测灵敏度得到很大提升,同时也在一定程度上解决了空间分辨率的问题。
TERS技术使得拉曼光谱在高端的需要高空间分辨的谱学信息的研究中发挥出重要的作用,形成拉曼光谱技术中顶天型的仪器。
但是,不论是接触式借力模式还是非接触式借力模式,尚无法全面解决基底材料普适性问题直到2010年,拉曼光谱技术在方法学的突破进入了第三阶段,即壳层隔绝式借力模式,田中群课题组发明了壳层隔绝纳米粒子增强拉曼光谱(SHINERS)方法,成功解决了SERS基底普适性问题,该项科研成果已发表在国际顶级学术刊物《Nature》上,获得了学术界的广泛认可和高度评价,国际表面增强拉曼光谱领域的著名的Graham教授在国际知名期刊《Angewandte Chemie》上撰文评论该项技术,称此项技术为下一代的先进光谱技术。
针尖增强拉曼系统组成与优化
郭云昌
【期刊名称】《现代科学仪器》
【年(卷),期】2022(39)2
【摘要】基于扫描探针显微镜的针尖增强拉曼光谱(TERS)经过20多年的发展,已经被科学家们广泛应用。
TERS系统组成简单,根据激光照射方式,可分为透射式和反射式两类。
拉曼激光照射金银探针而产生的高度局域的增强电磁场有效激发了样品的拉曼信号。
根据科学家实际应用需求,基于系统组成和增强机制,从系统硬件、软件多个角度出发,合理优化一套适合自己科研的TERS系统非常有必要。
【总页数】6页(P228-233)
【作者】郭云昌
【作者单位】仪凰(无锡)光谱测控有限公司
【正文语种】中文
【中图分类】TH742
【相关文献】
1.适用于针尖增强拉曼技术的Au针尖的研制
2.蒽醌分子的深紫外针尖增强拉曼散射的化学增强机制
3.p-Thiocresol吸附在银纳米粒子表面系统的表面增强拉曼散射和表面增强共振拉曼散射的增强研究
4.扫描拉曼埃分辨显微术:埃级分辨的针尖增强拉曼光谱成像技术
5.纳米岛状银膜@金纳米针尖表面增强拉曼散射传感界面及多巴胺分子的传感分析
因版权原因,仅展示原文概要,查看原文内容请购买。
药物分析中的表面增强拉曼散射探针优化近年来,随着技术的不断发展,药物分析领域也取得了显著的进展。
在药物研发和临床应用过程中,药物结构的分析十分重要,而拉曼光谱技术作为一种快速、非破坏性的分析方法,逐渐受到广泛关注。
然而,对于一些低浓度药物成分的检测,传统的拉曼光谱技术存在信号弱、噪声过大等问题,这就需要引入一种能够增强拉曼信号的探针。
而表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)作为拉曼光谱技术的扩展,通过表面增强效应使得药物分析的灵敏度和准确性得到了有效提升。
在药物分析中,表面增强拉曼散射探针的优化是一个关键的环节。
下面将介绍几种常见的优化方法,以期提高拉曼信号的增强效果。
一、表面增强剂的选择表面增强剂是表面增强拉曼散射探针的核心组成部分,它们能够吸附在纳米金属颗粒表面,开展拉曼信号增强的作用。
常见的表面增强剂包括金属纳米颗粒、碳基纳米材料等。
其中,金属纳米颗粒是最常见也是最广泛应用的表面增强剂,如银纳米颗粒、金纳米颗粒等。
对于不同的药物分析需求,我们可以根据药物的特性选择合适的表面增强剂来进行优化。
二、纳米颗粒的尺寸和形状优化纳米颗粒的尺寸和形状对于表面增强拉曼散射的效果有很大的影响。
通常而言,尺寸较小的纳米颗粒表面积较大,能够提供更多的增强效应;而形状较特殊的纳米颗粒,如星状、花状等,其表面存在更多的“热点”,进一步增强了拉曼信号的强度。
因此,在优化过程中,针对不同的药物分析需求,可以通过调控纳米颗粒的尺寸和形状,选择最适合的纳米颗粒来实现表面增强拉曼散射效果的最大化。
三、基底的选择与优化基底是指承载纳米颗粒的固体基材料,它能够提供有效的支撑和固定功能。
选择合适的基底材料对于优化表面增强拉曼散射的效果至关重要。
常用的基底材料包括硅片、玻璃片、金片等。
选择合适的基底材料时,需要考虑基底的稳定性、光学性质与纳米颗粒的相互作用等因素,以获得最佳的表面增强效果。
表面增强拉曼光谱田中群-回复什么是表面增强拉曼光谱(TERS)?它在实践中的应用有哪些?表面增强拉曼光谱(TERS)是一种通过增强拉曼散射信号的技术,能够实现对纳米尺度表面结构的化学分析。
在TERS中,使用金属纳米结构或纳米颗粒作为增强基质,使得样品表面的拉曼散射信号增强数千倍甚至更多。
TERS技术的应用范围广泛,尤其在纳米材料科学、表面物理、化学、生物学等领域有很大的潜力。
通过TERS技术,研究人员可以实现对单个分子、纳米颗粒、生物分子、表面催化反应等的高分辨率化学分析。
此外,开展表面增强拉曼光谱也有助于了解材料和生物分子的相互作用,分析表面等离子体共振(SPR)效应等。
表面增强拉曼光谱的实验操作步骤主要包括以下几个方面:1. 选择适当的激发光源:激发光源的选择对于TERS实验非常重要。
常用的激发光包括波长可调的单向光源,如氦氖激光器(633 nm)、二极管激光器(532 nm)等。
2. 准备样品:将待测样品沉积在具有高增强效果的金属纳米结构上,如银纳米颗粒或金纳米棒。
3. 调整近场探测器的位置:利用近场探测器实现纳米尺度的空间分辨率。
可以使用光纤探针、原子力显微镜探针等。
4. 进行光谱测量:在近场和远场光场同时观察拉曼散射光谱。
近场光场可用于实现高分辨率拉曼光谱的测量,远场光场用于监测样品的增强效果。
5. 数据处理和解读:利用数学算法对测量得到的拉曼光谱数据进行处理和解读。
可以采用成像分析技术,将不同的拉曼散射信号关联到不同的化学成分或结构。
表面增强拉曼光谱的实际应用非常广泛。
在材料科学领域,TERS可以用于研究纳米材料的属性和结构,例如纳米颗粒、二维材料(如石墨烯)、金属材料等。
对于化学反应研究,TERS可实现对表面催化活性中的中间体和反应产物的直接检测,进一步揭示反应机制。
在生物医学领域,TERS 技术可以用于分析生物分子、细胞膜、蛋白质等的结构和组成,在生物医学研究、临床诊断等方面具有重要意义。
针尖增强拉曼光谱技术的应用厦门大学固体表面物理化学国家重点实验室指导教师:任斌教授助研:刘郑博士生王翔硕士生表面增强因子:提高SERS 的普适性:表面适用性的拓展粗糙无序表面粗糙有序表面单晶表面SPMTipEkLaser~1 nm30nm 可以研究纳米级不均匀性的体系国际上TERS研究实例碳纳米管碳纳米管细胞膜离子通道的高空间分辨率成像普通荧光成像普通荧光成像针尖增强荧光成像Novotny L et al.Nano Lett., 8, 642 (2008)Novotny L et al.Phys. Rev. Lett.96, 113002 (2006)STM单分子的TERS任斌教授在TERS领域的研究成果TERS针尖的制备良好的TERS针尖是TERS技术的关键: 合适的SPR共振频率—最强的增强 良好的形状和尺寸----增强源明确,背景干扰减小250 nm重现性不高; 针尖易污染、易氧化制备形状和大小可控、 表面光亮的高TERS活性的针尖 Rev. Sci. Instrum., 2004, 75: 837.高活性TERS针尖的制备0.25mm Au wireAu Counter ElectrodeCHI instrumentSolution: 发烟盐酸+ 乙醇 (1:1) Potentiostat voltage: 2.2 ~2.3 VEtching solutionSetup高活性TERS针尖的制备A2.1 VB2.2 VC2.4 V200nmA200nmB200nmCAppl. Phys. Lett. 91,101105 (2007)Au(111)上孔雀石绿的TERS研究SEF(增强因子) =g4=1~6x106 Phys. Rev. Lett. (2004) 92, 096101-1-4.Pt单晶上非共振分子的TERS检测5 mw 632.8 nm12000 11000 1000018000.5 mw 632.8 nmRaman Intensity(counts)9000 8000 7000 6000 5000 4000 3000 2000 1000Raman Intensity (counts)1600140012001000S8003006009001200 1500 1800 2100 2400 2700 30003006009001200 1500 1800 2100 2400 2700 3000Wavenumber /cm-1Wavenumber /cm-1Angew. Chem. Int. Ed., 44 (2005) 139.44联吡啶自组装膜的TERS检测1608 1293 100 cps 1019 1220 1511 16351014 238SERSTERS20060010001400-1Without tip 18004‘4联吡啶在Au(111) 上的STM成像Raman shift (cm )Appl. Phys. Lett. 91,101105 (2007)电磁场增强与距离的关系1 mW ,10sO2N40 cpsHSSHE1 nm 2.5 nm 4 nm 6 nm 7.5 nm 9 nm 15 nm 20 nm500 1000 1500-1κ20002500Raman shift(cm )电磁场增强与距离的关系Expriment data 3D-FDTD simulation1.21.0Normalized intensity0.81 nm0.65 nm0.40.20.0 2 4 6 8 10 12 14 16 18 20 22 24 26tip sample distance/nm国内第一台TERS仪器的研制暑期主要任务1.制备合适的量子点,利用TERS研究量子点的荧光、拉曼;2.TERS仪器与光谱仪同步测试。
针尖增强拉曼光谱
针尖增强拉曼光谱(TERS)是一种将扫描探针技术(SPM)和增强拉曼谱学相结合的技术。
它具有SPM的空间分辨本领和拉曼光谱
的指纹识别能力,同时针尖增强拉曼光谱的灵敏度极高,可以极大地提高拉曼散射的强度。
在TERS中,激光被耦合到功能化的针尖尖端上,针尖增强拉曼
光谱系统采用一枚金属化的针尖(通常是镀金或镀银的针尖),把入射激光聚集到针尖的尖端。
针尖不仅充当纳米源头,而且还起到局域磁场增强的作用,极大地提高了拉曼的灵敏度,增强因子可以达到103-107倍,而探测的体积则仅限于针尖下“纳米”范围内。
两台仪器的光路以共焦的形式藕合在一起,这种光学耦合有透射或反射两种不同的配置。
透射型配置可以使用高数值孔径(NA)的
物镜,包括油镜,激发光在焦点处可达到很高的功率密度,从而可以收集到很强的信号,但是透射型配置只适用于透明的样品。
反射型配置则无须考虑样品透明还是不透明,但是只能使用较小数值孔径(NA)的物镜。
通过逐点扫描和同步光谱采集的结合,可以实现近场拉曼成像,其横向分辨率优于10 nm。
TERS是一种强大的工具,可以在原子尺度上研究光子、声子、电子、等离激元相互作用,表征物质结构与纳米光学性质。