如何使用函数信号发生器
- 格式:doc
- 大小:588.00 KB
- 文档页数:3
VC2002函数信号发生器使用说明书VC2002是胜利公司生的一种精密的测试仪器。
它可以连续的输出正弦波,三角波和方波等函数波形。
它的频率和幅度均可连续调节。
本仪器是工程师、电子实验室、生产线及教学需配备的理想设备。
1.主要特征a.采用单片微处理器CPU控制整机运行和显示,智能化程度高,便于操作和使用。
b.采用了大规模的单片集成精密函数发生器,使得整机性能优越,性能价格比高。
c.采用大规模集成电路设计,保证仪器高可靠性和高稳定性。
2.技术参数a.输出频率:频率:0.2Hz – 2MHz,按每档十倍频程覆盖率分类,共分7档,具体频率如下:1档0.2Hz – 2Hz2档2Hz – 20Hz3档20Hz – 200Hz4档200Hz – 2KHz5档2KHz – 20KHz6档20KHz – 200KHz7档200KHz – 2MHzb.输出信号阻抗:50Ωc.输出信号波形:正弦波、三角波、方波d.输出信号幅度:(1MΩ负载)正弦波:不衰减(1Vp-p – 18Vp-p)±10% 连续可调衰减20dB(0.1Vp-p –1.8Vp-p)±10% 连续可调衰减40dB(10mVp-p – 180mVp-p)±10% 连续可调方波:不衰减(1Vp-p –20Vp-p)±10% 连续可调衰减20dB(0.1Vp-p – 2Vp-p)±10% 连续可调衰减40dB(10mVp-p – 200mVp-p)±10% 连续可调三角波:不衰减(1Vp-p –16Vp-p)±10% 连续可调衰减20dB(0.1Vp-p – 1.6Vp-p)±10% 连续可调衰减40dB(10mVp-p – 160mVp-p)±10% 连续可调说明:对于50Ω负载,数值应为上述值的二分之一。
e.函数输出占空比调节20% - 80% ±5% 连续可调。
函数信号发生器的使用方法规定1、目的:为操作人员作操作指导。
2、范围:适用于函数信号发生器操作人员。
3、操作步骤:3.1注意事项仪器在只使用“电压输出端”时应将“输出衰减”开关置于“0dB”~“80dB”内的位置,以免功率指示电压表指示过大而损坏。
3.2使用方法3.2.1开机:在未开机前应首先检查仪器外接电源是否为交流220V±10%,50Hz±5%,并检查电源插头上的地线脚应与在地接触良好,以防机壳带电。
面板上的电源开关应放在“关”位置,“电平调节”旋钮置中间,输出衰减旋钮置“0dB”,频段开关设置在你所需要的频段。
3.2.2频率选择:首先将频段开关设置在你所期望的频率范围内,然后调节频率调谐旋钮和频率微调旋钮,至数码管上指示你所需要的频率为止。
3.2.3波形选择:波形开关在“~”位置,可在电压输出端获得全频段的电压正弦信号,在功率输出端可获得20Hz~100kHz的功率输出;波形开关在“”位置,在电压输出端可获得全频段的电压方波信号。
输出衰减在功率输出端8Ω档同样可以获得20Hz~100kHz的方波功率输出。
3.2.4输出电压调整:电压输出端的输出电压可通过“电平调节”旋钮连续可调。
3.2.5功率输出调整:功率输出端的输出同由“电平调节”旋钮控制调节,并可通过“输出衰减”进行80 dB的衰减。
“输出衰减”控制开关上有8Ω和600Ω二档匹配档,用以匹配低阻和较高负载以获取最大输出功率。
3.2.6功率的平衡输出:本仪器600Ω功率输出档可进行平衡输出,方法是可将面板上中间红色接线柱和黑色接线柱之间的接地片取下,接在两个红色接线柱上即可,但本仪器连接的其它仪器也应不接在“地”电位。
函数信号发生器操作规程
一、注意事项
1、本仪器采用大规模集成电路,修理时禁用二芯烙铁,校准测试时,测量仪器
或其它设备的外壳应接地良好,以免意外损坏。
2、在更换保险丝时应切断电源,严禁带电操作。
3、简单故障可自己处理,重大故障及严重损坏与厂家联系维修。
4、使用前确认仪器的供电电源为AC220V。
二、使用方法
1、打开电源开关,调节旋纽,“关”为TTL电平,打开则为CMOS电平,输出幅
度可从5V到15V。
2、按函数输出波形选择按钮可选择正弦波、三角波、脉冲波输出。
3、按“扫描/计数“按钮可选择扫描方式和外测频方式。
4、仪器上的函数信号输出幅度衰减开关,“20dB”、“40dB”键均不按下,输出
信号不经衰减,直接输出到插座口。
“20dB”、“40dB”分别按下,则可选择20dB或40dB衰减。
同时按下时为60dB衰减。
5、由信号电平设定器选定输出信号所携带的直流电平。
6、由信号幅度选择器选定和调节输出信号的幅度。
7、由频率选择按钮选定输出函数信号的频段,由频率微调旋钮调整输出信号频
率,直到所需的工作频率值。
8、点频正弦信号输出端输出标准的正弦信号,频率为100Hz,幅度为2Vp-p
中心电平为0)
连云港远洋实业公司
2008.5.01。
函数信号发生器使用说明1-1 SG1651A函数信号发生器使用说明一、概述本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。
能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。
TTL可与主信号做同步输出。
还具有VCF输入控制功能。
频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。
二、使用说明面板标志说明及功能见表1和图1图1表1序面板标志名称作用号1电源电源开关按下开关,电源接通,电源指示灯亮21、输出波形选择波形波形选择2、与13、19配合使用可得到正负相锯齿波和脉DC1641数字函数信号发生器使用说明一、概述DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。
信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。
信号的最大幅度可达20Vp-p。
脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。
并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。
除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。
计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。
读数直观、方便、准确。
二、技术要求函数发生器产生正弦波、三角波、方波、锯齿波和脉冲波。
2.1.1函数信号频率范围和精度a、频率范围由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度,如下所示:频率档级频率范围(Hz)1 ~210 1~20100 10~2001K 100~2K10K 1K ~20K100K 10K ~200K1M 100K ~2M频率显示方式:LCD显示,发光二极管指示闸门、占空比、直流偏置、电源。
函数发生器(使用手册)5.面板介绍.控制按钮和指示灯说明1)PWR(电源开关)为函数发生器电源控制。
2)PWR ON(电源开关指示器)显示电源之开关状态。
3)RANGE(档位开关)有7个频率范围按键提供频率选择,每档位为10倍增。
每个频率范围按键皆为互锁设定,按下其中一个,便会自动解除其余按键。
4)FUNCTION(波形选择开关)三个互相锁定的按键可供选择需要的输出波形。
按一个开关即可将先前的设定解除。
可提供的波形有方波、三角波和正弦波,以满足大多数的应用。
5)频率调整旋钮提供在各档位的频率范围之内调整所需之频率。
虽然从刻度0.2,而频率旋钮的动态范围则是1000:1。
例如,不改变频率档位(置于100K),而设定输出信号频率会在200KHZ和200HZ之间。
6)DUTY(波形对称旋钮)输出小型及TTL脉冲输出的周期对称性由DUTY旋钮控制。
当此旋钮置于CAL位置时,输出波形的时间对称比是50/50或近似于100%的对称。
可变对称可经由不同频率范围(RANGE)和频率调整来设定,先将其中一半波形固定不变,再由SUTY调整旋钮调整另一半波形的周期来达成不同脉冲宽度。
这个独特的特性可产生斜波,可变脉冲宽度和可变对称周期的脉冲波及为对称的正弦波。
7)DUTYINV(反相开关)此按钮可将原来DUTY钮所设定的波形的有效周期改变成反相。
表5-1图解说明了INV开关和DUTY旋钮作用。
8)DCOFFSET(直流偏移量)DCOFFSET旋钮拉左起状态时,具有直流准位的功能,可用心调整输出波形的直流准位。
9)AMPL/-20dB(输出衰减及振幅调整钮)本旋钮可连续调整输出波形到20dB衰减及调整振幅。
若将此旋钮拉出,则输出再衰减20dB。
10)ATT(衰减)按下此键将输出信号衰减20dB,输出最大衰减可达40dB。
11)OUTPUT(输出端子)在输出端子(开路)可输出振幅高达20Vpp的方波、三角波、正弦波、斜波及脉冲波。
任务3 使用函数信号发生器函数信号发生器是一种多波形信号源,能够输出正弦波、方波、三角波、锯齿波等多种波形的信号,其输出波形均可用数学函数来描述,所以称为函数信号发生器。
函数信号发生器的输出频率范围很宽,一般可从几赫至几十兆赫。
由于函数信号发生器具有以上特点,它在很多情况下能够替代正弦信号发生器、脉冲信号发生器等,在生产、测试、维修和实验等工作中得到越来越广泛的应用。
本任务分别要求输出三种不同频率、幅度的波形,可采用函数信号发生器来实现。
EE1641C型函数信号发生器是一款广泛使用的函数信号发生器。
1. EE1641C型函数信号发生器的外形EE1641C型函数信号发生器的外形如图2-3-1 所示。
图2-3-1 EE1641C型函数信号发生器的外形【任务分析】【认识仪器】2. EE1641C型函数信号发生器的面板EE1641C型函数信号发生器的面板如图2-3-2 所示,各部件的功能见表2-3-1。
输入输出端子频率与幅度显示窗口选择按键与调节旋钮图2-3-2 EE1641C型函数信号发生器的面板表2-3-1 EE1641C型函数信号发生器面板各部件的功能部件功能频率显示窗口显示输出信号或外测信号的频率,其中,左侧显示信号波形,右侧显示信号频率的单位,下方为当前所选的频段指示灯幅度显示窗口显示输出信号的幅度,右侧显示输出信号的幅度单位和类型,下方为当前所选的输出衰减指示灯频率微调旋钮改变输出频率的 1 个频程内的频率范围占空比旋钮改变输出信号的对称性。
当此旋钮处在中心位置或关闭位置时,输出对称信号直流电平旋钮幅度调节旋钮扫描宽度/调制度旋钮扫描速率旋钮CMOS 电平调节旋钮频挡选择按键续表波形选择按键衰减选择按键幅值选择按键方式选择按键单脉冲按键电源开关按键外部输入端子函数输出端子同步输出端子单次脉冲端子点频输出端子(选件)功率输出端子(选件)3. EE1641C型函数信号发生器的性能指标EE1641C型函数信号发生器的性能指标见表2-3-2。
函数信号发生器的实现方法和使用方法信号发生器是如何工作的函数信号发生器是一种可以供应精密信号源的仪器,也就是俗称的波形发生器,最基本的应用就是通过函数信号发生器产生正弦波/方波/锯齿波/脉冲波/三角波等具有一函数信号发生器是一种可以供应精密信号源的仪器,也就是俗称的波形发生器,最基本的应用就是通过函数信号发生器产生正弦波/方波/锯齿波/脉冲波/三角波等具有一些特定周期性(或者频率)的时间函数波形来供大家作为电压输出或者功率输出等,它的频率范围跟它本身的性能有关,一般情况上都是可以从几毫赫甚至几微赫,甚至还可以显示输出超低频直到几十兆赫频率的波形信号源。
下面,大家就和我来了解一下它吧!函数信号发生器的实现方法:(1)用分立元件构成的函数发生器:通常是单函数发生器且频率不高,其工作不很稳定,不易调试。
(2)可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。
早期的函数信号发生器IC,如L8038、BA205、XR2207/2209等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调整方式也不够快捷,频率和占空比不能独立调整,二者相互影响。
(3)利用单片集成芯片的函数发生器:能产生多种波形,达到较高的频率,且易于调试。
鉴于此,美国美信公司开发了新一代函数信号发生器ICMAX038,它克服了(2)中芯片的缺点,可以达到更高的技术指标,是上述芯片望尘莫及的。
MAX038频率高、精度好,因此它被称为高频精密函数信号发生器IC。
在锁相环、压控振荡器、频率合成器、脉宽调制器等电路的设计上,MAX038都是优选的器件。
(4)利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并达到很高的频率。
但成本较高。
产生所需参数的电测试信号仪器。
按其信号波形分为四大类:①正弦信号发生器。
紧要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。
按其不同性能和用途还可细分为低频(20赫至10兆赫)信号发生器、高频(100千赫至300兆赫)信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器等。
函数信号发生器使用方法
函数信号发生器是一种用于产生各种波形信号的电子设备。
以下是使用函数信号发生器的一般步骤:
1. 首先,确保函数信号发生器与所需设备(如示波器、测试测量仪器等)连接正确。
通常,函数信号发生器具有一个输出端口,您需要使用合适的电缆将其连接到设备上。
2. 打开函数信号发生器的电源,并设置所需的输出波形类型。
函数信号发生器可提供多种波形选择,如正弦波、方波、三角波、锯齿波等。
3. 设置所需的频率或周期。
函数信号发生器可根据需要产生不同频率的信号。
您可以使用仪器的旋钮或按键设置所需的频率或周期。
4. 调整幅度或幅值。
函数信号发生器还可以调整信号的幅度或幅值。
您可以根据需要增加或减少信号的振幅。
5. 可选地,您还可以设置相位或延迟。
某些函数信号发生器还可以调整信号的相位或延迟。
这可以用于对不同信号进行时间校准或调整。
6. 当设置完成后,您可以将函数信号发生器的输出端口连接到所需的设备上,并调整设备上的任何其他参数以适应您的实验需求。
7. 最后,您可以检查连接和调整设备以确保它们按预期工作。
使用示波器或其他测试测量仪器观察产生的信号,并根据需要对设置进行微调。
请注意,具体的函数信号发生器型号和使用方法可能会有所不同,因此最好参考所使用的设备的用户手册以获取详细说明。
函数信号发生器实验报告函数信号发生器实验报告引言函数信号发生器是一种广泛应用于电子实验室中的仪器设备,用于产生各种形式的电信号。
本实验旨在通过对函数信号发生器的使用和实验验证,进一步了解信号发生器的原理和应用。
一、实验目的本实验的主要目的是:1. 熟悉函数信号发生器的基本操作;2. 掌握函数信号发生器产生不同形式信号的方法;3. 通过实验验证信号发生器的输出特性。
二、实验原理函数信号发生器是一种能够产生各种形式信号的仪器,其基本原理是通过内部电路将直流电压转换为不同形式的交流信号。
常见的信号形式包括正弦波、方波、三角波等。
三、实验步骤1. 打开函数信号发生器的电源,并将输出连接到示波器的输入端。
2. 调节函数信号发生器的频率、幅度和偏置等参数,观察示波器上的波形变化。
3. 逐步调节函数信号发生器的参数,产生不同形式的信号,并记录下相应的参数设置和观察结果。
4. 将函数信号发生器的输出连接到其他电路中,观察信号在不同电路中的响应情况。
四、实验结果与分析在实验过程中,我们通过调节函数信号发生器的频率、幅度和偏置等参数,成功产生了正弦波、方波和三角波等不同形式的信号。
通过示波器观察到的波形,我们可以看出不同形式的信号在频率和振幅上的差异。
在进一步的实验中,我们将函数信号发生器的输出连接到其他电路中,例如放大电路和滤波电路。
观察到信号在不同电路中的响应情况,我们可以了解到信号发生器在实际应用中的作用和效果。
五、实验总结通过本次实验,我们对函数信号发生器的基本操作和原理有了更深入的了解。
我们学会了如何通过调节函数信号发生器的参数来产生不同形式的信号,并通过连接到其他电路中观察信号的响应情况。
在实验过程中,我们也遇到了一些问题和困难,例如在调节参数时需要注意避免过大的幅度和频率,以免对电路和仪器造成损坏。
此外,我们还需要注意信号发生器的精度和稳定性,以保证实验结果的准确性。
通过本次实验,我们进一步认识到函数信号发生器在电子实验中的重要性和广泛应用。
函数信号发生器的使用函数信号发生器是一种用于产生各种类型信号的电子设备。
它可以产生正弦波、方波、三角波等各种波形,可以调节频率、幅度、相位等参数,广泛应用于电子、通信、测量等领域。
本文将介绍函数信号发生器的基本原理、使用方法以及注意事项。
一、函数信号发生器的基本原理函数信号发生器是由振荡器、放大器、滤波器等电路组成的。
其中振荡器是最核心的部分,它产生原始的信号波形。
振荡器的基本原理是利用反馈电路实现自激振荡。
反馈电路将一部分输出信号送回到输入端,形成正反馈,使得振荡器产生周期性的振荡。
振荡器的频率由反馈电路和外部电路共同决定。
函数信号发生器的放大器和滤波器主要是为了增强信号的幅度和滤除杂波。
放大器将振荡器产生的信号放大到足够的幅度,以便于后续的处理和使用。
滤波器则可以滤除信号中的高频成分和噪声,使得信号更加稳定和准确。
二、函数信号发生器的使用方法函数信号发生器的使用方法比较简单,主要是设置频率、幅度、相位等参数,选择波形类型,连接到被测电路中。
下面将详细介绍函数信号发生器的使用步骤。
1. 首先,将函数信号发生器接通电源,打开电源开关。
2. 选择所需要的波形类型,可以是正弦波、方波、三角波等。
3. 设置信号的频率。
一般情况下,函数信号发生器的频率范围比较广,可以设置从几赫兹到几百兆赫的频率。
频率的设置可以通过旋钮、按键或者数字输入方式完成。
4. 设置信号的幅度。
幅度是指信号的电压大小,一般可以设置为几毫伏到几十伏不等。
幅度的设置也可以通过旋钮、按键或者数字输入方式完成。
5. 设置信号的相位。
相位是指信号的时间延迟或提前量,一般可以设置为0度到360度不等。
相位的设置也可以通过旋钮、按键或者数字输入方式完成。
6. 连接函数信号发生器到被测电路中。
连接方式可以使用万用表、示波器等测试仪器,也可以直接连接到被测电路的输入端。
7. 调节信号的参数,观察被测电路的响应情况。
如果需要调节信号参数,可以反复进行上述步骤。
如何使用函数信号发生器
认识函数信号发生器
信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。
众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发.
这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。
同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下:
当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。
再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。
同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。
而在占空比调整上的设计有下列两种思路:
改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。
但不容否认的在使用上比较好调。
2、占空比变,频率跟着改变,其方法如下:
将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。
这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。
以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。
接下来PA(功率放大器)的设计。
首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。
PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。
(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。
一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设
计方式在此也顺便一提:
1. 扫频:一般分成线性(Lin)及对数(Log)扫频;
2. VCG:即一般的FM,输入一音频信号,即可与信号源本身的信号产生频率调制;
上述两项设计方式,第1项要先产生锯齿波及对数波信号,并与第2项的输入信号经过多路器(Multiplexer)选择,然后再经过电压对电流转换电路,同步地去加到图二中的I1、I2上;
3. TTL同步输出:将方波经三极管电路转成0(Low)、5V(High)的TTL信号即可。
但注意这样的TTL信号须再经过缓冲门(buffer)后才能输出,以增加扇出数(Fan Out),通常有时还并联几个buffer。
而TTL INV则只要加个NOT Gate即可;
4. TRIG功能:类似One Shot功能,输入一个TTL信号,则可让信号源产生一个周期的信号输出,设计方式是在没信号输入时,将图二的SWI接地即可;
5. Gate功能:即输入一个TTL信号,让信号源在输入为Hi时,产生波形输出,直到输入为LOW时,图二SWI接地而关掉信号源输出;
6. 频率计:除市场上简易的刻度盘显示之外,无论是LED数码管或LCD液晶显示频率,其与频率计电路是重叠的.
2. 任意波形发生器,仿真实验的最佳仪器
任意波形发生器是信号源的一种,它具有信号源所有的特点。
我们传统都认为信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在电子实验和测试处理中,并不测量任何参数而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。
信号源有很多种,包括正弦波信号源,函数发生器、脉冲发生器、扫描发生器、任意波形发生器、合成信号源等。
一般来讲任意波形发生器,是一种特殊的信号源,综合具有其它信号源波形生成能力,因而适合各种仿真实验的需要。
一、函数功能,仿真基础实验室设计人员的环境
函数信号源是使用最广的通用信号源,它能提供正弦波、锯齿波、方波、脉冲串等波形,有的还同时具有调制和扫描能力,众所周知,在我们的基础实验中(如大学电子实验室、科研机构研究实验室、工厂开发实验室等),我们设计了一种电路,需要验证其可靠性与稳定性,就需要给它施加理想中的波形以辨别真伪。
如我们可使用信号源的DC补偿功能对固态电路控制DC偏压电平;我们可对一个怀疑有故障的数字电路,利用信号源的方波输出作为数字电路的时钟,同时使用方波加DC补偿产生有效的逻辑电平模拟输出,观察该电路的运行状况,而证实故障缺陷的地方。
总之利用任意波形发生器这方面的基础功能,能仿真您基础实验室所必须的信号。
二、任意波形,仿真模拟更复杂的信号要求
众所周知,在我们实际的电子环境所设计的电路在运行中,由于各种干扰和响应的存在,实际电路往往存在各种信号缺陷和瞬变信号,例如过脉冲、尖峰、阻尼瞬变、频率突变等(见图1,图2),这些情况的发生,如在设计之初没有考虑进去,有的将会产生灾难性后果。
例如图1中的a 处过尖峰脉冲,如果给一个抗冲能力差的电路,将可能会导致整个设备“烧坏”。
确认电路对这样一个状况敏感的程度,我们可以避免不必要的损失,该方面的要求在航天、军事、铁路和一些情况比较复杂的重要领域尤其重要。
由于任意波形发生器特殊的功能,为了增强任意波形生成能力,它往往依赖计算机通讯输出波形数据。
在计算机传输中,通过专用的波形编辑软件生成波形,有利于扩充仪器的能力,更进一步仿真模拟实验。
同时由于编辑一个任意波形有时需要花费大量的时间和精力,并且每次编辑波形可能有所差异这样有的任意波形发生器,内置一定数量的非易失性存储器,随机存取编辑波形,有利于参考对比;或通过随机接口通讯传输到计算机作更进一步分析与处理。
三、下载传输,更进一步实时仿真
在一些军事、航空、交通制造业等领域中,有些电路运行环境很难估计,在实验设计完成之后,在现实环境还需要作更进一步实验,有些实验的成本很高或者风险性很大(如火车高速实验时铁轨变换情况、飞机试机时螺旋桨的运行情况等),人们不可能长期作实验判断所设计产品(例如高速火车、飞机)的可行性和稳定性等;我们就可利用有些任意波形发生器波形下载功能,在作一些麻
烦费用高或风险性大的实验时,通过数字示波器等仪器把波形实时记录下来,然后通过计算机接口传输到信号源,直接下载到设计电路,更进一步实验验证。
综上所述,任意波形发生器是电子工程师信号仿真实验的最佳工具。
我们选购时除关心传统信号源的缺陷——频率精度、频率稳定度、幅度精度、信号失真度外,更应关心它编辑与波形生存和下载能力,同时也要注意它的输出通道数,以便同步比较两信号的相移特性,更进一步达到仿真实验状态。