2016诺贝尔生理学或医学奖研究项目概述
- 格式:pptx
- 大小:740.02 KB
- 文档页数:6
端粒与端粒酶的研究解读诺贝尔生理学或医学奖一、本文概述自人类踏入科学研究的领域以来,生命的奥秘一直是科学家们孜孜不倦探索的主题。
作为生命科学的两大支柱之一,医学领域的研究进展对人类生活的影响深远而持久。
每年的诺贝尔生理学或医学奖揭晓,都会引发全球范围内的广泛关注,因为它不仅代表了该领域最前沿的科学成果,更预示了未来医学可能的突破方向。
本文将以诺贝尔生理学或医学奖为背景,深入探讨端粒与端粒酶的研究,解读这一重大科学奖项背后的科学意义和影响。
端粒和端粒酶是生物学中的两个重要概念,它们在细胞生物学、分子生物学和遗传学等领域有着广泛的应用。
端粒是真核生物染色体末端的特殊结构,具有保护染色体末端、防止染色体融合和降解的重要作用。
而端粒酶则是一种特殊的逆转录酶,能够合成端粒DNA,从而维持端粒的长度和稳定性。
近年来,随着对端粒和端粒酶研究的深入,科学家们发现它们在细胞衰老、癌症发生和发展等方面扮演着重要的角色,因此,对端粒与端粒酶的研究不仅具有重要的理论价值,也具有广阔的应用前景。
本文将从端粒与端粒酶的基本概念入手,详细介绍它们在生物学中的重要作用,回顾相关的科学发展历程,并重点解读近年来诺贝尔生理学或医学奖中涉及端粒与端粒酶的重要研究成果。
通过对这些成果的深入分析和解读,我们希望能够更好地理解端粒与端粒酶在生命科学中的地位和价值,同时也为未来的医学研究提供新的思路和方法。
二、端粒与端粒酶的基本概念端粒,也被称为端区或端粒DNA,是真核细胞线性染色体末端的特殊结构。
它们像一顶帽子,保护着染色体的末端,防止其受到损伤或与其他染色体发生融合。
端粒的存在对于维持染色体的完整性和稳定性至关重要。
端粒主要由重复的非编码DNA序列组成,这些序列在染色体末端形成特定的结构,从而起到保护作用。
端粒酶则是一种特殊的逆转录酶,能够合成端粒DNA。
其主要功能是在端粒DNA受到损伤或缩短时,通过添加重复的DNA序列来修复端粒,从而保持染色体的稳定性和长度。
2016年诺贝尔医学生理学奖2016年诺贝尔医学生理学奖(Nobel Prize in Physiology or Medicine 2016)授予了三位科学家,分别为日本科学家大隅良典(Yoshinori Ohsumi),以及英国科学家杨振宁(Yoshinori Ohsumi)和大卫·J·索尔特斯(David J. Thouless)。
大隅良典获奖的原因是因为他对“自噬过程(autophagy)”的研究做出了突出贡献。
他发现了自噬现象,这是细胞自身通过将不必要或损坏的细胞器进行吞噬并分解来维持自身稳态的一种机制。
自噬过程在细胞生长、发育、免疫应答以及维持细胞内稳态等方面起着重要作用。
大隅的研究成果对于理解多种重大疾病,如癌症和神经退行性疾病的发生机制具有重要意义。
杨振宁和大卫·J·索尔特斯共同获奖的原因是他们的发现在物理学的拓扑概念应用于凝聚态物质中。
他们提出了一种新的拓扑相变理论,并在其中预测了令人兴奋的和新颖的现象。
拓扑相变是一种在凝聚态物质中观察到的奇特现象,这使得电子和原子能够以非常特殊的方式移动。
理解这些现象对于解释凝聚态物质(如超导体和超流体)中的力学行为具有重要意义。
大隅良典在1980年代开始了对自噬现象的探索。
他首先用酵母菌作为模型生物来研究自噬过程,并发现了大量参与自噬的基因和蛋白。
他发现了自噬营养缺乏条件下的活化过程,且分离了自噬小体的形成。
大隅的发现对于深入理解自噬过程的调控机制以及其在疾病中的作用具有重要意义。
自噬过程不仅能够清除细胞内的垃圾,还能够在高度胁迫环境中提供能量和资源,从而帮助细胞在应激条件下生存。
这对于理解许多代谢性疾病、神经退行性疾病和癌症的发生机制具有重要意义。
杨振宁和大卫·J·索尔特斯的研究突破了物理学界的常规思维模式,并为越来越多的科学家进一步研究凝聚态物质中的拓扑现象提供了基础。
他们的发现揭示了凝聚态物质中奇异拓扑态的存在,并对实际应用产生了深远的影响。
2016年诺贝尔医学生理学奖2016年,诺贝尔医学奖授予了三位科学家Yoshinori Ohsumi、Takaki Kajita和Arthur B. McDonald,以表彰他们在医学生理学领域取得的杰出贡献。
他们的研究成果在深入理解细胞自噬和中微子振荡现象方面起到了重要作用,为医学和物理学领域的未来发展提供了新的思路和方向。
以下将分别介绍他们的研究成果和对医学与物理学领域的影响。
一、Yoshinori Ohsumi的细胞自噬研究1. 细胞自噬的概念和意义细胞自噬是一种被细胞内部自行调控的生理过程,通过此过程,细胞可以将自己内部的损坏蛋白质和细胞器包裹成囊泡,然后通过溶酶体降解和再利用这些物质,在饥饿、压力和感染等情况下保证细胞的稳定运行。
细胞自噬在疾病的发生发展中起到了重要作用,如肿瘤、神经退行性疾病和心血管疾病等。
Yoshinori Ohsumi通过对酵母菌进行的研究,最终揭示了细胞自噬的分子机制和调控原理,这一发现为细胞生物学领域的研究提供了全新的理论和实验依据。
2. 奥崇久的研究成果对医学的影响奥崇久的研究成果为医学领域提供了对自噬途径的深刻理解,为相关疾病的治疗提供了新的思路。
基于奥崇久研究成果,科学家们可以更好地了解自噬在疾病发生发展中的作用机制,进一步开发针对自噬途径的治疗方法,为疾病治疗提供新的方向和希望。
二、Takaki Kajita和Arthur B. McDonald的中微子振荡研究1. 中微子的基本特性中微子是一种基本粒子,质量极小、不带电荷,几乎不与其他物质发生相互作用。
由于这些特性,中微子一直以来被认为对我们的影响非常小,很难被科学家们观测到。
Takaki Kajita和Arthur B. McDonald的研究成果改变了这一观念,为中微子物理学的发展带来了重要的突破。
2. 中微子振荡的发现Takaki Kajita和Arthur B. McDonald在不同的实验设施中独立进行了中微子振荡的观测实验,并最终得出了相同的结论:中微子在传播过程中会发生振荡现象,不同种类的中微子之间可以相互转换。
2016年诺贝尔生理或医学奖背景下的细胞死亡方式再认识2016年10月3日北京时间17:30,诺贝尔基金会宣布将2016年的诺贝尔生理学或医学奖授予大隅良典教授,以表彰他在自噬反应领域做出的卓越贡献。
自噬反应属于Ⅱ型细胞凋亡类型。
细胞死亡是生物界普遍存在的现象,不同于机体死亡。
正常组织中,每天都有千千万万个细胞死亡,生物体主要通过严格控制细胞死亡和细胞增殖之间的平衡来调控细胞数量和质量。
细胞死亡的方式通常有2种:细胞坏死、细胞程序性死亡(programmed cell death,PCD)。
基于机制可以将程序性细胞死亡分为两大类:Caspase(半胱氨酸天冬氨酸特异性蛋白酶)依赖的和Caspase 非依赖的,前者包括典型的细胞凋亡和新发现的细胞焦亡。
下面重点介绍“细胞凋亡与细胞焦亡”这两种细胞死亡方式。
1 细胞凋亡细胞凋亡一词最早是由英国的病理学家科尔和希腊语教授马克于1972年提出的。
在希腊语中,apo的意思是脱离,ptosis 的意思为落下,将这两个词组合(apoptosis)用来描述与秋叶落下和花儿凋谢类似的细胞死亡现象。
到1990年,细胞凋亡的研究获得了里程碑式的重大进展,证明了细胞凋亡是基因调控的主动过程,典型的细胞凋亡过程涉及一系列Capase的水解、活化和信号传递过程。
1.1 细胞凋亡的形态学特征细胞皱缩,?胞间的连接消失,同时细胞间的密度增加,核质浓缩成一个或几个大的包团,染色质迁移至核膜周边形成新月形凝集,细胞核裂解为碎块,进而细胞膜内陷自行分割成几个由细胞膜包裹的,表面光滑的凋亡小体;DNA被特异性的核酸内切酶分解成180~220 bp的片断,琼脂糖电泳出现特征性的DNA梯状区带,在细胞凋亡早期需要大量的ATP。
根据细胞的形态学变化,可将细胞凋亡分为3个阶段:① 凋亡开始。
细胞表面的微绒毛、细胞突起及细胞表面的褶皱等特化结构消失,但细胞膜依然完整,没有失去选择通透性;线粒体大体保持完整,但偶尔也见到线粒体变大,嵴增多;内质网囊腔膨胀扩大;细胞骨架的结构有时变得致密和紊乱;染色质浓缩,分布在核膜周围或一侧,呈眼球状。