第1章半导体器件基础第1讲
- 格式:ppt
- 大小:886.50 KB
- 文档页数:12
第一章半导体器件基础讲义1.1半导体的基本知识一、半导体材料导体电阻率半导体绝缘体电阻率<10-4Ωcm >1010Ωcm,·典型半导体材料:硅(Silicon ,元素符号Si)锗(Germanium,元素符号Ge)化合物半导体如砷化镓(GaAs)等·半导体三特点:热敏性;②光敏性;③杂敏性。
·半导体导电能力与晶体结构的关系――半导体的导电能力取决于它的原子结构。
·硅原子结构简化模型:·硅原子的晶体结构:共价键。
·半导体指纯净的、结构完整的晶体·共价键内载流子的运动方式――价电子是可以在共价键内运动的。
二、本征半导体·T=0K(约为-273℃)时,所有价电子均被束缚在共价键内,不能导电。
·热激发T↑→价电子的热运动获得能量→摆脱共价键的吸引→成为自由电子,同时留下一个空位→相关原子成为正离子――中性原子的电离过程。
·空穴可以移动的,带正电荷的载流子。
空穴的运动形式――价电子在共价键内移动。
·半导体内的两种载流子:自由电子和空穴――两者带电量相同而极性相反,且均可移动。
·自由电子和空穴成对产生源于温度,称为热激发。
·热敏性T↑,热激发加剧,自由电子和空穴的浓度↑,电阻率↓。
·复合自由电子和空穴相遇,自由电子和空穴成对消失的过程。
·从能量的角度看激发和复合热激发是价电子获得能量摆脱共价键束缚的过程,复合则是自由电子释放出所获得的能量重新被共价键俘获的过程。
·热平衡浓度T↑→自由电子和空穴浓度↑→复合↑→动态平衡。
表现为在此温度下电子和空穴对的浓度宏观上不再变化。
称为此温度下的热平衡浓度。
温度提高后,热激发产生的自由电子-空穴对的数量出现新的增长,带动复合数量的增长,最终达到新的动态平衡,在新的温度下形成新的热平衡浓度。
·室温下,硅中载流子的热平衡浓度只有约1010/cm3,导体中自由电子浓度约1022/cm3,且不随温度而变。