3.2 分式的乘除法
- 格式:ppt
- 大小:1.82 MB
- 文档页数:11
初中数学试讲稿《分式的乘除》【选自人教版数学八年级下册】各位评委老师好(鞠躬)我是应聘初中数学的3号考生,今天我抽到的课题是《分式的乘除》,下面开始我的试讲。
(所有的X,都是假装有数字或者公式,感谢各位配合)一、导入师:好,同学们上课师:大家小时候都见过大拖拉机和小拖拉机吧?见过它们耕地吗?生:(有的说有,有的说没有)师:有得见过有的没见过啊,没关系,那大家接着想一下假设大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,那请问大拖拉机的工作效率是小拖拉机的多少倍呢?师:大家动笔算算师:有请中间那位穿红衣服的女生说一下你的计算结果生:XX倍师:大家说她说的对不?生:对师:也就是,先分别算出大、小拖拉机的工作效率,然后直接求倍数,是吧?生:点头师:那大家再想一下假设有个长方体容器,容积为V,底面长为a,宽为b,,当容器内的水占容积的X时,水面的高度为多少?师:好,班长很快举起手了,那就请班长回答一下生:长方体容器本来的高为X,以为水占容积的X,长宽不变,所以水面的高为XXX师:班长很清晰的给大家分析出了水面的高度,那就像上面的问题,讨论数量关系时,有时需要进行分式的乘除运算,那么分式的乘除法有哪些法则呢?二、新授师:大家都知道分式与分数有类似的形式,所以学习分式的乘除运算之前,先回顾一下分数的乘除法则,谁能说说分数的乘除法则呢?师:好,最后那位男生生:分数乘法法则是分数乘分数,用分子的积作为积的分子,分母的积作为积的分母;除法是先把除式的分数的分子、分母颠倒位置后,再按照乘法法则与被除的分数相乘师:大家说这位男生说的完整不?说的对不对呀?生:对师:恩,这位男生说的很对,那接下来请大家按照前后桌为一组,进行分组,然后试着类比刚才分数的乘除法则,总结分式的乘除法则,讨论完后,举手示意师:好,各小组很快举起了手,再等等还没想好的同学师:大家都边商量边写完了,有请最先举手的前排这个小组说一下你们的结果生:乘法法则:俩分式相乘,用分子的积作为积的分子,分母的积作为分母;除法法则是,先把除式的分式分子分母颠倒位置后,再与被除式相乘师:恩,其他小组有需要补充的嘛?生:摇头示意师:那大家都认可这个小组的回答了?恩,的确刚才这位同学说的很正确,那么大家可以用数学式子来表示吗?用咱们数学语言来描述上述法则吗?提醒一下,大家可以用a、b、c、d........字母来表示分式的分子分母,自己在练习本上试着写写师:刚才我在下面看看了大家写的,大部分同学呢,写的很好,有得同学呢,把除法写错了,在这里,老师再次强调一下,除法其实也是转化为乘法来运算的,但是必须得先把除式的分子分母颠倒位置,其他不变,再与被除式相乘。
分式的乘除法课标与教材课标要求:要求会利用分式的基本性质进行约分和通分,会进行简单的分式乘、除法运算。
教材分析:分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
学情分析1学生在小学阶段已经学过分数的乘除法,知道掌握了分数的乘除法法则,。
在前面学习的整式乘法和分解因式,为分式的运算和结果的化简奠定基础。
2学生想知道分式的乘除运算法则 3.在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习教学目标一、知识技能:1、分式的乘除运算法则。
2、会进行简单的分式的乘除法运算。
二、数学思考:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
三、问题解决:通过类比分数的乘除运算法则,探索出分式的乘除运算法则。
四、情感态度:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
教学重点:分式乘除法的法则及应用.教学难点:分子、分母是多项式的分式的乘除法的运算。
【教学方法】自主探究、合作交流教学法.【教学媒体】多媒体课件教学过程1、创设情境,导入新课还记得我们小学学过的分数的乘除法吗?试一试看谁算的快。
=⨯=⨯92755432=÷=÷92755432 还记得运算的法则吗?口述一下。
如果把数换成字母你会算吗? 试一试:=⨯c d a b ;=÷cd a b 结合自己的运算,你能总结分式乘除法的法则吗?与同伴交流。
分式的乘除法的法则:二、自主学习、合作探究学习活动一:运用分式乘法法则进行计算例1 计算巩固练习:计算(1)c a a b ⋅; (2)y x xy xy y x 234322+⋅-; (3)2221x x x x x +⋅-; (4)2222(1)(1)x xy x y x x x x -+⋅--(5)222212444211a a a a a a a a -+-+⋅⋅--++ 在活动一、活动二的学习的过程中总结学生在解答过程中的易错点和注意点。
分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。
2. 培养学生运用分式的乘除法解决实际问题的能力。
3. 提高学生对分式运算的兴趣和自信心。
二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。
三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。
四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。
五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。
【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。
2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。
3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。
5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。
7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
8. 总结:让学生总结分式的乘除法运算规则,加深印象。
9. 课堂小测:进行课堂小测,了解学生掌握情况。
10. 课后作业:布置课后作业,让学生巩固所学知识。
六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。
2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。
3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。
七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。
2. 分析学生的学习困难,针对性地调整教学内容和策略。
青岛版数学八年级上册3.2《分式的约分》教学设计一. 教材分析《分式的约分》是青岛版数学八年级上册第三章第二节的内容。
本节课主要让学生掌握分式的约分方法,理解分式约分的原理,并能够灵活运用约分方法解决实际问题。
教材通过具体的例子引导学生探索分式约分的过程,总结约分的规律,为学生提供丰富的学习资源。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、分式的乘除法运算。
通过观察、操作、交流、归纳等活动,学生能够理解分式约分的概念和方法,并能够应用约分方法解决实际问题。
三. 教学目标1.理解分式约分的概念,掌握分式约分的方法和步骤。
2.能够运用分式约分方法解决实际问题。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.重点:分式约分的方法和步骤。
2.难点:灵活运用分式约分方法解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探索、发现问题,培养学生的独立思考能力。
2.运用合作学习法,让学生通过小组讨论、交流,共同解决问题,提高学生的团队协作能力。
3.采用案例教学法,结合具体例子,让学生直观地理解分式约分的概念和方法。
六. 教学准备1.准备相关的教学案例和练习题,以便进行课堂练习和巩固。
2.准备教学PPT,以便进行多媒体教学。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如:“某工厂生产A、B两种产品,A产品每件利润为20元,B产品每件利润为30元。
如果该工厂生产10件A产品和5件B产品,总利润为650元,那么该工厂生产1件A产品和1件B产品的利润分别是多少?”2.呈现(10分钟)呈现问题,引导学生观察、分析问题,发现其中的关系。
如:“10件A产品和5件B产品的利润可以表示为10 * 20 + 5 * 30,而总利润为650元,可以表示为10 * x + 5 * y,其中x表示1件A产品的利润,y表示1件B产品的利润。
”3.操练(10分钟)让学生进行小组讨论,共同解决问题。
分式的乘除法(一)教学知识点:1.掌握分式乘除法的运算法则。
2.会进行分式的乘除法的运算。
(二)能力训练要求:1.会通过类比的方法来理解和掌握分式的乘除法法则。
2.熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。
(三)情感与价值观要求:1.通过师生共同交流、探讨,使在掌握知识的基础上,认识事物之间的内在联系,获得成就感。
2.培养的创新意识和应用的意识。
教学重点让掌握分式乘除法的法则及其应用。
教学难点分子、分母是多项式的分式的乘除法的运算。
教学方法启发引导,小组合作。
教具准备多媒体课件、投影仪教学过程一、回顾旧知,引出新知设计说明:利用“数、式通性”“类比转化”的思想方法引发学生猜测,归纳分式乘除法运算法则,从而获得新知。
师:我们一起来看一道计算题,你会做吗?(黑板出示)生:(教师黑板书写答案)师:你能用文字来叙述出你做这道题的思路吗?生:分子乘以分子得到分子,分母乘以分母得到分母。
师:对,这就是小学所学的分数的乘法,这位同学说的很好。
我们大家一起来看看分数的乘法法则多媒体出示分数乘法法则:两个分数相乘,分母与分母相乘的积做为积的分母,分子与分子相乘的积做为分子二、建立模型,引入新课师:刚才我们做的是分数之间的乘法运算,那换成我们刚学过的分式,(黑板出示),大家来猜想一下应该等于多少呢?生:等于师:同学们还有没有不同的答案?(让学生讨论)师:对,分式的乘法与分数乘法类似,那你能说出分式乘法的法则吗?生:两个分式相乘,分母与分母相乘的积做为积的分母,分子与分子相乘的积做为积的分子。
师:说的太棒了,他已经帮我们归纳出了分式的乘法法则,(我们大家掌声鼓励一下)。
大家把他说的和幻灯片上分数乘法法则相对比一下,看一看有什么不同。
生:法则完全一样,一个是分数的乘法,一个是分式的乘法师:对,这个法则即适用与小学的分数乘法运算,同样也适用于分式之间的乘法运算。
我们看看分式的乘法法则教师采用多媒体用“分式”两字覆盖“分数”两字三、尝试练习师:现在我们大家来试一试,现在大家看刚才发的学案上面的1、2题,,你知道它等于多少吗?(口答)生:1题答案,生:2题答案四、强化拓展训练师:刚才两位同学回答的很好,现在请把3、4题做在你们的学案上(,)。
分式的乘除运算讲解1.引言1.1 概述分式是数学中重要且常见的概念,在解决实际问题中具有广泛的应用。
分式的乘除运算是我们在求解分式相关问题时必须掌握和应用的基础运算。
分式的乘法运算是指将两个分式相乘,得到一个新的分式。
而分式的除法运算则是将一个分式除以另一个分式,同样得到一个新的分式。
在实际生活中,我们经常遇到需要对分式进行乘除运算的情况,比如在购物中打折优惠、计算比例和比率等等。
为了正确进行分式的乘除运算,我们需要先了解分式的定义与性质。
分式可以看作是分子和分母之间带有分数线的数学表达式。
在分式中,分子表示分数的分子部分,而分母表示分数的分母部分。
分式的分子和分母都可以是整数、变量、或两者的组合。
在乘法运算中,我们将两个分式相乘,只需将它们的分子相乘,分母相乘,得到的积即为乘法结果的分子与分母。
而在除法运算中,我们将一个分式除以另一个分式,需要将被除数的分子与除数的分母相乘,被除数的分母与除数的分子相乘,从而得到商的分子与分母。
通过了解分式乘除运算的步骤和性质,我们可以更加灵活地对分式进行运算,解决实际问题中的各种分式运算题目。
分式的乘除运算不仅是数学中重要的基础知识,也是我们日常生活中的实际运用。
掌握了分式的乘除运算,我们能够更好地理解和应用数学知识,提高数学解题的能力和运算的准确性。
综上所述,本文将详细介绍分式的乘除运算的定义、性质以及运算步骤,并总结其应用与拓展。
通过学习与掌握分式的乘除运算,我们可以在数学解题中更加得心应手,为日常生活中的计算和问题解决提供帮助。
1.2 文章结构本文将按照以下结构进行分析和讲解分式的乘除运算。
2. 正文2.1 分式的乘法运算2.1.1 定义与性质2.1.2 乘法运算的步骤2.2 分式的除法运算2.2.1 定义与性质2.2.2 除法运算的步骤3. 结论3.1 总结分式的乘除运算在本章节中,我们通过详细解释分式的乘法与除法运算,掌握了其定义、性质以及实际操作步骤。
分式的乘除法练习及答案分式的乘除法练及答案运算法则:1)分式乘法法则:$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$2)分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$3)分式的乘方法则:$\frac{a}{n} \cdot \frac{n}{b} = \frac{a}{b}$1.下列各式的约分正确的是()A。
$\frac{2}{2(a-c)^2} = \frac{1}{a-c}$B。
$\frac{abc}{233+(a-c)^3} = \frac{abc}{233+a^3-3a^2c+3ac^2-c^3}$C。
$\frac{2}{a-b} = \frac{2}{a-b}$D。
$\frac{2a-c}{1-4a+c^2+2a^2} = \frac{2a-c}{(1+2a)(1-c)}$2.在等式$\frac{a^2+aM}{a+1} = \frac{a^2-1}{a}$中,M的值为()A。
$a$B。
$a+1$C。
$-a$D。
$a-1$3.XXX在下面的计算题中只做对了一道题,你认为他做对的题目是()A。
$\frac{111b}{1bab} \div 2 = \frac{1}{b}$B。
$\frac{2}{2} \div \frac{2}{2} = 1$C。
$\frac{2}{2} \cdot \frac{2}{2} = 1$D。
$(x-y) \div \frac{1}{2} = 2(x-y)$4.将分式$\frac{2}{x+1}+\frac{x}{x+1}$化简得,$x$满足的条件是$x \neq -1$5.化简1)$\frac{-x^2}{2b} = -\frac{x^2}{2b}$2)$\frac{2y}{3a} \cdot \frac{a}{2} = \frac{y}{3}$6.计算frac{2b^2-3ab^2x^2}{2} \div \frac{-3ab}{1+3ax} =\frac{2b(1-3ax)}{9a}$frac{x^2-y^2}{x^2+xy-a-2} \div \frac{x+y}{2y-a} \cdot \frac{2a^2+2a}{2a^2+2a} = \frac{(x-y)(2a+y)}{(x+2y-a)(2a+2y)}$frac{4m^2-4m+1}{4m^2-1} \div \frac{2}{2} = \frac{2m-1}{2m+1}$frac{(4x-y)}{2x-ym+1} \cdot \frac{m-1}{m+1} \div \frac{-4}{(7n^2-4x^2)(-8x^2)} = \frac{(4x-y)(m-1)(7n^2-4x^2)}{2(m+1)x^2}$frac{2xy}{-ynm} \div \frac{5}{4x^2} = -\frac{8x^3}{5nymy}$frac{a^2-14}{a^2+4a-1} \div (a+1) \cdot \frac{2a-1}{a+4} = \frac{2a-1}{a^2+4a-1}$。
在八年级上册的数学课程中,我们学习了一个重要的主题——分式的乘除。
分式是一种特殊的数学表达式,它包含了一个或多个字母,这些字母表示未知数。
分式的乘除运算与整数和小数的乘除运算有所不同,需要遵循一定的规则。
首先,我们来学习分式的乘法。
分式的乘法是将两个分式相乘,得到一个新的分式。
在进行乘法运算时,我们需要先将分子与分子相乘,然后将分母与分母相乘。
例如,计算2/3乘以4/5,我们可以得到(2*4)/(3*5)=8/15。
接下来,我们来学习分式的除法。
分式的除法是将一个分式除以另一个分式,得到一个新的分式。
在进行除法运算时,我们需要先将被除数的倒数乘以除数,然后进行乘法运算。
例如,计算2/3除以4/5,我们可以得到(2*5)/(3*4)=10/12=5/6。
在学习分式的乘除时,我们需要掌握一些基本的技巧和规律。
例如,我们可以将复杂的分式化简为最简形式,这样可以简化计算过程。
此外,我们还需要注意约分和通分的概念,这对于解决实际问题非常重要。
数学分式的计算方法数学分式是数学中常见的一种表达形式,它由分子和分母组成,分子和分母都可以是数或者变量的组合。
在计算数学分式时,我们需要掌握一些基本的计算方法和技巧。
一. 分式的加减法1. 分式的加法:当两个分式的分母相同时,可以直接将分子相加,并保持分母不变。
例如,计算1/3 + 2/3,由于分母相同,所以直接将分子相加得到3/3,即1。
2. 分式的减法:当两个分式的分母相同时,可以直接将分子相减,并保持分母不变。
例如,计算4/5 - 2/5,由于分母相同,所以直接将分子相减得到2/5。
3. 分式的加减法:当两个分式的分母不同时,我们需要先找到它们的最小公倍数作为通分的分母,并将分子进行相应的乘法运算后再进行加减。
例如,计算1/2 + 1/3,首先找到2和3的最小公倍数为6,然后将分子进行相应的乘法运算得到3/6 + 2/6,最后得到5/6。
二. 分式的乘除法1. 分式的乘法:将两个分式的分子相乘作为新的分子,分母相乘作为新的分母。
例如,计算2/3 * 4/5,将分子相乘得到8,分母相乘得到15,所以结果为8/15。
2. 分式的除法:将第一个分式的分子乘以第二个分式的倒数,作为新的分子,第一个分式的分母乘以第二个分式的分子,作为新的分母。
例如,计算2/3 ÷ 4/5,将2/3乘以5/4得到10/12,最后可以化简为5/6。
三. 分式的化简与约分1. 分式的化简:将一个分式的分子和分母同时除以它们的最大公约数,可以得到一个化简后的分式。
例如,将12/16化简为3/4,因为12和16的最大公约数为4,所以同时除以4得到3/4。
2. 分式的约分:将一个分式的分子和分母同时除以它们的公因子,可以得到一个约分后的分式。
例如,将15/25约分为3/5,因为15和25的公因子为5,所以同时除以5得到3/5。
四. 分式的整数部分和真分数部分1. 分式的整数部分:当一个分式的分子大于或等于分母时,可以将其化简为一个整数和一个真分数相加。