常用水力计算Excel程序说明(doc 15页)
- 格式:doc
- 大小:244.00 KB
- 文档页数:15
Excel 水力计算展示之专题11. 消力坎式消力池的水力计算当泄水建筑物下游发生远离式水跃时,也可以采用修建消能墙,使墙前水位壅高,以期在池内发生稍有淹没的水跃。
其水流现象与挖深式消力池相比,主要区别在于池出口不是淹没宽顶堰流而是淹没折线型实用堰流。
水力计算的主要任务是确定墙高C 和池长B L 。
【工程任务】如图所示为一5孔溢流堰,每孔净宽b=7m ,闸墩厚度d=2m ,上游河道宽度与下游收缩断面处河道宽度相同,即d 0c B B nb (n 1)==+-,上下游水位的高程如图中所注,当每孔闸门全开时,通过的泄流量Q=1400m 3/s ,试求:判别底流衔接形式,如为远趋式水跃,试设计一消力坎式消力池。
【分析与计算】1.判断是否需要修建消力池上游水面收缩断面处河底总能量为[]220021022()v Q E p H p H gg p H B α=++=+++ (式11-1)将 11551055()p p m ==-=162.41557.4()H m =-= 31400(/)Q m s =0(1)57(51)232()B nb n d m =+-=⨯+-⨯=代入上式可得: []2021400557.462.41()29.8(557.4)43E m =++=⨯⨯+⨯收缩断面处的河道宽度043()c B B m ==,则收缩断面处的单宽流量3/1400/4332.56(/())c c q Q B m s m ===坝面流速系数10.015/10.01555/7.40.885p H ϕ=-=-⨯= 收缩断面水深的计算公式为20222c c cq E h g h ϕ=+ (式11-2) 即 222232.5669.662.4129.80.885c c c c h h h h =+=+⨯⨯ 经迭代得 1.061()c h m =c h 的共轭水深为:22331.06132.56''(181)(181)13.758()229.8 1.061c c c h q h m gh =+=⨯+⨯=⨯ 下游水深11010010()t h m =-=。
Excel 水力计算展示之专题11.消力坎式消力池的水力计算当泄水建筑物下游发生远离式水跃时,也可以采用修建消能墙,使墙前水位壅高, 以期在池内发生稍有淹没的水跃。
其水流现象与挖深式消力池相比,主要区别在于池出 口不是淹没宽顶堰流而是淹没折线型实用堰流。
水力计算的主要任务是确定墙高C 和池 长L B 0【工程任务】如图所示为一 5孔溢流堰,每孔净宽b=7m ,闸墩厚度d=2m ,上游河道宽度与下 游收缩断面处河道宽度相同,即Bo=Bc= nb + (n-1)d ,上下游水位的高程如图中所注, 当每孔闸门全开时,通过的泄流量 Q=1400m 3/s ,试求:判别底流衔接形式,如为远趋式水跃,试设计一消力坎式消力池。
【分析与计算】1.判断是否需要修建消力池上游水面收缩断面处河底总能量为p = p = 55-10= 5m ()水力分析与计算a E 0 =p+H +^^ = p + H +2gQ 22g Rp 1+H )B 0]2(式 11-1)H =1 6 2. 4 1=5 5 n7. 4Q =1 40Onn S )B 0 = nb+( n/) d =5 x 7 +( 5 -2= 3r2 ()代入上式可得:E 0 =55 +7.4 +=62.41(m)2X9.8X [(55+7.4)x43r收缩断面处的河道宽度B 0 = Be =43(m),则收缩断面处的单宽流量 q c =Q/B e =1400/43=32.56(m 3/(Sr))坝面流速系数半=1-0.015 p/H =1 —0.015x55/7.4 =0.885 收缩断面水深的计算公式为经迭代得h c =1.061(m)h e 的共轭水深为:h e '今卜8話"譽(卄91^"13.758何下游水深h t =110-100 =10(m)。
因为n <13.758(m),所以产生远离式水跃,故需要 修建修建消力池,或修建消力坎。
Excel 水力计算展示之 专题5. 非棱柱体渠道水面线计算对实际工程中的非棱柱体渠道的水面曲线的计算,其基本计算原理与棱柱体渠道相似,但非棱柱体渠道没有临界水深、临界底坡等,断面形状随流程发生变化,故不能完全采用棱柱体渠道的计算方法。
这种情况下,应首先确定断面位置,然后想办法求出断面水深。
基本公式如下:21s s s E E E l i J i J∆-∆==-- (5-1) 式中:1s E 、2s E 分别表示流段上、下游断面的断面比能;J 表示流段内的平均水力坡度;i 表示渠道的底坡;l ∆为流段长度。
流段的平均水力坡度J 一般采用以下方法计算:121()2J J J =+ (5-2)22Q J K=(5-3)流量模数平均值K 或2K 可用以下三种方法之一计算:(1) K = (5-4)式中:121()2A A A =+,121()2C C C =+,121()2R R R =+(2) 222121()2K K K =+ (5-5)(3) )1(21122212K K K+=(5-6)具体步骤如下:(1)将非棱柱体的渠道分成若干断面,并确定各断面之间的间距i l ∆。
(2)从控制断面起,以控制断面为断面1-1,对断面1-1和断面2-2之间的流段,即第一个流段进行分析,使用试算法确定断面2-2处的水深。
用试算法确定断面2-2水深的基本方法是,先给断面2-2假定一个水深2h ,用这个假定的水深确定断面2-2的断面尺寸和水力参数。
将这个断面上的假定的水力参数与断面1-1的相关参数结合,代入公式5-1计算第一流段的长度1l ∆,若1l ∆与实际分段的长度相等,则假设的水深2h 即断面2-2的实际水深;反之,则不是所求水深,重新给断面2-2水深赋值计算。
(3)依照第一个流段分析的方法,依次计算断面3-3、断面4-4、……,直至计算最远处的断面水深。
需要注意的是,与棱柱体水面线的计算方法一样,分段越多,精度也越高,但计算量也越大。
目录目录 (1常用水力计算Excel程序使用说明 (1一、引言 (1二、水力计算的理论基础 (11.枝状管网水力计算特点 (12.枝状管网水力计算步骤 (23.摩擦阻力损失,局部阻力损失和附加压头的计算方法 (2 3.1摩擦阻力损失的计算方法 (23.2局部阻力损失的计算方法 (33.3附加压头的计算方法 (4三、水力计算Excel的使用方法 (41.水力计算Excel的主要表示方法 (52.低压民用内管水力计算表格的使用方法 (52.1计算流程: (52.2计算模式: (62.3计算控制: (63.低压民用和食堂外管水力计算表格的使用方法 (73.1计算流程: (73.2计算模式: (73.3计算控制: (74.低压食堂内管水力计算表格的使用方法 (84.1计算流程: (84.2计算模式: (84.3计算控制: (95.中压外管水力计算表格的使用方法 (95.1计算流程: (95.2计算模式: (95.3计算控制: (106.中压锅炉内管水力计算表格的使用方法 (106.1计算流程: (106.2计算模式: (106.3计算控制: (11四、此水力计算的优缺点 (111.此水力计算的优点 (111.1.一个文件可以计算不同气源的水力计算 (111.2.减少了查找同时工作系数,当量长度的繁琐工作 (12 1.3.进行了计算公式的选择 (121.4.对某些小细节进行了简单出错控制 (122.此水力计算的缺点 (122.1不能进行环状管网的计算 (122.2没有采用下拉菜单等可操作性强的方式 (122.3没有将某些已有的管件压损计算公式模块嵌入计算表中 (122.4没有将气源性质计算公式计算表中 (12五、存在问题的改进 (13六、后记 (13常用水力计算Excel程序使用说明一、引言随着我国经济的迅猛发展,人们对居住环境及生活条件改善的需求更加迫切。
燃气以其高热值、低污染、使用方便、快捷等的优点正迅速代替其他燃料,成为城市居民及公共建筑、工业用户的主要燃料。
Excel 水力计算展示之 专题4. 棱柱体渠道水面线计算在工程中,仅对明渠恒定非均匀渐变流的水面曲线进行定性分析是不能满足要求的,还需要知道沿程各断面水力要素的改变情况,即要对水面曲线进行定量的计算和绘制。
水面曲线的计算结果可以预测水位的变化对两岸的影响,确定淹没范围,估算淹没损失等。
在工程中,最常用的方法是分段求和法。
基本公式如下:21s s s E E E l i J i J∆-∆==-- (4-1) 式中:1s E 、2s E 分别表示流段上、下游断面的断面比能;J 表示流段内的平均水力坡度;i 表示渠道的底坡;l ∆为流段长度。
流段的平均水力坡度J 一般采用以下方法计算:121()2J J J =+ (4-2)22Q J K=(4-3)流量模数平均值K 或2K 可用以下三种方法之一计算:(1) K = (4-4)式中:121()2A A A =+,121()2C C C =+,121()2R R R =+(2) 222121()2K K K =+ (4-5)(3)22212111()2K K K=+ (4-6) 用分段求和法计算水面曲线的基本方法,是先把渠道按水深划分为几个流段,然后计算每个流段的长度,逐段推算。
具体步骤如下:(1)分析判别水面曲线的类型;(2)确定控制断面,以控制断面的水深作为流段的第一已知水深1h ; (3)假设流段另一断面水深为21h h h =±∆,进行分段; (4)根据水深1h 和2h ,应用公式(4-1)求出第一流段长1l ∆;(5)将2h 作为下一流段的控制水深,重复以上计算,求出第二流段长2l ∆;依次类推,可求出3l ∆、4l ∆……,最后求得水面曲线全长1ni i l l ==∆∑ (4-7)(6)根据计算结果,按比例绘出水面曲线。
需要注意的是,分段越多,计算量越大,精度也越高。
【工程任务】有一长直的梯形断面棱柱体渠道,底宽20b =m ,边坡系数 2.5m =,糙率0.0225n =,底坡0.0001i =。
1.主要计算参数:
Φ25PE管的外径25mm
Φ25PE管的壁厚 2.3mm
Φ32PE管的外径32mm
Φ32PE管的壁厚3mm
Φ40PE管的外径40mm
Φ40PE管的壁厚 3.7mm
Φ50PE管的外径50mm
Φ50PE管的壁厚 4.6mm
Φ90PE管的外径90mm
Φ90PE管的壁厚8.2mm
DN32钢管的内径35.75mm
DN40钢管的内径41mm
DN125钢管的内径131mm
DN150钢管的内径156mm
DN200钢管的内径207mm
单个Φ25PEU型管中水的流量418.1kg/h171t/h,Φ25PE管共170*2+207/3=409路,假设每一路水PE管的当量绝对粗糙度k0.01mm《PE100聚乙烯管道应用于天然气中压主干管的分析》钢管的当量绝对粗糙度k0.2mm
7.5℃水的密度999.877kg/m3
32.5℃水的密度994.863kg/m3
7.5℃水的运动粘度 1.4E-06m2/s
32.5℃水的运动粘度7.6E-07m2/s
2.水力计算:
U型管与支管四种连接方式比较
第1组地埋管的冬季水力阻力(4口井同程并联)
上海沃特奇勒暖通工程有限公司 2012-12
7/3=409路,假设每一路水流量相同然气中压主干管的分析》。
水力计算图表:《水力计算图表》内容简要、图表清晰、查阅方便。
相关水力计算均按新的标准规范编写。
适用于给水排水工程、环境工程、房屋建筑、水利水电工程、污水处理、市政管道、暖通空调等领域的规划设计、施工、管理和决策人员使用,也可供厂矿企业及相关专业的大专院校师生参考。
内容提要:《水力计算图表》汇集了给水排水工程设计常用的水力计算图表。
内容包括给水工程用钢管、铸铁管、塑料管水力计算表,圆形断面钢筋混凝土输水管水力计算表;圆形、矩形、马蹄形、蛋形断面排水管道水力计算图,以及梯形明渠水力计算图;热水管、钢塑复合管、蒸汽与压缩空气管的流量与压力损失计算表等。
为充分发挥实用设计功能以及配合计算机辅助设计的应用,《水力计算图表》配置了上述所有水力计算图表的电子软件,可通过计算机准确、方便、快速地检索、查询和计算。
目录:一、给水管道水力计算1.钢管和铸铁管1.1计算公式1.2制表和使用说明1.3水力计算2.钢筋混凝土给水管2.1计算公式2.2水力计算3.塑料给水管3.1计算公式3.2编制和使用说明3.3水力计算二、排水沟道水力计算4.钢筋混凝土圆形排水管(满流,n=0.013)4.1计算公式4.2水力计算5.钢筋混凝土圆形排水管(非满流,n=0.014)5.1计算公式5.2水力计算图表及其使用说明6.矩形断面暗沟(满流,n=0.013)6.1计算公式6.2水力计算7.矩形断面暗沟(非满流,n=0.013)7.1计算公式7.2水力计算8.梯形断面明渠(n=0.025,m=1.5)8.1计算公式8.2水力计算图表及其使用说明9.马蹄形断面暗沟9.1马蹄形断面(Ⅰ型)暗沟9.2马蹄形断面(Ⅱ型)暗沟10.蛋形断面管道10.1计算公式10.2蛋形断面管道水力计算图表及其使用说明三、建筑给水排水水力计算11.水煤气管与热水管11.1水煤气管11.2热水管12.建筑给水钢塑复合管12.1计算公式12.2编制和使用说明12.3水力计算13.局部水头损失14.蒸汽、压缩空气管道压力损失计算14.1计算公式14.2有关压降计算的参数给水排水工程快速设计手册水力计算图表电子软件使用说明。
目录目录 (1)常用水力计算Excel程序使用说明 (1)一、引言 (1)二、水力计算的理论基础 (1)1.枝状管网水力计算特点 (1)2.枝状管网水力计算步骤 (2)3.摩擦阻力损失,局部阻力损失和附加压头的计算方法 (2)3.1摩擦阻力损失的计算方法 (2)3.2局部阻力损失的计算方法 (3)3.3附加压头的计算方法 (4)三、水力计算Excel的使用方法 (4)1.水力计算Excel的主要表示方法 (5)2.低压民用内管水力计算表格的使用方法 (5)2.1计算流程: (5)2.2计算模式: (6)2.3计算控制: (6)3.低压民用和食堂外管水力计算表格的使用方法 (7)3.1计算流程: (7)3.2计算模式: (7)3.3计算控制: (7)4.低压食堂内管水力计算表格的使用方法 (8)4.1计算流程: (8)4.2计算模式: (8)4.3计算控制: (9)5.中压外管水力计算表格的使用方法 (9)5.1计算流程: (9)5.2计算模式: (9)5.3计算控制: (10)6.中压锅炉内管水力计算表格的使用方法 (10)6.1计算流程: (10)6.2计算模式: (10)6.3计算控制: (11)四、此水力计算的优缺点 (11)1.此水力计算的优点 (11)1.1.一个文件可以计算不同气源的水力计算 (11)1.2.减少了查找同时工作系数,当量长度的繁琐工作 (12)1.3.进行了计算公式的选择 (12)1.4.对某些小细节进行了简单出错控制 (12)2.此水力计算的缺点 (12)2.1不能进行环状管网的计算 (12)2.2没有采用下拉菜单等可操作性强的方式 (12)2.3没有将某些已有的管件压损计算公式模块嵌入计算表中 (12)2.4没有将气源性质计算公式计算表中 (12)五、存在问题的改进 (13)六、后记 (13)常用水力计算Excel程序使用说明一、引言随着我国经济的迅猛发展,人们对居住环境及生活条件改善的需求更加迫切。
燃气以其高热值、低污染、使用方便、快捷等的优点正迅速代替其他燃料,成为城市居民及公共建筑、工业用户的主要燃料。
水力计算是我们管道燃气设计的基础,通过水力计算,我们可以更加清楚地认识到我们的设计是否安全可靠,是否经济合理,这样我们的设计质量就能够得到更好的保证。
通常的水力计算过程非常繁琐,设计人员在这上面如果花费太多时间,将会严重影响我们在工艺合理性的思考。
而Excel这个电子表格工具提供了比较方便的计算功能,这将在很大程度上节约我们的计算时间。
我的这个小程序主要有以下几个部分:1.低压民用内管水力计算;2.低压食堂内管水力计算;3.低压外管水力计算;4.中压锅炉水力计算;5.中压外管水力计算。
它的主要特点有:1.一个文件可以计算不同气源的水力计算,解决了原来一个计算表对应一种气源的情况,使得计算表减少了;2.减少了设计人员查找同时工作系数,当量长度的繁琐工作;3.进行了计算公式的选择,避免了人为选择公式带来的失误;4.对某些小细节进行了简单出错控制。
下面从以下几个方面进行说明:1.水力计算的理论基础;2.Excel程序的使用方法;3. 此水力计算的优缺点;4.存在问题的改进。
二、水力计算的理论基础我们日常用到的水力计算大部分是枝状管网的水力计算,因此本Excel小程序只编制了几种常用的枝状管网水力计算,分以下几个部分进行说明:1.枝状管网水力计算特点;2.枝状管网水力计算步骤;3.摩擦阻力损失和局部阻力损失的计算方法。
1.枝状管网水力计算特点枝状管网是由输气管段和节点组成。
任何形状的枝状管网,其管段数P和节点数m的关系均符合:1-=m P燃气在枝状管网中从气源至各节点只有一个固定流向,输送至某管段的燃气只能由一条管道供气,流量分配方案也是唯一的,枝状管道的转输流量只有一个数值,任一管段的流量等于该管段以后(顺气流方向)所有节点流量之和,因此每一管段只有唯一的流量值。
如图2-1所示,管段3-4的流量为:10985443q q q q q Q ++++=-管段4-8的流量为:109884q q q Q ++=-此外,枝状管网中变更某一管段的直径时,不影响管段的流量分配,只导致管道终点压力的改变。
因此,枝状管网水力计算中各管段只有直径i d 与压力降i P ∆两个未知数。
2. 枝状管网水力计算步骤⑴ 对管网的节点和管段编号。
⑵ 确定气流方向,从主干线末梢的节点开始,利用0=∑i Q 的关系,求得管网各管段的计算流量。
⑶根据确定的允许压力降,计算管线单位长度的允许压力降。
⑷根据管段的计算流量计单位长度允许压力降预选管径。
⑸根据计算选定的标准管径,求摩擦阻力损失和局部阻力损失,计算总的压力降。
⑹检查计算结果。
若总的压力降超出允许的精度范围,则适当变动管径,直至总压力降小于并趋近于允许值为止。
3. 摩擦阻力损失,局部阻力损失和附加压头的计算方法3.1摩擦阻力损失的计算方法根据《城镇燃气设计规范》(GB50028-93,2003版)附录A 燃气管道摩擦阻力计算A.0.1低压燃气管道根据燃气在管道中不同的运动状态,其单位长度的摩擦阻力损失采用下列各式计算:(1) 层流状态 :2100Re ≤ Re 64=λ 04101013.1T Td Q l P νρ⨯=∆(2) 临界状态:3500~2100Re = 510Re 652100Re 03.0--+=λ 052546)10231078.111(109.1T Td Q d Q d Q l P ρνν-⨯-+⨯=∆(3) 湍流状态:3500Re >1)钢管: 25.0)Re 68(11.0+=d K λ 05225.06)2.192(109.6T Td Q Q d d Kl P ρν+⨯=∆2)铸铁管: 284.0)51581(102236.0Q d d νλ+= 052284.06)51581(104.6T Td Q Q d d l P ρν+⨯=∆A.0.2中压燃气管道根据燃气在管道中不同的材质,其单位长度的摩擦阻力损失采用下列各式计算:1)钢管: 25.0)Re 68(11.0+=d K λ 05225.092221)2.192(104.1T T d Q Q d d KL P P ρν+⨯=-2)铸铁管: 284.0)51581(102236.0Q d d νλ+= 052284.092221)51581(103.1T T d QQ d d L P P ρν+⨯=-根据《聚乙烯燃气管道工程技术规程》(CJJ63-95)知,聚乙烯燃气管道单位长度的摩擦阻力计算和钢管公式一样,只是K=0.01.而钢管K=0. 153.2局部阻力损失的计算方法当燃气流经三通、弯头、变径管、阀门等管道附件时,由于几何边界的急剧改变,燃气流线的变化,必然产生额外的压力损失,称之为局部阻力损失。
在进行城市燃气管网的水力计算时,管网的局部阻力损失一般不逐项计算,可按然气管道摩擦阻力损失的5%~10%进行估算。
对于庭院管和室内管道及厂、站区域的燃气管道,由于管路附件较多,局部阻力损失所占比例较大,常需逐一计算。
局部阻力损失,可用下式求得:ρζ22u P ∑=∆式中 P ∆—局部阻力的压力损失(Pa );ζ∑—计算管段中局部阻力系数的总和;u —管段中燃气流速(s m /);ρ—燃气的密度(3/m kg )。
局部阻力损失也可用当量长度来计算,各种管件折成相同管径管段的当量长度2L ,各种管件当量长度2L 查《燃气热力工程常用数据手册》,实际工程中通常按当量长度计算局部阻力。
3.3附加压头的计算方法由于燃气与空气的密度不同,当管段始末段存在标高差值时,在燃气管道中将产生附加压头,其值由下式确定:H g P g a ∆-=∆)(ρρ式中 P ∆—附加压头(Pa );g —重力加速度;a ρ—空气的密度(3/Nm kg );g ρ—燃气的密度(3/Nm kg );H ∆—管段终端和始端的标高差值(m )。
计算室内燃气管道及地面标高变化相当大的室外或厂区的低压燃气管道,应考虑附加压头。
三、水力计算Excel 的使用方法主要分以下几个部分进行说明:1. 水力计算Excel 的主要表示方法;2. 低压民用内管水力计算使用方法;3. 低压民用和食堂外管水力计算表格的使用方法;4. 低压食堂内管水力计算使用方法;5. 中压外管水力计算使用方法;6. 中压锅炉内管水力计算使用方法。
1. 水力计算Excel 的主要表示方法在水力计算Excel 中已经编好了的水力计算表格中,大致有如下几种颜色的字体,当字体的颜色为红色时,表示这些数据或者名称需要我们的设计人员自己填入,比如说工程名称,设计编号,设计是采用的气源情况,管段的长度,等等在工程中的实际情况这些需要设计人员了解的原始数据,以及需要设计人员去做出选择的数据及情况,比如采用什么管材,管径的大小。
当字体的颜色为黑色时,表示这些数据或者名称在制作这些表格的时候已经作为固定模式固定下来了,不需要设计人员进行修改,因为这部分是通过在表格中编入了一些小公式,可以通过Excel 自动生成。
如果在表格中出现FALSE,则表示计算结果不满足设计要求,或者不满足某些规范条文的要求。
在单元格中如果用黄颜色进行了填充,则表示这个单元格的数据为计算结果,设计方案的合理性是通过这些数据来进行判断的。
2. 低压民用内管水力计算表格的使用方法计算流程:⑴ 选定最不利点,从该点开始编节点号和管段号直至矮立管。
⑵ 确定气流方向,从主干线末梢的节点开始,利用0=∑i Q 的关系,求得管网各管段的计算流量。
⑶根据确定的允许压力降,计算管线单位长度的允许压力降。
⑷根据管段的计算流量计单位长度允许压力降预选管径。
⑸根据计算选定的标准管径,求摩擦阻力损失和局部阻力损失,计算总的压力降。
⑹检查计算结果。
若总的压力降超出允许的精度范围,则适当变动管径,直至总压力降小于并趋近于允许值为止。
计算模式:如上图,民用户出现最不利情况有三种:1.对于天然气和人工煤气来说,整栋楼房都在使用燃气的时候,通常情况是距矮立管最远单元的最高层用户的压力最低,计算模型就是从这得出的;2.整栋楼房只有最上面一层用户在用的时候;3.当有架空管时,最低层的用户有可能出现压力最低值。
我的计算模型是建立在第1种最不利情况的,当然对于第2、3种情况也适用。
在计算表中,选择燃气种类将直接关系到计算结果,本计算表只能够识别人工煤气,液化气,天然气,混空气这四种名称,填入相应名称,计算表会选择相应的参数进行计算,具体参数如下:类型ρ燃气密度(kg/m3)υ燃气运动粘度(m2/s)燃气热值(Kcal/m3)人工煤气0.66 1.83E-05 3900天然气0.76 1.38E-06 8500液化气 2.36 3.04E-06 26000 混空气 1.83 4.94E-06 12942填入其它名称,计算表就会产生错误。