Multisim模拟电子技术仿真实验
- 格式:pdf
- 大小:7.53 MB
- 文档页数:50
实验19 Multisim 数字电路仿真实验1.实验目的用Multisim 的仿真软件对数字电路进行仿真研究。
2.实验内容实验19.1 交通灯报警电路仿真交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。
出故障时报警灯亮。
设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。
字母Z 表示报警灯,高电平表示报警。
则真值表如表 19.1所示。
逻辑表达式为:RY RG G Y R Z ++=若用与非门实现,则表达式可化为:RY RG G Y R Z ⋅⋅= Multisim 仿真设计图如图19.1所示:图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。
用发光二极管LED1的亮暗模拟报警灯的亮暗。
另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500表19.1LED_redLED1图19.1欧姆电阻。
在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。
实验19.2数字频率计电路仿真数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。
如果用2位数码管,则测量的最大频率是99Hz。
数字频率计电路Multisim仿真设计图如图19.2所示。
其电路结构是:用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。
四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。
信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。
Multisim 电路仿真实验(适用于《电工技术》、《电工与电子技术1》课程)1 实验目的:熟悉电路仿真软件Multisim 的功能,掌握使用Multisim 进行输入电路、分析 电路和仪表测试的方法。
2 使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4 熟悉软件功能 (1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences ,选择Components 标签,将Symbol Standard 区域下的元件符号改为DIN 。
自己进一步熟悉全局定制Options|Global preferences 窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars ,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard (标准工具栏)、View (视图操作工具栏)、Main (主工具栏)、Components (元件工具栏)、Instruments (仪表工具栏)、Virtual (虚拟元件工具栏)、Simulation (仿真)、Simulation switch (仿真开关)。
(4)Multisim 中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
模拟电子技术基础仿真
实验报告
2013020913018 张东恒
研究二极管对直流量和交流量表现的不同特点仿真电路如下:
图中所使用的直流电压源电压大小分别为1V和6V
采用了在multisim中型号为1N3064的二极管进行试验
三,仿真内容
1,在直流电流不同时二极管管压降的变化。
利用万用表测得电阻上的直流电压,从而得到二极管管压降
2,在直流电流不同时二极管等效电阻的变化。
利用万用表的交流电压档测得电阻上交流电压的有效值,从而得到二极管交流电压的有效值
四,仿真结果
在读仿真结果的时候,为了方便读数,在电阻两端并接了一个万用表,以便一次读取直流和交流两个参数
数据汇总如下
直流电源V1/V 交流信号
V2/mV
R直流电压
表读数
R交流电压
表读数/mV
二极管直流
电压/V
二极管交流
电压/mV
1 10 406.56mV 9.33
2 593.44mV 0.668
4 10 5.301V 9.873 0.699V 0.127
五,结论
1,比较直流电源取值为1V和6V的条件下二极管的直流管压降可知,二极管的直流电流月大,管压降越大,管压降并不是常量
2,比较直流电源取值为1V和6V两种情况下二极管的直流管压降可知,二极管的直流电流越大,其交流管压降越小,说明随着静态电流的增大,动态电阻将减小;两种情况下电阻的交流压降均接近输入交流电压值,说明二极管的动态电阻很小。
Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。
其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。
本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。
通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。
一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。
Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。
Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。
2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。
例如,电阻器的阻值、电容器的容值、电源的电压等。
这些参数值将直接影响到电路的仿真结果。
3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。
根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。
4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。
通过分析这些仿真结果,可以评估电路的性能和工作情况。
二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。
以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。
模拟电子技术仿真实习报告一、实习目的通过本次模拟电子技术仿真实习,我旨在掌握模拟电子技术的基本原理,提高自己在电子电路设计和仿真方面的能力。
同时,通过实习,我期望能够将所学的理论知识与实际操作相结合,培养自己的动手能力和团队协作精神。
二、实习内容本次实习主要分为以下几个部分:1. 熟悉Multisim仿真软件的使用方法,了解其基本功能和操作界面。
2. 学习并掌握模拟电子技术中常用元器件的特性和使用方法,包括二极管、晶体管、电阻、电容等。
3. 设计并仿真简单的模拟电子电路,如共射放大电路、集成运算放大器、RC正弦波振荡器等。
4. 通过仿真实验,了解并分析电路的性能指标,如电压放大倍数、输入电阻、输出电阻等。
5. 学习电路的调试方法,掌握调整静态工作点、测量频率特性等技能。
三、实习过程在实习过程中,我按照指导书的要求,逐步完成了各个阶段的任务。
首先,我花了一定的时间学习了Multisim仿真软件的使用方法,通过自学和请教同学,基本掌握了软件的基本功能和操作界面。
接着,我学习了模拟电子技术中常用元器件的特性和使用方法。
我通过查阅资料和实验操作,了解了二极管、晶体管、电阻、电容等元器件的工作原理和特性,并学会了如何选择和使用这些元器件。
然后,我开始设计并仿真简单的模拟电子电路。
我根据教材和指导书的要求,设计了共射放大电路、集成运算放大器、RC正弦波振荡器等电路,并通过Multisim软件进行了仿真。
在仿真过程中,我学会了如何调整电路的参数,分析电路的性能指标,如电压放大倍数、输入电阻、输出电阻等。
最后,我学习了电路的调试方法。
我通过实验操作,掌握了调整静态工作点、测量频率特性等技能,并能够独立完成电路的调试工作。
四、实习收获通过本次实习,我对模拟电子技术有了更深入的了解,掌握了常用元器件的特性和使用方法,学会了电路设计和仿真的一般方法。
同时,我在动手能力和团队协作方面也有了较大的提高。
总之,本次实习使我受益匪浅,我对模拟电子技术有了更全面的认识,提高了自己的实际操作能力。
模拟电子技术基础Multisim 仿真实验报告课题:交流负反馈对放大倍数稳定性的影响班级:自1203班姓名:张凯(41251083)张晨光(41251084)李顶立(41251085)一、题目负反馈对电压串联负反馈放大电路电压放大倍数稳定性的影响。
二、仿真电路仿真电路采用虚拟集成运放,运放U1、U2分别引入了局部电压并联负反馈,其闭环电压放大倍数分别为RR A11f 1uf -≈,RR A22f 2uf ≈,可以认为该负反馈放大电路中基本放大电路的放大倍数AA Au u 2f 1f ≈整个电路引入了急件电压串联负反馈,闭环电压放大倍数FA A A A Au u u u u 2f 1f 2f 1f f1+≈,RRR Ff+=,三、仿真内容分别测量 Ω=k R f 1002和 Ωk 10 时的 A u f 。
从示波器可读出输出电压的幅值,得到放大倍数电压的变化。
四、仿真结果1、张凯的结果(1)实验截图图1 负反馈放大倍数(张凯)(2)实验数据表图2 实验数据表(张凯)(1)实验截图图3 负反馈放大倍数(张晨光)(2)实验数据表图4 实验数据表(张晨光)(1)实验截图图5 负反馈放大倍数(李顶立)(2)实验数据表图6 实验数据表(李顶立)五、实验数据分析1、比较第1组数据与第2组数据可知,当反馈电阻减小时,运放的闭环电压放大倍数减小。
2、不接反馈电阻时的开环电压放大倍数与接上反馈电阻时的闭环电压放大倍数具有明显的差异,表明负反馈具有提高放大倍数稳定性的作用。
六、实验结论1、由 图4 可知,当R 2f 从100k Ω 变为10k Ω时,电路的开环电压放大倍数变化量Δ9.0101010443)(=-=A A ,闭环电压放大倍数变化量Δ()148.01.1.95-0.811ff-≈=AA u u ,AA AA uf∆<<∆uf。
由此说明负反馈放大倍数的稳定性。
2、根据 图四 可知R 2f 从100k Ω 变为10k Ω时,开环电压放大倍数A 从104变为103,闭环电压放大倍数A uf 分别为99和90.9,与仿真结果近似。