一种基于知网语义相似度计算的应用研究
- 格式:pdf
- 大小:167.00 KB
- 文档页数:5
基于《知网》的词汇语义相似度计算
《知网》是一个中文语料库,可以用来进行文本语义相似度计算。
常
见的基于《知网》的词汇语义相似度计算方法有:
1.基于《知网》的同义词词林:《知网》中的同义词词林收录了大量
的同义词、近义词和相关词,可以通过比较两个词在同义词词林中的位置,来衡量它们的语义相似度。
比如,可以通过比较两个词在同一类和同一级
别下的位置,来判断它们的相似度。
2.基于《知网》的词语标注:《知网》中的词语标注包括词义分类和
关系标注等信息,可以通过比较两个词的词义分类和关系标注信息,来衡
量它们的语义相似度。
3.基于《知网》的词语关联度计算:可以通过计算两个词在《知网》
中的关联度来判断它们的语义相似度。
常用的方法有基于路径的关联度计
算和基于信息内容的关联度计算。
这些方法都是基于《知网》的语料库信息进行计算的,可以根据具体
需求选择适合的方法进行词汇语义相似度计算。
使用网络搜索引擎计算汉语词汇的语义相似度高国强;黄吕威;陈丰钰【摘要】Similarity computation of Chinese words is a key problem in Chinese information processing. It measures semantic similarity between Chinese words using the information returned by web search engines. First,implement a model named WebPMI which computes similarity using page counts,and then,describe another model named CODC which analyzes semantic similarity using text snippets. Final-ly,present the algorithm based on the two models. Experimental results show that this algorithm outperforms all the existing web-based semantic similarity measures for Chinese,and is close to the traditional semantic similarity measures using lexicon.%汉字词语的语义相似度计算是中文信息处理中的一个关键问题。
文中利用网络搜索引擎提供的信息来计算汉语词对的语义相似性。
首先通过程序访问搜索引擎,获取汉字词汇的搜索结果数,并依此实现了相似度计算模型WebPMI;然后描述了根据查询返回的文本片段进行语义相关性分析的模型CODC;最后,结合这个两个模型,给出了文中算法的伪代码。
一种改进的本体语义相似度计算及其应用随着信息技术的发展和应用场景的增加,语义相似度计算变得越来越重要。
语义相似度计算可以用于自然语言处理、信息检索、机器翻译和智能问答等领域。
本文介绍一种改进的本体语义相似度计算方法,并阐述其在应用中的重要性和优势。
本体语义相似度计算方法是基于本体领域知识的语义相似度计算方法。
本体是一种用于描述和组织领域知识的形式化表示。
本体中定义了概念、属性、关系等元素,可以用于知识管理、语义分析和本体推理等应用。
本体语义相似度计算方法利用本体中定义的概念和关系来计算两个概念之间的相似度。
传统的本体语义相似度计算方法主要是基于本体结构以及语义相似度算法(如路径相似度、信息内容量等)来计算相似度。
但是,这些方法忽略了概念在不同语境下的语义变化和词语嵌入(词向量)的信息。
为了解决这些问题,我们提出了一种改进的本体语义相似度计算方法。
该方法的核心思想是综合考虑结构、语境和词向量等多种信息。
具体来说,该方法将词语嵌入与本体结构和语境信息相结合,构建了一个基于词向量的本体语义相似度计算模型。
该模型分为三个部分:(1)本体结构特征提取;(2)语境信息特征提取;(3)词向量相似度计算。
在本体结构特征提取中,我们利用从知网获取的概念之间的ISA关系和Part-Whole关系,构建了一个树形结构表示本体。
通过遍历该树形结构,提取出每个概念的特征向量。
在语境信息特征提取中,我们利用WordNet中的同义词和反义词关系,以及概念在本体中的上下文信息,对每个概念进行特征提取。
在词向量相似度计算中,我们使用了word2vec算法生成的词向量,并使用余弦相似度计算两个概念之间的词向量相似度。
该方法有以下优势:首先,它综合考虑了多种信息,包括本体结构、语境和词向量等,可以更加准确地计算两个概念之间的相似度;其次,该方法能够自动学习概念的语义特征,更加符合人类的语义感知;最后,该方法扩展性好,能够应用于不同领域的本体语义相似度计算。
基于《知网》义原空间的文本相似度计算研究与实现重庆大学硕士学位论文(学术学位)学生姓名:张*指导老师:罗军副教授专业:计算机系统结构学科门类:工学重庆大学计算机学院二〇一三年四月Research and Implementation of Text Similarity Computing Based on HowNetSememe SpaceA Thesis Submitted to Chongqing Universityin Partial Fulfillment of the Requirement for theMaster‟s Degree of EngineeringByZhang KeSupervised by Associate Prof. Luo JunSpecialty: Computer System ArchitectureCollege of Computer Science ofChongqing University, Chongqing, ChinaApril 2013重庆大学硕士学位论文中文摘要摘要文本相似度计算是知识产权保护、文本分类、机器翻译、自然语言处理、复制检测、自动问答和信息检索等领域的核心技术。
现有的文本相似度计算方法大致可以归纳为两类,第一类是基于文本特征统计的方法,第二类则是基于文本语义理解的方法。
基于文本特征统计的方法在长文本等大粒度实体的相似度计算方面取得了较好的效果,其中最具代表性的就是向量空间模型(Vector Space Model,简称VSM)和广义向量空间模型(General Vector Space Model,简称GVSM)。
G V S M在VSM的基础上利用文本特征项的共现信息,对VSM模型中特征项正交的假设进行了改进。
基于语义理解的方法,通常以某种知识库作为依据实现词语之间或者句子之间相似度的计算。
基于统计的方法简单高效,但是缺乏语义,无法处理自然语言中“一词多义”和“一义多词”的情况。