7107数字电压表的制作
- 格式:doc
- 大小:106.00 KB
- 文档页数:2
. . .. . .电子制作课程考核报告课程名称电子制作学生鑫学号1213014048所在院(系) 物理与电信工程学院专业班级电子1202指导教师伟完成地点501#高频实验室2014年6月10 日目录一. 摘要 (2)二.课程设计任务与要求 (2)2.1设计目的 (2)2.2设计要求 (2)三.总体设计思路 (2)3.1方案选择 (2)3.2系统框图 (3)四.课程设计框图及工作原理 (4)4.1 工作原理 (4)4.2 ICL7107的工作原理 (5)4.3 ICL7107 安装电压表头时的一些要点 (8)4.4 关于多量程电路部分 (10)五.电路设计与仿真 (12)六. 系统调试及结果分析 (13)6.1调试仪器 (13)6.2 调试方法 (13)6.3 测试结果分析 (13)6.4 硬件实物图 (13)七.元器件清单 (14)八.设计心得体会 (14)九.参考文献 (14)一.摘要数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等领域,显示出强大的生命力。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本章重点介绍单片A/D 转换器以及由它们构成各种新型数字电压表的工作原理。
二.课程设计任务与要求2.1、设计目的1、了解双积分式A/D转换器的工作原理2、熟悉A/D转换器ICL7107的性能及其引脚功能3、掌握用ICL7107构成直流数字电压表的方法2.2、设计要求1、采用课程或实验容中所使用的元器件,设计一个三位半数字电压表,三位半是指个位、十位、百位的围为0-9,而千位只有0和1两个状态,称为半位。
所以数字电压表测量围为0001-1999。
7107是一块直流电压表,要想测交流电,需先把交流转换成直流本电路中,输入的是0~200.0mV 的交流信号,输出的是0~200.0mV 的直流信号,从信号幅度来看,并不要求电路进行任何放大,但是,正是电路本身具有的放大作用,才保证了其几乎没有损失地进行AC -DC 的信号转换。
因此,这里使用的是低功耗的高阻输入运算放大器,其不灵敏区仅仅只有2mV 左右,在普通数字万用表中大量使用,电路大同小异ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第40 引脚。
(1 脚与40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是DC5V 。
第36 脚是基准电压,正确数值是100mV,第26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成"0"信号输入,以方便测试。
3.注意芯片27,28,29 引脚的元件数值,它们是0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的33 和34 脚接的104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是21 脚,模拟地是32 脚,信号地是30 脚,基准地是35 脚,通常使用情况下,这4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V 供电就可以解决问题。
数字电压表电路ICL7107ICL7107.7106pdf资料下载ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。
(1 脚与 40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。
第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。
比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。
(1 脚与 40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。
第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。
比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
数字电压表电路ICL7107ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第40 引脚。
(1 脚与40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是DC5V 。
第36 脚是基准电压,正确数值是100mV,第26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片27,28,29 引脚的元件数值,它们是0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的33 和34 脚接的104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是21 脚,模拟地是32 脚,信号地是30 脚,基准地是35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V 供电就可以解决问题。
比较常用的方法是利用ICL7660 或者NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片38 脚的振荡信号串接一个20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
西安电子科技大学长安学院课程设计设计题目:数字电压表的仿真与设计学院:长安学院系别:电子工程专业:电子科学与技术:班级:06521学号:06521002姓名:***指导老师:王勇目录一. 摘要 (2)二.课程设计任务与要求 (2)2.1设计目的 (2)2.2设计要求 (2)三.总体设计思路 (3)3.1方案选择 (3)3.2系统框图 (3)四.课程设计框图及工作原理 (4)4.1 工作原理 (4)4.2 ICL7107的工作原理 (5)4.3 ICL7107 安装电压表头时的一些要点 (8)4.4 关于多量程电路部分 (10)五.电路设计与仿真 (12)六.系统调试及结果分析 (13)6.1调试仪器 (13)6.2 调试方法 (13)6.3 测试结果分析 (13)6.4 硬件实物图 (13)七.元器件清单 (14)八.设计心得体会 (14)九.参考文献 (14)一.摘要数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等领域,显示出强大的生命力。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本章重点介绍单片A/D 转换器以及由它们构成各种新型数字电压表的工作原理。
数字电压表具有以下九大特点:1. 显示清晰直观,读数准确2. 准确度高3. 分辨率高4. 测量范围宽5. 扩展能力强6. 测量速率快7.输入阻抗高8. 集成度高,微功耗9. 抗干扰能力强二.课程设计任务与要求2.1、设计目的1、了解双积分式A/D转换器的工作原理2、熟悉A/D转换器ICL7107的性能及其引脚功能3、掌握用ICL7107构成直流数字电压表的方法2.2、设计要求1、设计一个数字电压表电路。
数字电压表电路ICL7107ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第40 引脚。
(1 脚与40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是DC5V 。
第36 脚是基准电压,正确数值是100mV,第26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片27,28,29 引脚的元件数值,它们是0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的33 和34 脚接的104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是21 脚,模拟地是32 脚,信号地是30 脚,基准地是35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V 供电就可以解决问题。
比较常用的方法是利用ICL7660 或者NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片38 脚的振荡信号串接一个20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
数字电压表电路ICL7107ICL7107.7106pdf资料下载ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。
(1 脚与 40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。
第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第 31 引脚是信号输入引脚,可以输入 ±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片 27,28,29 引脚的元件数值,它们是0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。
比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
7107是一块直流电压表,要想测交流电,需先把交流转换成直流本电路中,输入的是0~200.0mV 的交流信号,输出的是0~200.0mV 的直流信号,从信号幅度来看,并不要求电路进行任何放大,但是,正是电路本身具有的放大作用,才保证了其几乎没有损失地进行AC -DC 的信号转换。
因此,这里使用的是低功耗的高阻输入运算放大器,其不灵敏区仅仅只有2mV 左右,在普通数字万用表中大量使用,电路大同小异ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第40 引脚。
(1 脚与40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是DC5V 。
第36 脚是基准电压,正确数值是100mV,第26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成"0"信号输入,以方便测试。
3.注意芯片27,28,29 引脚的元件数值,它们是0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的33 和34 脚接的104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是21 脚,模拟地是32 脚,信号地是30 脚,基准地是35 脚,通常使用情况下,这4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V 供电就可以解决问题。
7107数字电压表的制作
ICL7107是一块应用非常广泛的集成电路。
它包含3 1/2位数字A/D转换器,可直接驱动LED数码管,内部设有参考电压、独立模拟开关、逻辑控制、显示驱动、自动调零功能等。
这里我们介绍一种她的典型应用电路--数字电压表的制作。
其电路如附图。
制作时,数字显示用的数码管为共阳型,2K可调电阻最好选用多圈电阻,分压电阻选用误差较小的金属膜电阻,其它器件选用正品即可。
该电路稍加改造,还可演变出很多电路,如数显电流表、数显温度计等,以后陆续介绍。
1:用晶振生成时钟信号给7107
2:时钟信号频率是50HZ的偶数倍
只要注意到这两点,一般就不会跳了。
我的7107表头是一个子都不跳的,用的是4M晶振加CD4060振荡分频生成的125KHz频率。
不仅仅是7107表头,我用7135做的4位半表头也是一个字都不跳的,用的也是晶振分频生成的125KHz频率。
如果是成品PCB组装的7107表头,最简单的加晶振的方法就是到市场上找100K的低频率晶振,然后参考下图连接:
当然,如果PCB上空间允许,用CD4060的典型电路配合2M或者4M的高频晶振然后再分频出来125KHz,效果会更好更稳定一些。
数字电压表电路ICL7107ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第40 引脚。
(1 脚与40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是DC5V 。
第36 脚是基准电压,正确数值是100mV,第26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片27,28,29 引脚的元件数值,它们是0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的33 和34 脚接的104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是21 脚,模拟地是32 脚,信号地是30 脚,基准地是35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V 供电就可以解决问题。
比较常用的方法是利用ICL7660 或者NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片38 脚的振荡信号串接一个20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
数字电压表的设计与制作摘要设计了以 ICL7107 为核心的数字电压表,实现对 0~1000V 电压的测量。
采用 四位数码管显示,具有显示亮度高,读数方便等特点。
本系统设计了自动切换量 程功能,能实现 0~200mV,0~2V,0~20V,0~200V,0~1000V,共 5 个量程电压 值的测量。
关键词:ICL7107,电压表,多量程AbstractICL7107 as the core digital voltmeter, 0 ~ 1000V voltage measurement. Four digital display and high brightness display, easy reading. System design automatically switch range features can achieve 0 ~ 200mV, 0 ~ 2V, 0 ~ 20V, 0 ~ 200V 0 ~ 1000V, 5 scale voltage value measurement. Keyword:ICL7107 , voltmeter, multi-range1 方案设计与论证1.1 方案设计本文设计的电压表是一个三位半直流电压测量数字式电压表,采用 ICL7107 集成芯片,该芯片集成了 A/D 转换及锁存和译码模块,使得电路具有设计简单, 集成度及可靠性高的特点。
本系统可分为测试电压转换、模拟电压通道、A/D 转 换及译码锁存、显示、超欠量程识别和量程切换及小数点驱动 6 部分。
1.2 双积分测量原理双积分型 A/D 转换器 ICL7107 是一种间接 A/D 转换器。
它通过对输入模拟 电压和参考电压分别进行两次积分, 将输入电压平均值变换成与之成正比的时间 间隔,然后利用脉冲时间间隔,进而得出相应的数字性输出。
它的原理性框图如图 1 所示,它包括积分器、比较器、计数器,控制逻辑和 时钟信号源。
数字电压表(ICL7107)做了一款数字电压表,发现网上发表好多原理图都是有错误,会误导电子爱好者。
今天逛了下电子市场买了套数字表头外壳,想做成个市场上有卖很实用的表头。
把制作全过程共享给大家。
并提供套件给初学者.ICL7107引脚图如下:这是2种封装的引脚图,40PIN直插封装的使用普遍一些,买起来方便。
ICL7107是高性能、低功耗的三位半A/D转换器电路,它包含有七段译码器、显示驱动器、系统时钟等,并且ICL7107可以直接驱动共阳数码管。
实体图如下:芯片正面小圆点对应的是芯片的1脚,按照反时针方向去走,依次是第 2 至第 40 引脚。
安装的时候一定要注意。
整理一下原理图,如下:电子市场买的表头框:做好的PCB:配齐元件,准备焊接测试:开始焊接了,这时候要注意焊接的顺序,否则个别元件不好焊的。
首先:将40PIN的IC座处理一下,如下图:然后将IC座插入PCB,并焊好。
接着焊C2和C4的位置,并将这2个电容卧倒安装!再下来焊4个共阳的0.56英寸的数码管,注意不要焊反。
剩下元件的顺序没什么讲究,想焊哪个就焊哪个。
焊完后就变成这样了,如下:将ICL7107插入IC座,注意方向。
将自制的可调电源调到5V,接入表头。
用万用表测量ICL7107的26脚电压应该为-2.5 ~ -4V,因为D5,D6,C6,C7,R8,R9,Q1,L1组成负电压产生电路,如果没有这个负电压,显示就会出错。
接着就要调ICL7107的36脚电压,这是给IC的基准电压,调整VR1可调电位器,使36脚电压为100mV。
在标准电压源未接入的情况下,数码管应该显示000,有可能最后一位会跳到1,那就要看看你的手是不是直接拿的PCB了,是的话就把表头装进壳里再看显示。
将标准电压源调整到一个固定值,此时显示的电压值和标准电压源的电压值不一样,调整VR2使显示正确。
再将标准电压源调整到其他值,看表头显示是否正确。
反复调整,至其线性显示在接受范围。
数字电压表电路ICL7107ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。
(1 脚与 40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。
第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。
比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
数字电压表电路ICL7107ICL7107安装电压表头时的一些要点:按照测量=±199.9mV来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第2至第40引脚。
(1脚与40脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是DC5V。
第36脚是基准电压,正确数值是100mV,第26引脚是负电源引脚,正确电压数值是负的,在-3V至-5V都认为正常,但是不能是正电压,也不能是零电压。
芯片第31引脚是信号输入引脚,可以输入±199.9mV的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片27,28,29引脚的元件数值,它们是0.22uF,47K,0.47uF阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的33和34脚接的104电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是21脚,模拟地是32脚,信号地是30脚,基准地是35脚,通常使用情况下,这4个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30脚或35脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用7905等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V供电就可以解决问题。
比较常用的方法是利用ICL7660或者NE555等电路来得到,这样需要增加硬件成本。
我们常用一只NPN三极管,两只电阻,一个电感来进行信号放大,把芯片38脚的振荡信号串接一个20K -56K的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V- 2.8V为最好。
7107数字电压表的制作
ICL7107是一块应用非常广泛的集成电路。
它包含3 1/2位数字A/D转换器,可直接驱动LED数码管,内部设有参考电压、独立模拟开关、逻辑控制、显示驱动、自动调零功能等。
这里我们介绍一种她的典型应用电路--数字电压表的制作。
其电路如附图。
制作时,数字显示用的数码管为共阳型,2K可调电阻最好选用多圈电阻,分压电阻选用误差较小的金属膜电阻,其它器件选用正品即可。
该电路稍加改造,还可演变出很多电路,如数显电流表、数显温度计等,以后陆续介绍。
1:用晶振生成时钟信号给7107
2:时钟信号频率是50HZ的偶数倍
只要注意到这两点,一般就不会跳了。
我的7107表头是一个子都不跳的,用的是4M晶振加CD4060振荡分频生成的125KHz频率。
不仅仅是7107表头,我用7135做的4位半表头也是一个字都不跳的,用的也是晶振分频生成的125KHz频率。
如果是成品PCB组装的7107表头,最简单的加晶振的方法就是到市场上找100K的低频率晶振,然后参考下图连接:
当然,如果PCB上空间允许,用CD4060的典型电路配合2M或者4M的高频晶振然后再分频出来125KHz,效果会更好更稳定一些。