热力学课件 第5章 气液平衡及相关计算
- 格式:ppt
- 大小:2.66 MB
- 文档页数:40
合肥学院Hefei University 《化工热力学》过程论文题目:气液平衡的计算方法系别: 化学与材料工程系专业:化学工程与工艺学号: 1303021001姓名:于晓飞教师:高大明气液平衡的计算方法摘要:气液平衡计算是化学过程中一项十分重要的计算。
气液平衡的计算方法有几种,活度系数法,状态方程法(EOS 法),GEMC 和GDI 方法计算流体气液相平衡.在气液平衡的计算中有三种泡点计算 、露点计算和闪蒸计算,这里我们对闪蒸计算不做研究.关键词:气液平衡 计算方法GEMC GDI 正文:气液平衡计算的基本公式及计算类型:相平衡的判据应用于气液平衡,即为:=fV iˆf L iˆ(i=1,2,3,…,N)式中,f iˆ为混合物中组分i 的逸度;上标V 指的是气相;上标L 指的是液相。
上式既是气液平衡的准则,有事气液平衡计算的基本公式。
具体应用时,需要建立混合物中组分的逸度fV iˆ、f L iˆ与体系的温度、压力以及气液相平衡组成关系.1.1活度系数法根据溶液热力学力论,将液相中组分的逸度与组分的活度系数相联系,简称活度系数法。
对液相,由活度与活度系数的定义式得出f L iˆ=fx iiiθγ式中,fiθ为标准态的逸度,以取Lewis —Randall 定则为基准的标准态,即纯液体i 在体系的温度下的逸度。
fiθ=fL i=dp pp RTs i V p Li S iS i⎰exp φ式中,指数项dp pp RT s i V Li ⎰exp 称为Poynting 因子,其意义是压力对fiθ影响的校正。
对气相将fL iˆ与fV iˆ表达式带入式中,得φˆV ip y i =dp p RTpL iS iS iiisiVp x ⎰expφγ (i=1,2,…,N )式中,y i和x i 分别为汽、液相中组分i 的摩尔分数;φˆV i为气相混合物中组分i 在体系温度T ,体系压力p 下的逸度系数;γi 为液相中组分i 的活度系数;p Si为纯组分i 在体系温度T 时的饱和蒸气压;φSi为纯组分i 在体系温度T 与其饱和蒸气压pS i时的逸度系数;V Li 为纯组分i 在体系温度T 时液相的摩尔体积。
气液平衡方程气液平衡是物理化学中的重要概念,描述了气体和液体相互作用的过程。
在很多实际应用中,了解气液平衡方程可以帮助我们理解和预测物质在不同温度和压力下的行为,从而为工业、环境和化学工程的设计提供依据。
1. 概述气液平衡是指在一定温度和压力下,气体和液体之间能够达到稳定的平衡状态。
气体分子和液体分子之间的相互作用力包括吸引力和斥力,主要有范德华力和表面张力。
在气液平衡中,液体分子蒸发形成气体,同时气体也会溶解在液体中。
当气体分子进入液体中,会和液体分子发生相互作用,并达到一种平衡状态,即液体的蒸发速率等于液体中气体的溶解速率。
这个平衡状态可以通过气液平衡方程描述。
2. 气液平衡方程的推导根据气体分子动理论和热力学中的平衡条件,可以推导出气液平衡方程。
在一定温度下,液体汽化的过程可以认为是液体分子逃逸出液体表面的过程。
根据反应速率和化学动力学的理论,液体汽化速率与液体表面上气体分子的数目成正比。
假设液体表面上每平方厘米有单位时间内蒸发或凝聚的分子数分别为dn1dt 和dn2dt,则单位时间内蒸发分子数与单位时间内凝聚分子数之差为:dn dt =dn1dt−dn2dt根据单位时间内蒸发分子数与单位时间内凝聚分子数之差等于单位时间内液体表面减少的分子数,可以得到:dn dt =−dNdt其中,dN表示单位时间内液体表面减少的分子数。
根据斯托克斯方程,可以将dN 表示为:dN=A⋅[P饱和−P]其中,A为液体表面积,P饱和为液体饱和蒸气的压强,P为液体与气体接触时的压强。
将dN的表达式带入上式,可以得到:dn=−A⋅(P饱和−P)dt考虑到饱和蒸气压与温度有关,即P饱和=f(T),可将上式改写为:dn=−A⋅[f(T)−P]dt又称为液体的蒸发速率r,用摩尔分数表示而单位时间内单位面积上蒸发分子数dndt为y1。
因此,可得到气液平衡方程的一般表达式:r=−A⋅[f(T)−P]3. 气液平衡方程的应用气液平衡方程的应用非常广泛,在工业、环境和化学工程的设计中经常被使用。