练习刚体转动解析
- 格式:pptx
- 大小:1.32 MB
- 文档页数:49
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
实验五 刚体转动的研究[目的]:1、 研究刚体转动时合外力矩与刚体转动角加速度的关系;2、 考查刚体的质量分布改变时对转动的影响。
[仪器]刚体转动实验仪(BD -J -101),砝码托,砝码片,细线,电子秒表,游标卡尺(0-150mm ,0.02mm ),物理天平(TW -1B ),钢卷尺,小螺丝刀。
图14-1为刚体转动实验仪的示意图。
图中1为均匀的横杆,2为可移动的圆柱形重物,3为塔轮,4为引线,5为滑轮,6为砝码。
横杆、重物和塔轮构成一转动系统,在砝码重力作用下可作匀角加速度的运动。
[原理]1、 根据刚体转动定律,转动系统所受合外力矩合M 与角加速度β的关系为:βI M =合 (14-1)其中I 为系统对回转轴的转动惯量。
合外力矩合M 主要由引线的张力矩M 和轴承的摩擦力矩阻M 构成,则: βI M M =-阻摩擦力矩阻M 是未知的,但是它主要来源于接触磨擦,可以认为是恒定的,因而将上式改为βI M M +=阻 (14-2)在此实验中,若要研究引线的张力矩M 与角加速度β之间是否满足式(14-2)的关系,就要测不同时M 的β值。
(1) 关于引线张力矩M设引线的张力为T F ,绕线轴半径为R ,则:R F M T =,又设滑轮半径为r ,其转动惯量为轮I ,转动时砝码下落加速度为a ,参照图14-2可以写出:ma F mg T =-1ra I r F r F T T 轮=-1 从上述二式中消去1T F ,同时取2'21r m I =轮('m 为滑轮质量),得出:)]21(['a mm a g m F T +-=在此实验中,)21('a mma +不超过g 的%3.0,如果要求低一些,可取mg F T ≈。
这时:m g R M ≈ (14-3) 在实验中是通过改变塔轮的R 来改变M 的。
(2) 角加速度β的测量测出砝码从静止开始下落到地板上的时间为t ,路程为s ,则平均速度tsv =,落到地板前瞬间的速度v v 2=,下落加速度t v a =,角加速度Ra=β,即: 22Rts=β (14-4) (3) 外力矩与角加速度的关系使用不同半径的塔轮,改变外力矩M ,测量各M 的角加速度β,作β-M 图线。
刚体旋转知识点归纳总结1. 刚体旋转的基本概念刚体是指在一定时间内,其内部各点的相对位置不改变的物体。
刚体旋转是指刚体围绕固定点或固定轴发生的旋转运动。
在刚体旋转中,需要引入一些基本概念:1.1 刚体的转动刚体的旋转可以是定点转动,也可以是定轴转动。
在定点转动中,刚体绕固定点旋转,而在定轴转动中,刚体绕固定轴旋转。
定点转动和定轴转动都是刚体旋转运动的两种基本形式。
1.2 刚体的转动角度和角速度刚体的转动角度是刚体在单位时间内所转过的角度,通常用θ表示。
刚体的角速度是指刚体单位时间内转过的角度,通常用ω表示。
在刚体定点转动中,角速度是刚体绕定点旋转的角度速度;在刚体定轴转动中,角速度是刚体绕定轴旋转的角度速度。
1.3 刚体的转动惯量刚体的转动惯量是衡量刚体抵抗旋转的惯性大小,通常用I表示。
刚体转动惯量的大小取决于刚体形状、质量分布以及旋转轴的位置。
对于质点组成的刚体,其转动惯量可以通过对质点的质量进行积分得到。
1.4 刚体的角动量刚体的角动量是刚体旋转运动的物理量,通常用L表示。
角动量的大小和方向分别由角速度和转动惯量决定。
在定点转动中,如果刚体的角速度和转动惯量都不变,那么刚体的角动量也保持不变;在定轴转动中,如果刚体绕固定轴旋转,那么刚体的角动量也保持不变。
2. 刚体的转动力学刚体的转动力学研究刚体在旋转运动中所受的力和力矩,包括转动定律、角动量定理、动能定理等内容。
2.1 刚体的平衡刚体旋转平衡需要满足一定的条件,包括力矩平衡条件和动量平衡条件。
刚体力矩平衡条件是指刚体所受的合外力矩为零;刚体动量平衡条件是指刚体所受的合外力矩关于某一点的力矩为零。
2.2 刚体的角动量定理刚体的角动量定理描述了刚体在受到外力矩作用下,其角动量的变化规律。
根据角动量定理,刚体所受外力矩产生的角动量变化率等于刚体所受外力矩的矢量和。
2.3 刚体的动能定理刚体的动能定理描述了刚体在旋转运动中,其动能的变化规律。
根据动能定理,刚体所受外力矩产生的功率等于刚体动能的变化率。
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
刚体转动的物理原理
刚体转动是指刚体围绕固定轴线的旋转运动。
对于一个刚体,其旋转运动的物理原理可以通过以下几个方面来解释:
1. 转动惯量:刚体的转动惯量代表了刚体围绕轴线旋转时对转动的惰性。
刚体的转动惯量与刚体的质量分布和绕轴线的位置有关。
转动惯量越大,对于同样的转动力矩,刚体转动的角加速度越小。
2. 转动力矩:刚体转动时,如果施加一个力矩以改变刚体的角动量,刚体就会产生角加速度。
转动力矩是指力在刚体上产生的旋转效果,它的大小等于力的大小乘以力臂的长度。
力臂是力相对于轴线的垂直距离。
3. 角动量守恒:在没有外力或外力作用力矩为零的情况下,刚体的角动量守恒。
刚体的角动量是指刚体沿轴线旋转时的动量,它等于刚体转动惯量乘以角速度。
角动量守恒意味着刚体在旋转过程中,如果没有外力或外力矩的作用,角动量保持不变。
4. 角动量定理:角动量定理描述了刚体转动时角动量的变化率等于作用在刚体上的外力矩。
即角动量的变化等于力矩的时间积分。
这个定理可以用来分析刚体在外力矩作用下的角加速度和角速度变化。
总之,刚体转动的物理原理主要涉及转动惯量、转动力矩、角动量守恒和角动量
定理等概念,通过这些原理可以解释和描述刚体转动的运动规律。
第三章 刚体定轴转动一、选择题1. 两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若B A J J >,但两圆盘的质量与厚度相同,如两盘的密度各为A ρ和B ρ,则(A )A B ρρ>(B )B A ρρ> (C )A B ρρ=(D )不能确定A ρ和B ρ哪个大答案:A 分析:22m m R R h hρππρ=→=,221122m J mR h πρ==,故转动惯量小的密度大。
2. 有两个半径相同、质量相等的细圆环。
1环的质量分布均匀,2环的质量分布不均匀。
它们对通过环心并与环面垂直的轴的转动惯量分别为1J 和2J ,则(A )12J J >(B )12J J < (C )12J J =(D )不能确定1J 和2J 哪个大 答案:C分析:22J R dm mR ==⎰,与密度无关,故C 选项正确。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度1ω按图1所示方向转动。
将两个大小相等、方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,则(A )12ωω>(B )12ωω= (C )12ωω<(D )不能确定如何变化答案:C分析:左边的力对应的力臂大,故产生的(顺时针)力矩大于右边的力所产生的力矩,即合外力距(及其所产生的角加速度)为顺时针方向,故圆盘加速,角速度变大。
4. 均匀细棒OA 的质量为M ,长为L ,可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )合外力矩从大到小,角速度从小到大,角加速度从大到小(B )合外力矩从大到小,角速度从小到大,角加速度从小到大(C )合外力矩从大到小,角速度从大到小,角加速度从大到小 (D )合外力矩从大到小,角速度从大到小,角加速度从小到大 答案:A分析:(定性)由转动定律M I β=可知,角加速度与力矩成正比,故B 、D 错误;由机械能守恒可知,棒在下落的过程中重力做功,故角速度从小到大,C 错误。
刚体旋转知识点总结图解一、刚体的定义刚体是指形状和大小在一定范围内不改变,结构完整,部分不会随着外力的作用而发生形变的物体。
刚体的旋转是指刚体绕着某个固定轴线旋转的运动。
二、刚体的转动定律1. 刚体的角位移:刚体绕固定轴线旋转时,每个质点的位移方向都与该质点的运动轨迹相切,并且线速度不同,但角速度相同。
2. 刚体的角加速度:刚体绕固定轴线旋转时,各质点的加速度虽然大小不同,但方向都垂直于该质点的运动轨迹,并与其对应的线速度方向一致。
3. 刚体的角动量:刚体绕固定轴线旋转时,当刚体的转动轴不经过质心时,刚体的角动量等于该点相对于质心的角动量之和。
三、刚体的转动定律1. 角动量定理:刚体绕固定轴线旋转时,刚体的角动量与外力矩之和等于刚体对旋转轴的角动量的变化率。
2. 动能定理:刚体绕固定轴线旋转时,刚体的动能等于刚体的角动量的变化率与角速度的乘积之和。
3. 动量矩定理:刚体绕固定轴线旋转时,刚体的角动量改变的原因是外力矩。
如果外力矩为零,则刚体的角动量是守恒的。
四、刚体的转动惯量1. 刚体的转动惯量:刚体绕固定轴线旋转时,刚体对于该轴线的转动惯量等于各质点到该轴线距离的平方与质点质量乘积之和。
2. 转动惯量的计算方法:刚体对于不同轴线的转动惯量计算是以刚体某一坐标轴为基准,按照平行轴定理或垂直轴定理进行转动惯量的计算。
3. 转动惯量的应用:刚体绕固定轴线旋转时,转动惯量的大小决定了刚体旋转的惯性大小。
转动惯量越大,刚体绕轴旋转越困难。
五、刚体的转动动力学1. 合力与合力矩:刚体绕固定轴线旋转时,合力是刚体质心的动力学性质,而合力矩是刚体绕轴线旋转的动力学性质。
2. 麦克尔斯定理:刚体绕固定轴线旋转时,如果刚体受到合力矩的作用,则该合力矩等于刚体在质心处受到的效力矩与刚体到该轴的距离的乘积。
3. 角动量矩定理:刚体绕固定轴线旋转时,角动量矩定理描述了刚体对旋转轴的角动量的变化率等于刚体受到的外力矩。
六、刚体的平衡与稳定1. 刚体的平衡:刚体绕固定轴线旋转时,刚体处于平衡状态可以分为静平衡和动平衡,其中静平衡是指刚体的合外力和合外力矩均为零,而动平衡是指刚体的合外力为零。
刚体定轴转动知识点总结1. 刚体的转动定轴刚体的转动定轴是指固定不动的直线,沿其进行转动的刚体的每一个质点所受的力矩的代数和等于零。
在实际中,通常通过支点来实现转动定轴,比如钟摆、摇摆、旋转的转轴等。
2. 刚体的角位移、角速度和角加速度在刚体定轴转动中,刚体围绕定轴线进行旋转,其角位移、角速度和角加速度是非常重要的物理量。
角位移表示刚体在围绕定轴线旋转的过程中所经过的角度变化量,通常用θ表示;角速度表示刚体围绕定轴线旋转的速度,通常用ω表示;角加速度表示刚体围绕定轴线旋转的加速度,通常用α表示。
3. 牛顿第二定律在刚体定轴转动中的应用牛顿第二定律也适用于刚体定轴转动的情况。
在刚体定轴转动中,外力会给刚体带来转动运动,根据牛顿第二定律,刚体的角加速度与作用在其上的外力矩成正比。
因此,可以根据力矩的大小和方向来分析刚体的转动运动。
4. 转动惯量和转动动能在刚体定轴转动中,转动惯量是一个非常重要的物理量。
转动惯量描述了刚体围绕定轴线旋转的难易程度,其大小与刚体的质量分布和轴线的位置有关。
转动动能是刚体围绕定轴线旋转的能量,其大小取决于刚体的转动惯量和角速度。
5. 转动定律和角动量守恒定律在刚体定轴转动中,转动定律和角动量守恒定律是非常重要的定律。
转动定律描述了刚体受力矩产生的角加速度与所受力矩的关系,角动量守恒定律描述了刚体转动过程中角动量的守恒规律。
6. 平衡条件和稳定性分析在刚体定轴转动中,平衡条件和稳定性分析是非常重要的内容。
通过平衡条件,可以分析刚体围绕定轴线旋转的平衡状态。
稳定性分析则是分析刚体在平衡状态下的稳定性,通常通过刚体的势能函数和平衡位置的稳定性来进行分析。
7. 应用领域刚体定轴转动的理论和方法在工程技术、航空航天、机械制造、物理学等领域都有重要的应用价值。
比如在机械制造中,可以通过分析刚体的定轴转动来设计机械装置;在航空航天中,可以通过分析刚体的定轴转动来设计飞行器的运动控制系统。