高中数学三角恒等式变形解题常用方法
- 格式:doc
- 大小:555.61 KB
- 文档页数:29
高中数学:9种常用三角恒等变换技巧总结三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益。
“切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想.在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α可视为α/2的倍角等等.遇平方可用“降次”公式,这是常用的解题策略.本题中首先化异角为同角,消除角的差异,然后化简求值.关于积化和差、和差化积公式,教材中是以习题形式给出的,望引起重视.跟代数恒等变换一样.在三角变换时,有时适当地应用”‘加一项再减去这一项” . “乘一项再除以同一项”的方法常能使某些问题巧妙简捷地得以解决.根据题目的特点,总体设元,然后构造与其相应的对偶式,运用方程的思想来解决三角恒等变换,也是常用的方法,本题也可以采用降次、和积互化等方法。
.目前高考中,纯三角函数式的化简与证明已不多见,取而代之的题目经常是化简某一三角函数,并综合考查这一函数的其他性质.但。
凡是与三角函数有关的问题,都以恒等变形、条件变形为解题的基石,因此本专题内容的重要性不言而喻.至于在三角条件恒等证明中如何用三内角和的性质、正余弦定理进行边角关系转换等,我们就不另加赘述了.。
三角恒等式证明9种基本技巧三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。
根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。
1.化角观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。
例1求证:tan23x - tan 21x =xx x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -21x ,可作以下证明:2.化函数三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。
例2 设AB A tan )tan(-+A C22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。
思路分析:欲证tan 2C = tanA ·tanB ,将条件中的弦化切是关键。
3.化幂应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。
例3求证 cos4α-4cos2α+3=8sin 4α 思路分析:应用降幂公式,从右证到左:4.化常数将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。
如1=sin 2α+cos 2α=sec 2α-tan 2α=csc 2α-cot 2α=tan αcot α=sin αcsc α=cos αsec α,1=tan450=sin900=cos00等等。
如何对常数实行变换,这需要对具体问题作具体分析。
例4 求证αααα22sin cos cos sin 21--=ααtan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2α+cos 2α”代替,问题便迎刃而解。
三角恒等变换的常见技巧一、核心技巧方法1、三角恒等变换中的“统一”思想:三角恒等变换的主要目的是异名化同名、异次化同次、异角化同角、异构化同构,即化异为同,也就是将待证式左右两边统一为一个形式,或将条件中的角、函数式表达为问题中的角或函数式,达到以已知表达未知的目的。
基本切入点是统一角,往往从统一角入手便能全面达到化异为同的目的。
2、统一思想的应用——引入辅助角:对x b x a y cos sin +=型函数式的性质的研究,我们常常引入辅助角ϕ。
即化ab x b a x b x a y =++=+=ϕϕtan ),sin(cos sin 22,然后将该式与基本三角函数x A sin y =进行比照研究。
“位置相同,地位平等”是处理原则。
3、统一思想的应用——拆、拼角,如()()()()22β-α+β+α=αβ-β+α=αβ+β+α=β+α,,等等;4、统一思想的应用——弦切互化,如利用万能公式,把正余弦化为正切等等;对关于正余弦函数的齐次式的处理也属于“弦化切”技巧;5、统一思想的应用——公式变、逆用,主要做法是将三角函数式或其一部分整理成公式的一部分,然后利用公式的这一部分与另一部分的等量关系代入6、代换思想的应用——关于正余弦对等式的处理,常以21t x cos x sin ,t x cos x sin 2-==+代入,把函数式化为关于t 的函数式进行研究;另外,三角代换也是处理函数最值、值域等问题的重要技巧。
二、考点解析与典型例题考点一 引入辅助角研究三角函数的性质例. 设f (x )=asin x ω+bcos x ω(0,,>ωb a )的周期为π且最大值f (12π)=4; 1)求ω、a 、b 的值;2)若α、β为f (x )=0的两个根(α、β终边不共线), 求tan (α+β)的值。
考点二 拆、拼角 例. 已知cos (91)2-=-βα,sin (2α-β)=32,且,20,2πβπαπ<<<<求.2cos βα+考点三 化弦为切例. 当π04x <<时,函数22c o s ()c o s s i n s i n x f x x x x=-的最小值是( ). (A )4 (B ) (C )2 (D ) 考点四 巧用公式例. 求︒︒+︒+︒28tan 17tan 28tan 17tan 的值。
高中数学三角恒等式变形技巧在高中数学的学习中,三角恒等式是一个重要的知识点。
学生们常常会遇到需要根据已知的三角恒等式来推导出新的恒等式的情况。
在这个过程中,掌握一些三角恒等式的变形技巧是非常有帮助的。
本文将介绍几种常见的变形技巧,并通过具体的例题进行说明。
一、平方差公式的变形平方差公式是我们在学习三角函数时经常接触到的一个恒等式,即:sin^2x - cos^2x = 1在解题过程中,我们常常需要根据这个公式来进行变形。
例如,以下是一道常见的题目:已知 sin^2x = 1/4,求 cos^2x 的值。
解析:首先,我们可以利用平方差公式将已知条件进行变形:sin^2x - cos^2x = 11/4 - cos^2x = 1然后,我们可以通过移项和化简的方法求解出 cos^2x 的值:cos^2x = 1/4 - 1cos^2x = -3/4通过这个例题,我们可以看到,利用平方差公式进行变形可以帮助我们解决一些关于三角函数平方的问题。
二、和差化积公式的变形和差化积公式是我们在学习三角函数时另一个重要的恒等式,即:sin(x ± y) = sinxcosy ± cosxsiny在解题过程中,我们可以利用这个公式将已知条件进行变形,从而得到新的恒等式。
例如,以下是一道常见的题目:已知 sin2x = 2sinx,求 cos2x 的值。
解析:首先,我们可以利用和差化积公式将已知条件进行变形:sin2x = 2sinxsin(x + x) = 2sinx然后,我们可以利用和差化积公式的逆向思维,将 sin(x + x) 进行变形:sin(x + x) = sinxcosx + cosxsinx2sinxcosx = 2sinx接着,我们可以通过移项和化简的方法求解出 cos2x 的值:sinxcosx = sinxcos2x = cos^2x - sin^2xcos2x = cos^2x - (1 - cos^2x)cos2x = 2cos^2x - 1通过这个例题,我们可以看到,利用和差化积公式进行变形可以帮助我们解决一些关于三角函数和的问题。
高一数学三角恒等变换的技巧三角恒等变换以三角函数基本关系、诱导公式、两角和与差的三角函数公式,倍角公式、半角公式等三角公式为基础,常见策略是:(1)发现差异;(2)寻找联系;(3)合理转换.基础思想是根据试题特点,灵活运用三角公式,使用配凑角、切化弦、降次或升幂等技巧,达到解决问题的目的.三角函数公式众多,方法灵活多变,同学们若能熟练掌握三角函数变换的技巧和化简的方法,可达到事半功倍的效果.下面就三角函数恒等变换的部分方法予以简单介绍,供大家参考.一、直接利用公式【方法点拨】根据式子特征,直接用公式展开是三角函数化简常用的方法,基本思路是异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.化简的标准是三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.在化简时要注意角的取值范围.二、公式的逆用【方法点拨】直接运用两角和与差的正弦或余弦公式常能将某些三角函数式化简,但深入观察三角函数式的结构特征,有时能巧妙地逆用公式,不仅丰富了解题技巧,而且过程简捷,不易出错.逆用公式的一些常见变形:三、切化弦【方法点拨】切化弦一般适用于不知切值或式子不能构成有关正、余弦函数的齐次分式.不能整体化切时,一般考虑切化弦,其目的是将正切、余切函数用正弦、余弦函数表示,这是一种常用的解题方法.当涉及多种三角函数时,常用此法减少函数的种类.这里除用化切为弦外,也常用到化异角函数为同角函数的技巧.四、弦化切五、用已知角表未知角【方法点拨】本题主要考查同角三角函数的基本关系、两角和与差的正弦公式的应用,转化过程中要特别注意符号的选取.观察式子特征,若已知角与所求角之间存在和、差、倍角、互余、互补等关系,即可用已知角表未知角的方法来求解.六、拆分角七、配凑【方法点拨】配凑法与方法五的基本思路一致,也是三角恒等变换中十分经典的一种方法.在解答时通过对目标式子中的角进行配凑,再利用三角公式和已知条件求得目标函数的值.在转换过程中同样要注意角的取值范围.常见的凑角技巧:总结三角函数式的化简要遵循“三看”原则(1)一看“角”.这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”.看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”.观察和分析结构特征,可以帮助我们找到变形的方向.三角函数式的化简与求值是三角函数中的基础考点之一,也是高考中的常见题型,打好三角函数的基础对同学们高考也大有裨益.本文主要介绍了几种常用的方法,希望对同学们解决三角函数化简求值问题能有所帮助.。
三角恒等变换的方法与技巧三角恒等变换是三角函数中的主要部分,是培养学生等价转化与化归思想、逻辑思维能力、知识的联系性与灵活性的重要内容。
下面举例说明三角恒等变换的方法与技巧。
一、变角角是研究三角函数问题的切入点.若表达式中出现了较多相异的角,必须对比分析变换对象与变换目标,其余的角都朝目标角转化.这是三角变换最基本的策略。
例1.已知cos(α-■)=-■,sin(■-β)=■(■<α<π,0<β<■)求cos(α+β)的值解析:由已知得■ <α-■<π,-■<■-β<■∴sin(α-■)=■,cos(■-β)=■∴cos■=cos[(α-■)-(■-β)]=cos(α-■)cos(■-β)+sin(α-■)sin(■-β)=-■∴cos(α+β)=2cos2■-1=-■点评:(α-■)-(■-β)=■ α+β=2·■注意角的拼凑、拆分,倍、半的相对性。
二、变函数名称若表达式中函数种类较多,变形困难,应尽量减少函数种类.这是恒等变换的又一策略。
例2.已知锐角α,β满足tan(α-β)=sin2β,求证:2tan2β=tanα+tanβ解析:∵sin2β=■∴■= ■t anα=■∴tanα+tanβ=■=2tan2β点评:弦化切,同一为切,正用、逆用公式.三、变结构对较复杂的表达式,一般先变形结论,再寻找由条件得到的有用结论,合理选择公式,建立差异间联系,解决问题。
例3.已知cos(■+x)=■,■<x<■,求■的值解析:■=■=■= 2sinxcosx·■=2sinxcosx·tan(■+x)由■<x<■得■<x+■<2π,又cos(■+x)=■∴sin(■+x)=-■,tan(■+x)=-■cosx=cos[(■+x)-■]=-■,sinx=-■∴■=-■点评:在综合变角、变名的基础上,首先对所求复杂式子结构恒等变形,再结合已知条件,寻找目标。
9种常用三角恒等变换技巧总结三角函数是数学中一种重要的函数,它广泛应用于几何、物理、工程等领域。
而在解题过程中,常常需要通过三角恒等变换技巧来简化或转换问题,以便更容易求解或证明。
下面我们将总结一下常用的九种三角恒等变换技巧。
1.正弦和余弦平方和恒等式:sin^2(x) + cos^2(x) = 1这是最基本的三角恒等式,即正弦和余弦的平方和等于1、它在很多场合都会被应用到,例如求解三角方程、证明三角函数的性质等。
2.余弦的二倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)这个公式可以将一个角的余弦值转化为另一个角的余弦值,同时也可以将余弦值转化为正弦值。
它在解决一些二次方程和证明一些三角恒等式的时候非常有用。
3.正弦的二倍角公式:sin(2x) = 2sin(x)cos(x)这个公式可以将一个角的正弦值转化为另一个角的正弦值,或者将正弦值转化为余弦值。
它在解决一些二次方程和证明一些三角恒等式的时候非常有用。
4.正切的和差公式:tan(x±y) = (tan(x)±tan(y))/(1∓tan(x)tan(y))这个公式可以将两个角的正切值的和或差转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和或差。
它在解决一些三角方程和证明一些三角恒等式的时候非常有用。
5.两角和差公式:sin(x±y) = sin(x)cos(y)±cos(x)sin(y)cos(x±y) = cos(x)cos(y)∓sin(x)sin(y)这些公式可以将两个角的正弦值或余弦值的和或差转化为一个角的正弦值或余弦值,或者将一个角的正弦值或余弦值转化为两个角的正弦值或余弦值之和或差。
它们在解决一些三角方程和证明一些三角恒等式的时候非常有用。
6.正切的和公式:tan(x+y) = (tan(x)+tan(y))/(1-tan(x)tan(y))这个公式可以将两个角的正切值的和转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和。
高中数学三角恒等式解题技巧在高中数学中,三角恒等式是一个重要的概念,经常出现在各种数学考试中。
掌握解题技巧对于学生来说是至关重要的。
本文将介绍一些常见的三角恒等式解题技巧,并通过具体的题目来说明这些技巧的应用。
一、基本的三角恒等式首先,我们需要掌握一些基本的三角恒等式。
这些恒等式是通过三角函数的定义和性质推导出来的,是解题的基础。
1. 余弦的平方加正弦的平方等于1:cos²θ + sin²θ = 1这个恒等式是最基本的三角恒等式,也是其他恒等式的基础。
2. 余弦的倒数等于正弦:cosθ =1/sinθ正弦的倒数等于余弦:sinθ = 1/cosθ这两个恒等式可以互相转化,并在解题过程中起到简化计算的作用。
二、应用题解析下面我们通过具体的题目来说明三角恒等式的解题技巧。
例题1:已知sinθ = 3/5,求cosθ。
解析:根据基本三角恒等式cos²θ + sin²θ = 1,我们可以得到cos²θ = 1 - sin²θ。
将已知的sinθ代入,得到cos²θ = 1 - (3/5)² = 1 - 9/25 = 16/25。
因此,cosθ =±√(16/25) = ±4/5。
例题2:已知sinθ = 2/3,求tanθ。
解析:根据tanθ = sinθ/cosθ,我们需要先求出cosθ。
根据基本三角恒等式cos²θ + sin²θ = 1,我们可以得到cos²θ = 1 - sin²θ。
将已知的sinθ代入,得到cos²θ = 1 -(2/3)² = 1 - 4/9 = 5/9。
因此,cosθ = ±√(5/9) = ±√5/3。
将sinθ和cosθ代入tanθ =sinθ/cosθ,得到tanθ = (2/3) / (√5/3) = 2/√5 = 2√5/5。
高中数学的解析如何利用三角恒等变换解决数学问题高中数学是培养学生数理思维和解决问题能力的重要学科,其中解析几何和三角函数的学习尤为重要。
在解析几何中,使用三角恒等变换可以简化问题的研究和解决过程。
本文将探讨高中数学的解析如何利用三角恒等变换解决数学问题,并给出实例说明。
一、三角恒等变换的基本概念在学习解析几何和三角函数之前,我们先来了解一下三角恒等变换的基本概念。
三角恒等变换是指在三角函数的运算过程中,通过等式的变形来简化计算的方法。
常用的三角恒等变换有正弦定理、余弦定理、和差化积公式等。
例如,正弦定理可以表达为:$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$其中,a、b、c分别为三角形的边长,A、B、C分别为对应的内角,R为三角形的外接圆半径。
二、解析几何中的三角恒等变换在解析几何中,我们通过运用三角恒等变换来简化和推导问题的解决过程。
以一个简单的例子来说明。
例1:已知直线L的对称点在直线L'上,且L:2x+y-3=0,L':3x-y-8=0,求直线L与L'的交点坐标。
解:设交点坐标为(x0, y0),代入直线方程得:2x0 + y0 - 3 = 03x0 - y0 - 8 = 0通过观察以上的方程,我们可以发现其中存在一个正弦关系。
为了简化解题过程,我们可以利用正弦关系进行求解。
令2x0 + y0 - 3 = A3x0 - y0 - 8 = B通过求解A和B之间的关系,可以得到:2A + B = 133A - B = 11通过联立方程组求解,可以得到:A = 5B = 3将A和B带入原方程,可以解得:x0 = 2y0 = -1因此,直线L与L'的交点坐标为(2, -1)。
通过以上的例子,我们可以看到,在解析几何中,通过利用三角恒等变换来简化问题的解决过程,不仅可以减少计算量,还可以提高问题解决的效率。
高二数学解三角恒等式的方法与技巧解三角恒等式是高中数学中的重要内容,也是考试中常见的题型之一。
掌握解三角恒等式的方法与技巧,不仅有助于理解三角函数的性质,还能提高解题效率。
下面将介绍几种常用的解三角恒等式的方法与技巧。
一、代入法代入法是解三角恒等式中常用且简便的一种方法。
具体操作如下:1. 将待证的恒等式两边分别用三角函数表示。
2. 根据已知的三角恒等式或性质,将原恒等式中的某些项替换成等价形式。
3. 将等式两边进行化简和变形,最终使等式两边完全一致。
示例1:证明恒等式sinθ / cosθ = tanθ。
解:根据代入法,将等式左边用三角函数表示得sinθ / cosθ,而右边用三角函数表示得tanθ。
根据三角函数的定义和性质,可以将等式左边进行变形,得到sinθ / cosθ = sinθ / cosθ * cosθ / cosθ = (sinθ cosθ) / (cosθ^2) = sinθ / (1 - sin^2θ)。
然后再通过三角函数的定义,将等式右边变形为sinθ / (1 - sin^2θ),经过化简后,等式左边和右边完全一致,从而证明了原恒等式。
二、化简法化简法是解三角恒等式的另一种常用方法,它通过一系列的化简和变形,将复杂的恒等式转化为简单的形式。
1. 利用三角函数的和差化积公式,将较复杂的三角函数表达式化简为简单的形式。
2. 运用三角函数的平方和差公式,将含有平方项的三角恒等式化简为不含平方项的形式。
3. 利用三角函数的倒数公式,将含有倒数的三角恒等式转化为不含倒数的形式。
示例2:证明恒等式sin^2θ - cos^2θ = -cos2θ。
解:根据化简法,利用平方差公式sin^2θ - cos^2θ = sin^2θ - (1 -sin^2θ) = 2sin^2θ - 1 = -cos(2θ)。
通过对等式两边进行化简和变形,可以得到等式左边和右边完全一致,从而证明了原恒等式。
高中数学三角恒等式变形解题常用方法一.知识分析1. 三角函数恒等变形公式(1)两角和与差公式(2)二倍角公式(3)三倍角公式(4)半角公式(5)万能公式,,(6)积化和差,,,(7)和差化积,,,2. 网络结构3. 基础知识疑点辨析(1)正弦、余弦的和差角公式能否统一成一个三角公式?实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。
另外,公式虽然形式不同,结构不同,但本质相同:。
(2)怎样正确理解正切的和差角公式?正确理解正切的和差角公式需要把握以下三点:①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。
②公式都适用于为任意角,但运用公式时,必须限定,都不等于。
③用代替,可把转化为,其限制条件同②。
(3)正弦、余弦、正切的和差角公式有哪些应用?①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。
②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。
③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函数式,要注意公式可以正用,逆用和变用。
运用这些公式可求得简单三角函数式的最大值或最小值。
(4)利用单角的三角函数表示半角的三角函数时应注意什么?先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,,分别叫做正弦、余弦、正切的半角公式。
公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。
另外,容易证明。
4. 三角函数变换的方法总结三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。
三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。
下面通过例题的解题说明,对三角恒等变换的解题技巧作初步的探讨研究。
(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b均不为0,求a、b的关系。
解析:已知显然有:由①³cos2θ+②³cosθ,得:2acos2θ+2bcosθ=0即有:acosθ+b=0又a≠0所以,cosθ=-b/a ③将③代入①得:a(-a/b)2-b(-b/a)=2a即a4+b4=2a2b2∴(a2-b2)2=0即|a|=|b|点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系式。
(2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
解析:设θ+15°=α,则原式=sin(α+60°)+cos (α+30°)-cosα=(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα=sinα+cosα+cosα-sinα-cosα=0点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。
【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=证明:已知条件可变为:sin[(α+β)-β]=Asin (α+β)所以有:sin (α+β)cosβ-cos (α+β)sinβ=Asin (α+β)∴sin (α+β)(cosβ-A)=cos (α+β)sinβ∴tan(α+β)=点评:在变换中通常用到视“复角”为“单角”的整体思想方法,它往往是寻找解题突破的关键。
(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。
这其中以“1”的变换为最常见且最灵活。
“1”可以看作是sin2x+cos2x,sec2x-tan2x,csc2x -cot2x,tanxcotx,secxcosx,tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。
【例4】化简:解析:原式====点评:1=“”的正用、逆用在三角变换中应用十分广泛。
(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。
这往往用到倍、半角公式。
【例5】解三角方程:sin2x+sin22x=sin23x解析:原方程变形为:(1-cos2x)+(1-cos4x)=(1-cos6x)即:1+cos6x =cos2x+cos4x2cos23x =2cos3x cosx得:cos3x sin2x sinx =0解得:x=+或x=()∴原方程的解集为{x| x=+或x=,}点评:题中先降次后升幂,这种交错使用的方法在解三角方程中时有出现,其目的是为了提取公因式。
(5)添补法与代数恒等变换一样,在三角变换中有时应用添补法对原式作一定的添项裂项会使某些问题很便利地得以解决。
将原式“配”上一个因子,同时除以这个式子也是添补法的一种特殊情形。
【例6】求证:=证明:左边======右边∴原式成立。
点评:本例中采用“加一项再减去一项”,“乘一项再除以一项”的方法,其技巧性较强,目的都是为了便于分解因式进行约分化简。
(6)代数方法三角问题有时稍作置换,用各种代数方法对三角函数式作因式分解、等量置换等的变形,从而将三角问题转换成代数问题来解,而且更加简捷。
这其中有设元转化、利用不等式等方法。
【例7】锐角α、β满足条件,则下列结论中正确的是()A.α+β≠B. α+β<C. α+β>D. α+β=解析:令sin,则有整理得:(a-b)2=0即a=b即:sin2α=cos2β(α,β同为锐角)∴sinα=cosβ∴α+β=,故应选D。
点评:本例用设元转化法将三角问题转化为代数问题。
换元法这种数学思想应用十分广泛,往往能收到简捷解题的效果.(7)数形结合有的三角变换问题蕴含着丰富的几何直观,此时若能以数思形,数形渗透,两者交融,则可开辟解题捷径。
利用单位圆,构造三角形,利用直线、曲线的方程等方法都是数形结合的思想。
【例9】已知:,,求的值。
解析:∵点A,B均在单位圆上。
由已知条件知:AB的中点坐标为C(1/6,1/8),即直线AB过定点C如下图所示∠xOC=∴∴据万能公式得:点评:本题用和差化积公式也不难求得,但在三角问题中利用单位圆是常见的研究方法。
数形结合方法在三角变换中应用类型颇多,篇幅所限,仅举一例,本文不赘。
从六、七两种方法可以看出,将代数、几何与三角有机联系起来,综合运用,在解三角变换题中,不仅构思精巧,过程简易,趣味横生,而且还沟通数学知识的纵横关系,也有利于多向探求,广泛渗透,提高和发展学生的创造性思维能力。
以上探讨了三角变换中的七种变换思想和解题方法,在实际解题中这些方法是交织在一起的,混合于同一问题中灵活使用。
掌握这些变换方法的前提是熟悉公式,善于公式的变形运用,同时注意纵横联系数学知识用发散性的思维考虑问题。
三角变换的技巧除了以上七个方面外,还有平方消元,万能置换,利用正余弦定理进行边角转换,利用辅助角,借用复数表示等方法我们以后有机会再介绍。
5. 非特殊角的化简、求值问题的解题方法探究非特殊角的化简求值是给角求值中一类常见的三角求值类型,对于此类求值问题,由于涉及到的三角公式及其变形灵活多样,因而如何利用三角公式迅速准确的求值应是解决这类问题的重点,现在我们通过一个题目的解法探寻,体会非特殊角三角函数的求法。
【题目】求的值。
分析1:这是一道给角求值中非特殊角的化简求值问题,仔细观察可看出在所求式子中有一项是正切函数、一项是正弦函数,因此通常运用切割化弦,然后通过通分化简,使其化为特殊的三角函数值。
解法1:点评:通分以后,要将和式转化为积式,需将拆项为,这是将和式转化为积式中常用的变形手段,在将和差化积后要尽可能的出现特殊角特殊值,这样才有可能使化简得以进行下去。
分析2:运用切割化弦,通过通分化简后,若不考虑将和式转化为积式,而是对角进行变换,观察到运算的式子中出现的两角为20°,40°,与特殊角比较则会有60°-40°=20°,变角后再应用两角差的正弦公式展开进行化简。
解法2:分析3:我们在运用“切割化弦”时,若不利用商数关系,而是将tan200利用半角公式进行化弦,也能进行求值。
解法3:分析4:从以上路径可以看出,而是一个特殊的三角函数值,考虑它等于什么呢?,因而考虑可否会有,这样问题就转化为等式的验证。
解法4:∴有点评:本路径采用了综合法,只进行等式的验证,问题就得以解决。
分析5:利用倍角公式可得到,能否再对角进行适当的变换,出现特殊角,我们发现40°=60°一20°,这样变角后利用两角差的正弦公式展开化简,也能求值。
解法5:将等式可写成两边同除以得点评:本题利用综合法求得了的值,在这里首先进行角的变换,然后利用两角差的正弦公式展开,合并同类项后,再进行弦化切割,从而得到所要求的值。
以上我们探寻了不查表求非特珠角的三角函数的值的问题,对于这类问题,要从多方面考虑解决的方法,在这里我们是从三角函数的“变名”“变角”“变式”“切割化弦”弦化切割”等方面而进行了三角恒等变形,这在以后的学习训练中要逐步体会掌握。
【典型例题】例1. 化简cos(π+α)+cos(π-α),其中k∈Z。
解析:解法一:原式=cos[kπ+(+α)]+cos[kπ-(+α)]=cos kπcos(+α)-sin kπsin(+α)+cos kπcos(+α)+sin kπsin(+α)=2cos kπcos(+α),(k ∈Z)当k为偶数时,原式=2cos(+α)=cosα-sinα当k为奇数时,原式=-2cos(+α)=sinα-cosα总之,原式=(-1)k(cosα-sinα),k∈Z解法二:由(kπ++α)+(kπ--α)=2kπ,知cos(kπ--α)=cos[2kπ-(+α+kπ)]=cos[-(kπ++α)]=cos(kπ++α)∴原式=2cos(kπ++α)=2³(-1)k cos(+α)=(-1)k(cosα-sinα),其中k∈Z点评:原式=cos(kπ++α)+cos(kπ--α)=cos[kπ+(+α)]+cos[kπ-(+α)]这就启发我们用余弦的和(差)角公式。