EMC设计规范.docx
- 格式:docx
- 大小:258.21 KB
- 文档页数:14
目录前言 (2)8 电路设计 (3)8.1电源电路 (3)8.1.1电源输入部分的EMC设计 (4)8.1.2电源输出部分的EMC设计 (5)8.1.3电源转换芯片的EMC设计 (7)8.2接口电路 (7)8.2.1 RS485/CAN接口设计 (8)8.2.2 RS232接口设计 (8)8.2.3 USB接口设计 (9)8.2.4 S_VIDEO接口设计 (9)8.2.5 以太网接口设计 (10)8.3 时钟晶体电路 (11)8.3.1 无源晶体 (11)8.3.2 有源震荡器 (11)8.4 面板电路 (12)8.5 数字总线电路 (12)前言本规范的其他系列规范:无与对应的国际标准或其他文件的一致性程度:无规范代替或作废的全部或部分其他文件:无与其他规范或文件的关系:无本规范由工程技术中心提出。
本规范主要起草和解释部门:本规范主要起草人:本规范批准部门:硬件EMC设计规范8 电路设计电路设计中,如按功能划分种类繁多,不胜枚举。
功能电路的设计好坏,在于设计人员的理论知识和实践经验,在此不做讨论。
由于各类认证中,对电磁兼容要求越来越重视,就此需要重点关注的电路设计大致可分为以下几类:8.1电源电路电源电路设计中,功能性设计主要考虑温升和纹波大小。
温升大小由结构散热和效率决定;输出纹波除了采用输出滤波外,输出滤波电容的选取也很关键:大电容一般采用低ESR电容,小电容采用0.1UF和1000pF共用。
电源电路设计中,电磁兼容设计是关键设计。
主要涉及的电磁兼容设计有:传导发射和浪涌。
传导发射设计一般采用输入滤波器方式。
外部采购的滤波器内部电路一般采用下列电路:Cx1和Cx2为X电容,防止差模干扰。
差模干扰大时,可增加其值进行抑制;Cy1和Cy2为Y电容,防止共模干扰。
共模干扰大时,可增加其值进行抑制。
需要注意的是,如自行设计滤波电路,Y电容不可设计在输入端,也不可双端都加Y电容。
浪涌设计一般采用压敏电阻。
EMC结构电磁兼容设计规范篇一:结构设计规范(EMC)EMC)结构设计规范(一、简单介绍电磁兼容(Electromagnetic Compatibility , EMC)主要包含两方面的内容:电磁干扰(Electromagnetic interference , EMI);电磁敏感度(Electromagnetic susceptibility , EMS)。
电磁兼容设计基本目的:A 产品内部的电路互相不产生干扰,达到预期的功能。
B 产品产生的电磁干扰强度低于特定的极限值。
C 产品对外界的电磁干扰有一定的抵抗能力。
在整个工程项目中,必须在设计初期开始考虑电磁兼容设计。
一方面,这对整个工程项目是个效费比很高的措施,可以有效避免工程项目因为电磁兼容测试未通过而进行较大修改,产生不必要的成本增加。
另一方面,设计初期可以采取相对较多的措施来满足电磁兼容要求,而后期可采取的措施比较少。
在电磁兼容设计过程中,针对电磁兼容性设计中的重点和关键,分析并预测各种可能发生的电磁兼容问题,并从设计初期就采取各种技术措施,包括电路硬件与结构相结合、电路硬件与软件相结合的技术措施。
电磁兼容设计主要从三个方面进行:电磁干扰源、耦合途径、敏感设备。
耦合途径主要是传导和辐射。
具体在工程措施上,电磁兼容设计可分为:信号设计、线路设计、屏蔽、接地与搭接、滤波、合理布局。
其中与结构关系较大的有:屏蔽、接地与搭接、合理布局。
但这并不代表其他措施与结构设计完全无关,结构设计亦需配合完成其他措施比如滤波。
二、常用测试项目2.1、在电磁兼容性设计中遇到的常用测试项目,从干扰源与被干扰对象角度可分为两类:EMI(电磁发射测试)和EMS(电磁敏感度测试)。
EMI(电磁发射):被测设备为干扰源,测试被测设备对外界发射的电磁干扰水平。
EMS(电磁敏感度):被测设备为被干扰对象,通过测试仪器对其施加干扰,测试其抗干扰能力。
从干扰路径区分,又可分为传导测试与辐射测试两类。
EMC试验测试规范一、静电1。
1试验目的:测试电子产品抗静电能力1。
2试验设备:静电放电发生器1。
3试验环境:环境温度:15℃~35℃,相对湿度30%~60%,大气压力86KPA~106KPA (暂时以中试试验室环境为准)1。
4参考标准:GB17626。
2-2006电磁兼容试验和测量技术静电放电抗扰度试验 AQ6201—2006煤矿安全监控系统通用技术要求1。
5试验内容:1。
5。
1如图1所示,将受试设备EUT通电后放置在试验桌上,准备进行试验。
图11。
5。
2 参数设置,如图2所示,选择放电模式,做接触放电试验,选用尖锥形的放电电极,用UP和DOWN按键把光标调整至“放电模式”行,用“SELECT”按键选择“接触放电”;1.5.3选择极性,将光标调整至“极性切换”行,用“SELECT”按键选择“正压”或“负压”来选择试验极性。
(在极性切换前需将“高压上电”选择“否",否则无法极性切换)1.5。
4放电模式,将光标调至“四种模式"行,用“SELECT"按键选择“单次放电”、“设定放电”、“连续放电"或“自动放电”来选择放电模式。
连续放电即20pps模式;自动放电就是按下“RUN/PAUSE”按键后无需扣枪即可自行放电.一般选用单次放电。
图21.5.2 参数设置,如图2所示,选择放电模式,做接触放电试验,选用尖锥形的放电电极,用UP 和DOWN按键把光标调整至“放电模式”行,用“SELECT”按键选择“接触放电”;1。
5。
3选择极性,将光标调整至“极性切换"行,用“SELECT”按键选择“正压”或“负压”来选择试验极性。
(在极性切换前需将“高压上电”选择“否",否则无法极性切换)1。
5。
4放电模式,将光标调至“四种模式”行,用“SELECT”按键选择“单次放电"、“设定放电”、“连续放电”或“自动放电”来选择放电模式。
连续放电即20pps模式;自动放电就是按下“RUN/PAUSE”按键后无需扣枪即可自行放电。
PCBEMC设计标准1. 引言电子产品的设计和制造中,电磁兼容性〔Electromagnetic Compatibility, EMC〕是一个至关重要的考虑因素。
为了保证产品在遇到电磁干扰时的良好表现,必须遵循一定的设计标准。
本文档旨在为PCB〔Printed Circuit Board〕的EMC设计提供详细指南和建议。
2. 设计布局2.1 别离敏感和噪声局部将PCB分为敏感电路局部和噪声电路局部,并合理布局两者之间的间距。
敏感局部应远离噪声产生器,而噪声局部应尽可能靠近电源和地线等有源器件。
2.2 信号地线和电源地线别离为了防止共模干扰,应将信号地线和电源地线别离,并通过独立的连接方式连接到整个电路板。
同时,应确保地线的大小足够宽,以降低电阻和电感。
2.3 阻止信号循环当信号线和地线形成回路时,可能会导致电磁干扰的增加。
在设计过程中,应注意防止信号线和地线之间形成闭环。
2.4 引入绕线在布局中,根据需要引入绕线,以减少过长的信号线和地线。
3. 网络连接3.1 电源线在设计过程中,应注意电源线的布局。
电源线宜短而粗,尽量减小电阻和电感对电磁干扰的影响。
3.2 地线和信号线在PCB布线时,应确保地线和信号线能够平行走向。
相邻的高速信号线和地线应尽可能靠近。
3.3 电源和信号线的层间穿越在层间穿越时,应减小穿越的区域,防止电源和信号线之间形成环状穿越。
4. 高速设计4.1 控制信号的走线在高速信号走线时,应防止普通信号跨越高速信号线。
同时,应保证高速信号线尽量保持匹配和平行走向。
4.2 信号之间的间距在高速信号布局中,应确保相邻信号之间的间距足够,并且防止平行走向。
间距的增加可以减小信号之间的串扰。
4.3 地线和反向信号线的布局在高速信号布局中,应在信号线的两侧引入地线和反向信号线,以控制信号的传输和降低辐射噪声。
5. 硬件设计5.1 硬件敷铜和接地应在PCB上适当敷铜,以提供良好的接地和屏蔽。
同时,适当增加接地点,降低接地电阻和接地电感。
EMC设计规范1.概述EMC(Electromagnetic Compatibility:电磁兼容)是一种技术,这种技术的目的在于使电气装置或系统在共同的电磁环境条件下,既不受电磁环境的影响,同时也不会给环境以这种影响。
换句话说,就是它不会因为周边的电磁环境而导致性能降低、功能丧失或损坏,也不会在周边环境中产生过量的电磁能量,以致影响周边设备的正常工作。
.对于电力、电子系统设备,EMC包含下面三个方面的含义:1、EMI(Electromagnetic Interference)电磁干扰:即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所要求的电磁能量。
2、EMS(Electromagnetic Susceptibility)电磁敏感度:即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规定范围内的电磁能量干扰,或者说设备或系统对于一定范围内的电磁能量不敏感,能按照设计性能保持正常的运行。
3、电磁环境:即系统或设备的工作环境。
即使相同种类的设备也可能运用在不同的电磁环境中,对于应用在不同环境中的设备,对它们的电磁兼容要求也可能是不一样的。
产品EMC设计的目的就是:使产品满足相应EMC标准的要求;使产品满足实际电磁环境的需求;设备或系统内部兼容的要求。
2.使用范围公司开发的所有产品在EMC设计方面,须遵循本规范。
3.EMC设计实现在做产品的EMC设计时,一般从电路设计、PCB设计、结构设计、接地设计等方面来考虑,下面分别从这些方面来进行分析。
3.1.电路设计技术3.1.1.器件选择在产品设计时,选择器件的一些基本要求如下:1、同等条件下,选用沿速率较低的器件有助于产品的EMC性能;2、同等条件下,选择低电平的器件有助于产品的EMC性能,例如,采用低电平的信号总线,产品的辐射发射相对而言就更好控制;3、通常情况下,采用差分信号有利于产品的EMC性能;4、选用信号连接器必须考虑器件的地连接、屏蔽性能等;5、对于某些接口器件,选择时需要考虑它们的防护性能。
目錄I.基本觀念 (2)1.系統中的ME EMC設計 (2)2.觀念引導 (2)3.設計概念 (3)(1) 機器之電性結構 (3)(2) 設計概念摘要 (4)◎Reference Books (4)II. 設計準則 (5)III. Supplement (6)Supplement A——原理與常用計算公式 (6)Supplement B——導電性塗裝(Coating)之電氣通則 (12)Supplement C——導電性塗裝(Coating)原理分析 (13)Supplement D——屏蔽效果分析表 (14)Supplement E——給機構上課講義 (15)後記 (17)I. 基本觀念1. 系統中的ME EMC設計——Shielding, Grounding & Cabling.2. 觀念引導EMI: 我們來談談機構的EMC設計方法。
ME: EMC是什麼?EMI: EMC就是Electromagnetic Compatibility的簡寫,叫電磁相容性。
是指在一個充滿電磁場的環境下,所有電氣設備都能夠正常運作的能力。
ME: 可以舉個例子嗎?EMI: 例如我將電腦、電視與電冰箱擺在同一個房間中,同時打開時都能夠正常運作,融恰相處,不會受到彼此發出的電場與磁場干擾而功能失常。
這就叫做電磁相容。
ME: EMC…與EMI一樣意思吧?EMI: EMI就是Electromagnetic Interference的簡寫,叫電磁干擾。
就是電場與磁場的干擾,既然稱為干擾了,就代表不相容嘛! 所以EMI恰好與EMC是反義詞。
其實早期大多講EMI,講怎麼防止EMI呀,怎麼抑制EMI呀,其實防制EMI就等於是在達成EMC。
EMC是後來才取出來的名詞,不過這個名詞也有50年以上的歷史了。
ME: 原來如此。
既然EMI就是電場與磁場的干擾,那能不能不要讓機器產生電場與磁場? EMI: 不能。
因為只要有電荷就會產生電場,有電流就會產生磁場。
电子线路与电磁兼容设计(完整版)现代的电子产品,功能越来越强大,电子线路也越来越复杂,以前在电子线路设计中很少出现的电磁干扰(EMI)和电磁兼容性(EMC)问题,现在反而变成了主要问题,电路设计对设计师的技术水平要求也越来越高。
CAD(计算机辅助设计)在电子线路设计方面的应用,很大程度地拓宽了电路设计师的工作能力,但电磁兼容设计,尽管目前采用了世界上最先进的CAD 技术,还是很难帮得上忙。
电磁兼容设计实际上就是针对电子产品中产生的电磁干扰(Electromagnetic Interference)进行优化设计,使之能成为符合各国或地区电磁兼容性EMC(Electromagnetic Compatibility)标准的产品。
EMC的定义是:在同一电磁环境中,设备能够不因为其它设备的干扰影响正常工作,同时也不对其它设备产生影响工作的干扰。
电磁干扰(Electromagnetic Interference)一般都分为两种,传导干扰和辐射干扰。
传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。
辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。
因此对EMC问题的研究就是对干扰源、耦合途径、敏感设备三者之间关系的研究。
自从电子系统降噪技术在70年代中期出现以来,主要由于美国联邦通讯委员会在1990年和欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。
符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。
目前全球各地区基本都设置了EMC相应的市场准入认证,用以保护本地区的电磁环境和本土产品的竞争优势。
如:北美的FCC、NEBC认证、欧盟的CE认证、日本的VCCEI认证、澳洲的C-tick人证、台湾的BSMI认证、中国的3C认证等都是进入这些市场的“通行证”。
很多人从事电子线路设计的时候,都是从认识电子元器件开始,但从事电磁兼容设计的时候却无从下手。
产品结构设计EMC规范1.主板屏蔽罩不能有太多没有必要的开口和缝隙。
PASS □NG□解释说明:一个理想的屏蔽屏蔽罩是没有任何开口和缝隙的。
被屏蔽的干扰信号辐射到屏蔽罩的内表面,如果是理想的屏蔽罩干扰信号被100%屏蔽,没有任何泄露。
但如果屏蔽罩的开口和缝隙的长度大于或等于电磁波半波长整数倍时,电磁波的泄漏最大。
对于1GHz(波长为300mm)的干扰信号,缝隙和开口长度小于150mm(半波长)时,1GHz的干扰信号开始被衰减。
如要衰减20DB,则缝隙长度要小于15mm(150mm的1/10,20㏒10=20db。
),如要衰减26Db,则缝隙长度要小于7.5mm(15mm的1/2,20㏒2=6db。
)如要衰减32db,则缝隙长度要小于3.75mm。
一个比较好的屏蔽罩的屏蔽效能都要求达到30—40db。
右图里开口和缝隙都很大,电磁泄露非常大。
2.主板屏蔽罩四边角不能有缝隙,要搭接或铆接良好。
PASS □NG□解释说明:根据上面的分析,屏蔽罩的四边角都不能有缝隙,如右图两个屏蔽罩,左边的是我们公司做的,右边的外公司的产品。
对比两个屏蔽罩的边角,一个是重点考虑边角缝隙,一个是没有考虑边角缝隙。
要想屏蔽罩有良好的屏蔽效能,边角缝隙一定要处理好。
比较两个屏蔽罩的边角缝隙的处理情况。
3.靠DVD机芯碟片出口的屏蔽罩开口不能太大。
PASS □NG□解释说明:机芯碟片出口的屏蔽罩开口太大会导致主板上的噪声、DVD板和机芯上的噪声通过这些比较大的开口辐射出去。
屏蔽罩的制作应该像右图一样只留一个碟片出口。
碟片出口屏蔽罩开口较大。
屏蔽罩只留一个碟片出口,很好的设计。
4.输入输出挡板与屏的屏蔽罩不能有开口、缝隙。
PASS □NG□解释说明:输入输出挡板与主板屏蔽罩一起构成一个完整的屏蔽罩。
输入输出挡板与屏的屏蔽罩存在的开口和缝隙会导致主板上的电磁波泄露,使屏蔽罩的屏蔽效能大大降低。
EMI对策时要在输入输出挡板下垫一个长条的导电泡棉,增加了EMI的对策成本。
目录0.修改记录 (3)1.目的 (4)2.适用范围 (4)3.职责 (4)3.1开发工程师 (4)3.2开发管理部 (4)4.工作程序 (4)4.1新增备案 (4)4.2更改程序 (14)4.3通讯协议的调用 (14)4.4通讯协议规范 (14)5.相关文件 (18)6.附件 (19)7.记录 (26)1) (30)1.目的本规范制定目的是为光迅公司内部的硬件系统研发、系统集成以及电磁兼容试验中的电磁兼容(EMC)与信号完整性(SI)的设计与改进实施提供技术参考。
2.适用范围本规范适用于光迅公司所有的硬件研发项目。
3.职责3.1 开发工程师1)2)3)3.2 开发管理部1)2)4.工作程序4.1 基本术语EMC Electromagnetic CompatibilityEMI Electromagnetic InterferenceESD Electrostatic Discharge(待补充)4.2 电磁兼容基本概念E MC 的定义设备在共同的电磁环境中能一起执行各自功能的共存状态。
EMC 模型与抑制方法EMC 设计的层次及主要工作组成抑制措施评定指标传导性耦合辐射性耦合CS 传导敏感度(传导抗扰度)CE 辐射敏感度(辐射抗扰度)RS 传导发射(传导骚扰)RE 辐射发射(辐射骚扰)· 材料特性· 内部封装· 分布参数· 屏蔽· 电源滤波· 印制板布局· 部件布局· 接地4.3 电磁兼容性的要求通信产品类电磁兼容性标准要求电快速瞬变脉冲群试验静电放电试验雷击浪涌试验电磁发射试验敏感度试验(待细化)4.4 电磁屏蔽设计技术(待补充)4.5 互连电缆设计技术互连电缆的接地屏蔽电缆一般分为低频电缆和高频电缆对低频信号电缆屏蔽层应单点接地对屏蔽的电力电缆和高频电缆的屏蔽层至少应在电缆两端接地。
当电缆长度L<0.15λ时,要求单点接地,一般均在输出端接地,不存在接地环路,磁屏蔽效果好,也可在输入端接地;当电缆长度L>0.15λ时,采用多点接地,一般屏蔽层按0.05λ或0.1λ的间隔接地,以降低地线阻抗,减少地电位引起的干扰;对于输入信号电缆的屏蔽层,不能在机壳内接地,只能在机壳的入口处接地,此时的屏蔽层上的外加干扰信号直接在机壳入口处入地,避免屏蔽层上的外加干扰信号带入设备内的信号电路上;对于高输入或高输出阻抗电路,尤其是在高静电环境下,可能需要双层屏蔽的电缆,此时内屏蔽层可以在信号源端接地,外屏蔽层则在负载端接地。
EMC产品设计规范1.在电磁污染越来越严重、电磁波资源日益枯渴的今天,人们对电子产品的电磁兼容性(EMC)指标越来越重视,在十几项EMC指标中,最重要的也最基本两项是传导干扰与辐射干扰。
2.传导干扰及抑制措施2.1传导干扰的频率大致为100KHZ~30MHZ,而且不同的标准定义的频率范围不一样。
我们国家采用的标准与FCC标准相似。
传导干扰是指干扰信号通过馈电线对市电电网的干扰。
由于绝大部分的电器、仪表都直接与电网相连接,抑制传导干扰意义在于减小这仪表电器对电网的污染,防止干扰信号通过电网这个公共途径对其他电子设备的干扰。
2.2传导干扰是电网上的高频负载引起的,这些负载是高频工作的开关电源、高频信号源、高频加热器等等。
这些负载往往会产生脉冲式的大电流,这些电流通过大的电流环路,产生了一些滤波电路无法滤除的共模噪声,而且噪声中包含了丰富的高次谐波。
2.3抑制传导干扰最常用的方法是在电网馈电回路中插入共模滤波器,共模滤波器(如图1所示)由C1、C2、C3与B1组成,C1为安全标准件,取值在0.047uF~0.47uF之间,耐压为AC250V,薄膜电容,主要是滤除差模噪声。
B1是绕在同一磁路上的两组线圈,电感量在12mH~50mH之间,磁性材料为一般的铁氧体软磁材料。
C2及C3也是安全标准件,取值在1000PF~4700PF之间,耐压为AC250V,陶瓷介质的电容,起到抑制共模噪声的作用。
3.辐射干扰及其抗干扰措施3.1辐射干扰的频率范围为30MH~1GHZ之间,辐射是高频信号源通过布线向空间辐射电磁谐波能量。
这些不受控制的电磁波辐射会影响正常的无线电通信,例如干扰收音机、电视机、无线电话、等设备。
3.2辐射干扰是超高频信号通过布线作为发射天线向外辐射无用电磁能量,因此尽可能缩小可被利用的布线尺寸,就有利于降低辐射干扰。
方法一:净化电源线。
由于电源线是一切信号源的能量供给线,故电源上被污染的可能性最大,并且电源线尺寸大且长,处理不好,辐射就很容易把电源线作为干扰出口通道。
文件编号:电磁兼容(EMC)设计规范电磁兼容的英文解释为Electromagnetic compatibility,简写为EMC。
EMC是所有电子产品在设计时必须考虑的问题。
EMC指标是绝大部分电子产品上市前所需做的认证中必须达到而不容易达到要求的一项指标。
对于手机来说,进入欧洲市场必须做的CE认证,进入美国市场必须做的FCC认证等都对EMC提出了严格的指标要求。
EMC性能的好坏不仅影响电子产品自身的性能优劣,而且还会影响到其他电子设备的正常工作。
在手机的设计中,这种影响尤其明显。
不良的EMC设计会导致手机接收灵敏度变差、听筒有TD干扰噪声、显示屏显示异常、发射信号谐波较大甚至手机工作不稳定经常死机等严重问题;另外,不良的EMC设计有可能会导致手机干扰到其他无线通信设备。
因此,在手机设计前期需要对EMC性能做充分的考虑和评估,在设计和生产过程中要严格按照相关规定执行,以确保EMC指标能达到相关标准。
本文从三个方面对EMC设计进行分析总结,以便大家在具体的项目中能有所借鉴。
一、 EMC的器件选择与原理图设计原理图是所有电子产品设计的源头,原理图设计的好坏直接影响到电子产品的功能实现和性能优劣,其对EMC性能的好坏也有着至关重要的影响。
在原理图设计阶段,针对EMC主要采用“过滤”的原则,即将有用信号和无用信号进行分离,将有用信号引导到需要去的地方,将无用信号阻挡在目的地之外或者引导至“地”。
主要的手段是采用各种形式的滤波电路。
1.1EMC的器件选择 针对EMC设计的常用元器件有滤波电容、磁珠、滤波器等。
滤波电容尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。
当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。
磁珠 由铁氧体材料做成。
铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。
结构设计规范(EMC)一、简单介绍电磁兼容(Electromagnetic Compatibility , EMC)主要包含两方面的内容:电磁干扰(Electromagnetic interference , EMI);电磁敏感度(Electromagnetic susceptibility , EMS)。
电磁兼容设计基本目的:A 产品内部的电路互相不产生干扰,达到预期的功能。
B 产品产生的电磁干扰强度低于特定的极限值。
C 产品对外界的电磁干扰有一定的抵抗能力。
在整个工程项目中,必须在设计初期开始考虑电磁兼容设计。
一方面,这对整个工程项目是个效费比很高的措施,可以有效避免工程项目因为电磁兼容测试未通过而进行较大修改,产生不必要的成本增加。
另一方面,设计初期可以采取相对较多的措施来满足电磁兼容要求,而后期可采取的措施比较少。
在电磁兼容设计过程中,针对电磁兼容性设计中的重点和关键,分析并预测各种可能发生的电磁兼容问题,并从设计初期就采取各种技术措施,包括电路硬件与结构相结合、电路硬件与软件相结合的技术措施。
电磁兼容设计主要从三个方面进行:电磁干扰源、耦合途径、敏感设备。
耦合途径主要是传导和辐射。
具体在工程措施上,电磁兼容设计可分为:信号设计、线路设计、屏蔽、接地与搭接、滤波、合理布局。
其中与结构关系较大的有:屏蔽、接地与搭接、合理布局。
但这并不代表其他措施与结构设计完全无关,结构设计亦需配合完成其他措施比如滤波。
二、常用测试项目2.1、在电磁兼容性设计中遇到的常用测试项目,从干扰源与被干扰对象角度可分为两类:EMI(电磁发射测试)和EMS(电磁敏感度测试)。
EMI(电磁发射):被测设备为干扰源,测试被测设备对外界发射的电磁干扰水平。
EMS(电磁敏感度):被测设备为被干扰对象,通过测试仪器对其施加干扰,测试其抗干扰能力。
从干扰路径区分,又可分为传导测试与辐射测试两类。
综合起来测试项目可分为四种测试模式:CE-传导发射测试,CS-传导敏感度测试;RE-辐射发射测试,RS-辐射敏感度测试。
竭诚为您提供优质文档/双击可除emc设计规范篇一:emc设计规范篇二:emc设计规范印制电路板的电磁兼容性设计规范引言本人结合自己在军队参与的电磁兼容设计工作实践,空军系统关于电子对抗进行的两次培训(雷达系统防雷、电子信息防泄露)及入司后参与706所杨继深主讲的emc培训、701所周开基主讲的emc培训、自己在地方电磁兼容实验室参与emc整改的工作体验、特别是国际ieee委员发表的关于emc有关文章、与地方同行的交流体会,并结合公司的实验情况,对印制电路板的电磁兼容性设计进行了一下小结,希望对印制电路板的设计有所作用。
需要提醒注意的是:总结中只是提供了一些最基础的结论,对具体频率信号的走线长度计算、应考虑的谐波频率、波长、电路板级屏蔽、屏蔽体腔的设计、屏蔽体孔径的大小、数目、进出导线的处理、截止导波管直径、长度的计算及静电防护,雷电防护等知识没有进行描述。
或许有些结论不一定正确,还需各位指正,本人将不胜感谢。
一、元器件布局印刷电路板进行emc设计时,首先要考虑布局,pcb工程师必须和结构工程师、emc工程师一起协调进行,做到两者兼顾,才能达到事半倍。
首先要考虑印刷电路板的结构尺寸大小,考虑如何对器件进行布置。
如果器件分布很散,器件之间的传输线可能会很长,印制线路长,阻抗增加,抗噪声能力下降,成本也会增加。
如果器件分布过于集中,则散热不好,且邻近线条易受耦合、串扰。
因此根据电路的功能单元,对电路的全部元器件进行总体布局。
同时考虑到电磁兼容性、热分布、敏感器件和非敏感器件、i/o接口、复位电路、时钟系统等因素。
一般来说,整体布局时应遵守以下基本原则:1、当线路板上同时存在高、中、低速电路时,应该按逻辑速度分割:布置快速、中速和低速逻辑电路时,高速的器件(快逻辑、时钟振荡器等)应安放在靠近连接器范围内,减少天线效应、低速逻辑和存储器,应安放在远离连接器范围内。
这样对共阻抗耦合、辐射和交扰的减小都是有利的。
硬件EMC设计规范1_华为内部资料本规范只简绍EMC的主要原则与结论,为硬件⼯程师们在开发设计中抛砖引⽟。
电磁⼲扰的三要素是⼲扰源、⼲扰传输途径、⼲扰接收器。
EMC 就围绕这些问题进⾏研究。
最基本的⼲扰抑制技术是屏蔽、滤波、接地。
它们主要⽤来切断⼲扰的传输途径。
⼴义的电磁兼容控制技术包括抑制⼲扰源的发射和提⾼⼲扰接收器的敏感度,但已延伸到其他学科领域。
本规范重点在单板的EMC 设计上,附带⼀些必须的EMC 知识及法则。
在印制电路板设计阶段对电磁兼容考虑将减少电路在样机中发⽣电磁⼲扰。
问题的种类包括公共阻抗耦合、串扰、⾼频载流导线产⽣的辐射和通过由互连布线和印制线形成的回路拾取噪声等。
在⾼速逻辑电路⾥,这类问题特别脆弱,原因很多:1、电源与地线的阻抗随频率增加⽽增加,公共阻抗耦合的发⽣⽐较频繁;2、信号频率较⾼,通过寄⽣电容耦合到布线较有效,串扰发⽣更容易;3、信号回路尺⼨与时钟频率及其谐波的波长相⽐拟,辐射更加显著。
4、引起信号线路反射的阻抗不匹配问题。
⼀、总体概念及考虑1、五⼀五规则,即时钟频率到5MHz 或脉冲上升时间⼩于5ns,则PCB 板须采⽤多层板。
2、不同电源平⾯不能重叠。
3、公共阻抗耦合问题。
模型:VN1=I2ZG 为电源I2 流经地平⾯阻抗ZG ⽽在1 号电路感应的噪声电压。
由于地平⾯电流可能由多个源产⽣,感应噪声可能⾼过模电的灵敏度或数电的抗扰度。
解决办法:①模拟与数字电路应有各⾃的回路,最后单点接地;②电源线与回线越宽越好;③缩短印制线长度;④电源分配系统去耦。
4、减⼩环路⾯积及两环路的交链⾯积。
5、⼀个重要思想是:PCB 上的EMC 主要取决于直流电源线的Z 0C→∞,好的滤波,L→0,减⼩发射及敏感。
如果< 0.1Ω极好。
⼆、布局下⾯是电路板布局准则:1、晶振尽可能靠近处理器2、模拟电路与数字电路占不同的区域3、⾼频放在PCB 板的边缘,并逐层排列4、⽤地填充空着的区域三、布线1、电源线与回线尽可能靠近,最好的⽅法各⾛⼀⾯。
印制电路板的电磁兼容性设计规范引言本人结合自己在军队参与的电磁兼容设计工作实践,空军系统关于电子对抗进行的两次培训(雷达系统防雷、电子信息防泄露)及入司后参与706所杨继深主讲的 EMC培训、 701所周开基主讲的 EMC培训、自己在地方电磁兼容实验室参与 EMC整改的工作体验、特别是国际 IEEE委员发表的关于EMC有关文章、与地方同行的交流体会,并结合公司的实验情况,对印制电路板的电磁兼容性设计进行了一下小结,希望对印制电路板的设计有所作用。
需要提醒注意的是:总结中只是提供了一些最基础的结论,对具体频率信号的走线长度计算、应考虑的谐波频率、波长、电路板级屏蔽、屏蔽体腔的设计、屏蔽体孔径的大小、数目、进出导线的处理、截止导波管直径、长度的计算及静电防护,雷电防护等知识没有进行描述。
或许有些结论不一定正确,还需各位指正,本人将不胜感谢。
一、元器件布局印刷电路板进行EMC 设计时,首先要考虑布局,PCB 工程师必须和结构工程师、 EMC 工程师一起协调进行,做到两者兼顾,才能达到事半倍。
首先要考虑印刷电路板的结构尺寸大小,考虑如何对器件进行布置。
如果器件分布很散,器件之间的传输线可能会很长,印制线路长,阻抗增加,抗噪声能力下降,成本也会增加。
如果器件分布过于集中,则散热不好,且邻近线条易受耦合、串扰。
因此根据电路的功能单元,对电路的全部元器件进行总体布局。
同时考虑到电磁兼容性、热分布、敏感器件和非敏感器件、I/O 接口、复位电路、时钟系统等因素。
一般来说,整体布局时应遵守以下基本原则:1、当线路板上同时存在高、中、低速电路时,应该按逻辑速度分割:布置快速、中速和低速逻辑电路时,高速的器件(快逻辑、时钟振荡器等) 应安放在靠近连接器范围内,减少天线效应、低速逻辑和存储器 ,应安放在远离连接器范围内。
这样对共阻抗耦合、辐射和交扰的减小都是有利的。
高速电路中速电路(如低速电路接(如大规模数字控制电(如低频模口集成电路)路)拟电路)2、在单面板或双面板中,如果电源线走线很长,应每隔3000mil 对地加去耦合电容,电容取值为 10uF +1000pF ,滤除电源线上高频噪声。
电源线地线IC3000mil3、在单面板和双面板中,滤波电容的走线应先经滤波电容滤波,再到器件管脚,使电源电压先经过滤波再给IC 供电,并且IC 回馈给电源的噪声也会被电容先滤掉。
至于去耦电容安放位置要根据实际情况来定,并不是绝对放在电源正极处,也可能放在电源负极处,原则上保证接地阻抗最小。
4、时钟线、总线、射频线等强辐射信号线远离接口外出信号线至少1000mil ,避免强辐射信号线上的干扰耦合到外出信号线上向外辐射,晶体、晶振、继电器、开关电源等均为强辐射器件布局时应着重考虑。
i noise晶振L5、滤波器(滤波电路)的输入、输出信号线不能相互平行、交叉走线,避免滤波前后的走线直接噪声耦合。
Input Output6、对于始端串联匹配电阻,应靠近其信号输出端放置,即驱动源放置。
7、为 IC 滤波的各滤波电容应尽可能靠近芯片的供电管脚放置,减少高频回路面积,从而减少辐射。
8、在PCB 板上,接口电路的滤波、防护以及隔离器件应该靠近接口放置,并且遵循先防护后滤波的原则。
9、线路板电源输入口的滤波电路应靠近接口放置。
10、当接口电路采用隔离方式进行滤波设计时,其RC、 LC 电路应采用如下布局,且隔离区其他层不允许有其他走线。
11、靠近 PCB 板边缘 4mm 以内不允许放置元器件。
12、按照电路信号的流向安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向,信号走线最短、不产生回流。
13、以每个功能电路的核心元件为中心,围绕它来进行布局。
元器件应均匀、整齐、紧凑地排列在 PCB 上,尽量减少和缩短各元器件之间的引线和连线。
14、高频工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件同一方向排列。
15、尽可能缩短高频元器件之间的参数,减少它们的分布参数和相互间的电磁干扰。
易受干扰的器件不要相互挨得太近,输入和输出元件应尽可能远离。
16、元器件的位置应按电源电压、数字及模拟电路、速度快慢、电流大小等进行分组,以免相互干扰。
根据元器件的位置可以确定印制板连接器各个引脚的安排。
所有连接器应安排在印制板的一侧,尽量避免从两侧引出电缆,减少共模辐射。
17、高频滤波电容必须放在每个IC 电源的引脚附近,减少对地回路,且要求每个电源引脚放一个高频小电容。
18、存在较大电流变化的单元电路或器件(如电源模块的I/O ,风扇及继电器)附近应放置储能电容和高频滤波电容。
二、印制板布线在印制板布线时,应先确定元器件在板上的位置,然后布置地线、电源线,再安排高速信号线,最后考虑低速信号线。
应先布地线,这条规则很重要,地线最好布成网状布置。
(1)电源线:在考虑安全条件下,电源线应尽可能靠近地线,以减小差模辐射的环面积,也有助于减小电路的交扰。
(2)时钟线、信号线和地线的位置:信号线与地线距离应较近,形成的环面积较小,时钟线两边应尽可能进行包地线处理,防止时钟信号对其他信号的串扰,且包地线要可能多的打地过孔与地平面相连,减少接地阻抗,防止地线成为一个发射天线。
◇时钟线包地处理(3)时钟线和信号线尽量不要换层走线,如确因实际情况需换层时,在走线过孔处,需打地过孔。
◇时钟线过孔处、信号线过孔处打地过孔(3)时钟线、总线、射频线等关键信号走线和其他同层平行走线应满足3W 原则。
(4)应避免印制电路板导线的不连续性:◇迹线宽度不要突变◇导线不要突然拐角,信号走线避免“毛剌”、“锐角”、“直角”、“宽度不一致”等情况。
◇导线不要突然拐角印制走线阻抗突变◇迹线宽度不要突变R晶振GND强烈的 EMI 源(5)输入输出线应尽可能避免相邻长距离的平等,减少输入输出间的串扰(差分线除外)。
(6)电路板上的滤波器(滤波电路)下方不要有其他无关信号走线。
Input Output(7)晶振走线尽可能靠近IC ,且在时钟线两边进行包地处理,时钟接地脚与CPU 接地脚应同层直接靠近连接,减少晶振接地回路。
时钟线的线宽至少 10mil, 护送地线的线宽至少 20 mil 。
时钟晶振下最好露出地铜皮,增加电容耦合。
(8)关键信号线(如时钟线、总线、接口信号线、很射频线、复位线、片选线)一般都是强辐射源或敏感信号线,尽可能靠近地平面布线,使其信号回路面积减少,减少其辐射强度或提高抗干扰能力。
(9)高频信号线要远离时钟或晶振走线,如时钟线和高速信号线尽量不要平行走线,确因实际情况需平行走线,应用地线隔开。
(10)关键信号线距参考地平面边沿≥ 3H (H 为线距离参考平面的高度),特别是电源走线TraceH3H(11)模拟信号的高低电平信号线要分别走在地层两侧或电源两侧。
(12)差分信号线应同层、等长、并行走线,保护阻抗一致,差分线间不应有其他走线。
当确因实际情况要打过孔时,应同时打过孔,且不能相距太远。
V noiseV(13)关键信号线走线不要跨分区走线,如一定要跨分区走线,则在走线附近采用桥接方式,使信号形成完整回路。
(14)布线时应把回流面积最小化作为最高原则(14)电源平面应相对于其相邻地平面内缩20H,当因结构限制时,也应保证 5H 电源层H E地层20H电源层欢迎下载7(15)信号线和地址线的走线应避免形成地排或地沟三、电源的EMC设计电源方面的EMC 设计不仅仅包括开关电源的EMC 设计,还包括数字电路、模拟电路方面的电源 EMC 设计。
开关电源方面的EMC 设计主要包括电源前端共模滤波器、差模滤波器设计、开关变压器缓冲回路的参数设计、开关管和快速二极管的吸收回路的设计、开关变压器的屏蔽设计等项目。
主要根据具体产品来进行具体设计。
模拟电路和数字电路电源部分的EMC 设计是非常重要的一个部分,主要包括BULK 去耦电容的选择、 IC 去耦电容的选择、整体去耦电容的选择、磁珠的选择、滤波方式的选择等。
电源开关的交流回路、整流器交流回路包含高幅梯形电流,这些电流中谐波含量成分很高,其频率远大于开关基频,峰值幅值可高达持续输入/输出直流电流幅度的五倍,过渡时间通常为50ns,这两个回路最容易产生电磁干扰。
因此应优先布好这些回路,每个回路中的三种主要器件:滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行设置,调整元器件位置使它们之间的电流回路路径尽可能的短。
开关电源的布线规则为:1、所有传送交流信号的引线要尽可能的短而宽。
2、尽可能地减少环路面积,以抑制开关电源的辐射干扰。
3、根据印刷线路板电流的大小,尽可能地加粗电源线宽度,减少环路电阻。
4、电源线、地线的走线与电流的方向一致,增加抗噪声能力。
开关电源的地线设计规则为:1、通常选择单点接地:输入滤波电容公共端应是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,且本级电路的滤波电容应接在该级接地点上,主要是考虑电路各部分回流到地的电流是变化的。
2、尽量加粗接地线:地线宽度最好是地线宽度比电源线宽,如有可能接地线宽度大于3mm ,也可以用大面积铜层作为地线用,在印刷板上把没有用上的地方都与地相连,作为地线。
3、控制芯片的接地设计:功率地与信号地最终归为一个地,但功率地与电源地要形成回流,信号地与信号线形成回流,切不可把功率地和信号地混淆,功率地和信号地最终实现单点接地。
IC 控制地最好在其他交流电路环路都布置好后再放置,控制地要通过一特定的点连接到主电源地,减少检测部分、误差放大器和敏感输入端之间的连接而引入噪声。
四、数字电路的 EMC设计数字电路的EMC 设计主要包括有源器件的选择、时钟电路的EMC 设计、数据总线和地址总线的 EMC 设计、阻抗匹配和接地反弹的设计、总线驱动器的滤波设计等。
首先应注意器件的选择:应优先选用器件上升沿平滑的器件。
高速数字器件的布线易产生振铃。
该振铃通常表现为谐波发射。
通常的解决方法是在高速数据线上串一个阻尼电阻或串一个磁珠。
90%的 EMI 是由于10%的关键电路引起的,因此布线时要特别关注关键电路的布线。
关键电路主要有时钟电路、高速数据总线、地址总线、复位线、中继线、控制线等,布线时应优先布好这些关键线路。
高速数据电路的接地设计为 : 一般采用多点接地,减少接地阻抗。
高速数据电路的电源设计为:电路板入口处的电源去耦:大多数电路板的电源入口处去耦包括一个大的去耦电解电容并一到两个小的高频去耦电容,主要作用是为数字电路提供再充电,同时减少高频噪声。
器件去耦:任何钟控器件(除微处理器外),必须在电源引脚加高速电容去耦,如果提供了多个电源和地线的管脚都必须加去耦电容。
高速数据电路的布线规则为:(1)时钟线、信号和地线的位置:信号线与地线距离应较近,形成的环面积较小,时钟线两边应尽可能进行包地线处理,防止时钟信号对其他信号的串扰,且包地线要可能多的打地过孔与地平面相连,减少接地阻抗,防止地线成为一个发射天线。