第七章细胞骨架与细胞运动
- 格式:ppt
- 大小:10.65 MB
- 文档页数:80
细胞骨架与细胞运动的关系研究细胞骨架是由细胞内的蛋白质纤维组成的,它是维持细胞形态稳定以及参与细胞运动的重要组成部分。
而细胞运动的本质是受控的物质转运过程,涉及到多种蛋白质、细胞骨架以及各类信号分子等分子机制,这些分子之间的相互作用以及整个过程的调节机制便是目前细胞运动领域的研究热点之一。
细胞骨架与细胞运动的关系一直是细胞生物学研究的重要课题之一。
传统的观点认为,细胞骨架的主要作用是维持细胞的形态,而对细胞运动的影响并不太大。
但是,随着技术的进步和研究的深入,越来越多的证据表明,细胞骨架对细胞运动也具有非常重要的调控作用。
下面从细胞运动中的几个方面来分别阐述细胞骨架的作用。
1. 细胞极性形成和定向运动对很多细胞而言,形成明显的前端和后端是细胞运动的前提,即细胞必须具有极性。
这种极性在一定程度上依赖于细胞骨架,特别是微管和纤维蛋白的作用。
微管的生长和分解可以导致细胞前端形成并向前移动,而纤维蛋白的收缩则可以导致细胞后端缩短并向前移动。
此外,细胞骨架还协同作用于细胞内的信号传递分子,帮助细胞在移动时定向。
绝大多数情况下,细胞的定向来自于外部环境刺激所引起的细胞内信号调节,这个调节过程可以依靠微管、纤维蛋白以及相应的连接蛋白参与完成。
2. 细胞黏附和膜扩散细胞与周围环境的黏附和分离是细胞运动的重要步骤,而细胞骨架对这些过程的调控也显得尤为重要。
细胞骨架在细胞黏附上发挥的作用主要体现在微丝和微小管对黏附分子以及细胞外基质的连接,而中间丝则主要调控分子在膜表面的扩散过程。
3. 细胞体内运动和线粒体动力学细胞内各种器官之间的移动和分布是细胞生命活动中必不可少的一环,而细胞骨架的作用也在其中发挥了重要作用。
例如,微管是细胞内支持各种运动蛋白基础设施的重要成员,它们能够维持细胞内的高度有序结构,从而消耗低能量进行移动。
此外,线粒体动力学也是细胞骨架在细胞运动调控中值得注意的方面。
近年来的研究表明,线粒体的运动速度、分布和定位都和微管、中间丝以及微丝的结构有着极其密切的关系。
细胞骨架与细胞运动细胞骨架是细胞内一种动态的构造,由微丝、微管和中间纤维组成。
它在维持细胞形态、参与细胞分裂、细胞内物质的运输以及细胞运动等方面起着重要的作用。
本文将详细探讨细胞骨架与细胞运动的关系及其机制。
一、微丝(微纤丝)与细胞运动微丝是由肌动蛋白组成的细胞骨架的一种形式,直径约为7纳米。
它在细胞内充当细胞骨架的支架,对细胞形态维持具有重要作用。
而且,在细胞运动过程中,微丝也发挥着重要的作用。
首先,微丝在细胞分裂中起到关键作用。
在有丝分裂过程中,微丝通过与运动蛋白的相互作用,参与了染色体的分离和定位,进而推动细胞的分裂。
此外,在无丝分裂中,微丝也参与了细胞膜的收缩和细胞质的分裂过程。
其次,微丝在细胞内物质运输中起到桥梁作用。
细胞内的许多物质需要通过微丝的导向运输到达目的地。
通过微丝与运动蛋白(如肌动蛋白)的相互作用,细胞内物质的运输可以在细胞膜下、细胞质内等区域进行。
最后,微丝参与细胞的运动过程。
细胞运动可以分为两种类型:细胞迁移和细胞运动。
在细胞迁移中,微丝特别重要。
它通过细胞前缘的伸长和收缩,推动细胞向特定方向运动。
在细胞运动中,微丝通过与运动蛋白的结合,使细胞形成伪足并向前蠕动。
二、微管与细胞运动微管通常由α-和β-微管蛋白两种亚基组成,直径约为25纳米。
与微丝一样,微管也参与了多个细胞过程,尤其是细胞运动。
首先,微管在细胞分裂中起到了重要作用。
在有丝分裂过程中,微管通过与中心体的相互作用,且由于微管的动态可塑性和极性有区别的特点,推动染色体的分离和排列,最终实现细胞分裂。
在无丝分裂中,微管也参与了细胞膜的收缩和分离。
其次,微管在细胞内物质运输过程中起到了关键作用。
携带运输囊泡的微管通过与运动蛋白(如动力蛋白)的相互作用,使物质能够沿着微管方向进行快速运输。
特别是在神经元等特化细胞中,微管的功能尤为重要。
最后,微管也参与了细胞的运动过程。
细胞中的纤毛和鞭毛都是由微管构成的,通过微管的伸长和收缩来实现纤毛和鞭毛的摆动。
《细胞生物学》复习题第七章第七章细胞骨架与细胞的运动1.名词解释:细胞骨架、微管组织中心(MTOC)、γ-微管蛋白环形复合体(γ-TuRC)、中心体、踏车运动、驱动蛋白、动力蛋白。
※细胞骨架:真核细胞质中的蛋白质纤维网架体系,由3种不同的蛋白纤维结构组成——微管、微丝、中间丝。
※微管组织中心:微管的聚合从特异性核心形成位点开始,主要是中心体、纤毛的基体。
帮助微管装配的成核。
※γ-微管蛋白环形复合体:可形成10~13个γ-微管蛋白分子的环形结构(螺旋花排列),组成一个开放的环状模板,与围观具有相同直径。
可刺激微管核心形成,包裹微管负端,阻止微管蛋白渗入。
还能影响微管从中心粒上释放。
※中心体:是动物细胞中决定微管形成的一种细胞器,包括中心粒和中心粒旁物质。
两个桶状、垂直排列的中心粒,包埋在中心粒旁物质中。
在细胞间期,中心体位于细胞核附近,在有丝分裂期,位于纺锤体的两极。
※踏车运动:微管的聚合与解聚持续进行,经常是一端聚合,为正端;另一端解聚,是负端,这种微管装配方式,称“踏车运动”。
※细胞内各细胞器和所有的物质转运都与微管密切相关;微管的物质运输由微管动力蛋白(或马达蛋白)完成,共有几十种,可分为三大家族:驱动蛋白kinesin,动力蛋白dynein和肌球蛋白myosin家族(肌球蛋白以肌动蛋白纤维为运行轨道)驱动蛋白与动力蛋白的两个球状头部是与微管专一结合,具有ATP酶活性,水解ATP供能完成与微管结合、解离、再结合的动作。
驱动蛋白:由两条重链和两条轻链组成。
一对与微管结合的球状头部——ATP水解酶,水解ATP产生能量进行运动;将货物由负端运输向正端。
动力蛋白:目前已知的最大的、最快的分子运输蛋白。
由两条重链和几种中等链、轻链组成,头部具有ATP水解酶活性。
沿着微管的正端向负端移动。
为物质运输,也为纤毛运动提供动力。
在分裂间期,参与细胞器的定位和转运。
2.三种骨架蛋白的分布如何?微丝:主要分布在细胞质膜的内侧。
第七章细胞骨架与细胞的运动一、名词解释1.细胞骨架( cytoskeleton)2.微管( microtubule)3.微管组织中心( microtubule organizing center,MTOC)4.中心体( centrosome)5.马达蛋白( motor protein)6.微丝( microfilament,MF)7.细胞皮层( cell cortex)8.应力纤维( stress fiber)9.中间纤维( intermediate filament)10.Y-微管蛋白环形复合体(γ- tubulin ring complex,γ-TuRC)二、单项选择题1.细胞质中,组成单管管壁的原纤维根数是A.9B.13C.23D.26E.332.细胞骨架不参与下列细胞活动或细胞结构的是A.细胞迁移B.有丝分裂C.胞吞作用D.有被小泡E.信号转导3.下列不属于中间纤维蛋白的是A.单体隔离蛋白B.结蛋白C.波形蛋白D.角蛋白E.核纤层蛋白4.下列不属于微管的功能的是A.参与色素颗粒的运输B.参与构成鞭毛、纤毛C.构成伪足D.参与细胞内信号转导E.维持高尔基复合体的位置5.中间纤维装配最常见的调节方式是A.磷酸化B.糖基化C.泛素化D.甲基化E.羟基化6.核纤层蛋白属于A.微管蛋白B.肌动蛋白C.中间纤维蛋白D.驱动蛋白E.动力蛋白7.微管体外装配可分为三个时期,其中为微管的限速过程的是A.成核期B.聚合期C.延长期D.稳定期E.平衡期8.微丝在聚合过程中所需要的能量形式是A. ATPB. ADPC. CTPD. GDPE. CTP9.下列以微丝为运行轨道的马达蛋白是A.微管蛋白B.动力蛋白C.驱动蛋白D.肌动蛋白E.肌球蛋白10.使用秋水仙素可抑制细胞的有丝分裂并使其停滞于A.间期B.前期C.中期D.后期E.末期11.下列基因的突变可导致大疱性表皮松解症的是A. GLUT-1B. SGLTC. keratin-5D. tauE.. LDL-R12.可作为细胞中微管组织中心的结构是A.星体微管B.中心体C.中心粒D.纤毛E.鞭毛13.微丝组装过程中,当微丝长度基本不变,正端延长长度等于负端缩短长度时,微丝处于A.成核期B.聚合期C.延长期D.限速期E.平衡期14.微管在聚合过程中所需要的能量形式是A. ATEB. ADPC. GTPD. GDPE. CTP15.具有组织特异性分布的细胞骨架成分是A.a管蛋白B.β管蛋白C.y微管蛋白D.G-肌动蛋白E.角蛋白16.影响微管组装的主要条件中,不包括A.GTP浓度B.微管蛋白的浓度C.秋水仙素D.温度E.压力17.纤毛和鞭毛体部的微管均以“9+2”形式构成,其中A.“2”表示2个单管B.“9”表示9个单管C.“2”表示2个二联管D.“9”表示9个三联管E.“2”表示2个三联管18.构成细胞皮层的主要成分是B.核纤层蛋白C.肌球蛋白A.微管蛋白D.马达蛋白E.肌动蛋白19.主要由微管构成的细胞结构是A.鞭毛B.伪足C.核纤层D.微绒毛E.细胞皮层20.影响微丝组装的最关键的因素是A.ATP和肌动蛋白的浓度B.ATP和温度C.GTP和温度D.GTP和肌动蛋白的浓度E.肌动蛋白的浓度和温度21.能够促进微管聚合的药物是A.紫杉醇B.长春花碱C.秋水仙素D.细胞松弛素BE.鬼笔环肽22.关于细胞松弛素B的叙述,错误的是A.抑制微丝聚合B.对微管没作用C.可抑制细胞的吞毒D.去除药物后细胞功能可恢复E.可影响肌肉收缩23.导致人纤毛不动综合征的结构异常是A.动力蛋白臂缺失B.中央微管缺失C.中央微管异常D.轴丝缺乏E.tau蛋白过度磷酸化24.可介导物质沿微管负端向正端运动的马达蛋白是A. MAP-1B. MAP-2C.tauD.驱动蛋白E.动力蛋白25.构成微丝的主要成分是A.肌球蛋白B.交联蛋白C.肌动蛋白D.毛缘蛋白E.结蛋白26.鞭毛和纤毛基体的微管排列方式是A.9+2B.9+0C.9×2D.9×3E.9×2+227.细胞分裂进入末期时,核纤层蛋白发生A.磷酸化B.去磷酸化C.甲基化D.去甲基化E.泛素化28.影响微管组装的最关键的因素是A.ATP和微管蛋白的浓度B.ATP和温度C.GTP和温度D.GTP和微管蛋白的浓度E.微管蛋白的浓度和温度29.下列关于中间纤维的组装的正确叙述是A.受ATP调节B.受中间纤维单体浓度的影响C.受 Triton X-100的影响D.受浓盐溶液的影响E.受丝氨酸残基磷酸化的调节30.下列参与构成有丝分裂器的细胞骨架结构是A.核纤层B.核基质C.中心体D.动粒E.收缩环31.波形蛋白主要分布于A.肌细胞B.表皮细胞C.血管内皮细胞D.神经细胞E.成纤维细胞32.可介导物质沿微管正端向负端运动的马达蛋白是A. MAP-1B. MAP-2C.tauD.驱动蛋白E.动力蛋白33.下列以微丝为主要组成的细胞结构是A.纤毛B.鞭毛C.细胞皮层D.核纤层E.纺锤体34.γ-微管蛋白位于A.细胞膜B.细胞核C.中心体D.线粒体E.鞭毛体部35.肌动蛋白不参与的细胞结构是A.微绒毛B.粗肌丝C.应力纤维D.片状伪足E.收缩环36.使用细胞松弛素B作用于成纤维细胞后,发现细胞突起回缩,细胞形状变圆;经充分清洗、继续培养2h后,发现细胞形状又接近正常,表明细胞松弛素BA.不可逆地抑制微管聚合B.不可逆地抑制微丝解聚C.抑制微丝解聚且具有可逆性D.不可逆地抑制微丝聚合E.抑制微丝聚合且具有可逆性37.下列属于微管功能的是A.参与错定连接的形成B.参与核孔定位C.参与细胞运动D.参与肌肉收缩E.参与胞质分裂38.下列关于中间纤维极性的错误叙述是A.中间纤维蛋白具有极性B.螺旋二聚体具有极性C.四聚体不具有极性D.中间纤维的两端是相同的E.中间纤维沿纤维长轴上具有不对称性39.关于肌动蛋白的错误叙述是A.由两个亚基组成B.装配时蛋白单体首尾相接C.含有阳离子结合位点D.有GTP结合位点E.蛋白单体具有极性40.关于微丝功能的叙述,错误的是A.参与细胞的迁移B.参与染色单体的分离C.参与细胞形态的维持D.参与微绒毛的组成E.参与胞质分裂41.在体内装配时,微丝的成核作用发生在A.中心体B. MTOCC.细胞核D.星体E.质膜42.中间纤维在组装过程中,非极性结构起始于A.单体B.二聚体C.四聚体D.八聚体E.原纤维43.下列影响微丝装配的因素是A. ATPB. GTPC.紫杉醇D.秋水仙素E.长春新碱44.下列关于中间纤维的错误叙述是A.可见于细胞核中B.分布具有组织特异性C.参与构成锚定连接D.由管家基因编码E.参与核膜崩解和重建45.非稳态动力学模型认为影响微管组装的主要因素是A. ATPB. GTPC.PHD.温度E.离子浓度46.下列可用于特异性地显示微丝在细胞内分布的是A.紫杉醇B.长春新碱C.细胞松弛素BD.肌动蛋白抗体E.肌球蛋白抗体47.能够与微丝结合而抑制微丝解聚的药物是A.紫杉醇B.长春新碱C.秋水仙素D.鬼笔环肽E.细胞松弛素B48.中间纤维组装的基础亚单位是A.七位复件B.中间纤维蛋白单体C.螺旋二聚体D.四聚体E.八聚体49.在白细胞变形游走的过程中,涉及A.微丝和微丝结合蛋白的相互作用B.微管和微管结合蛋白的相互作用C.钙黏着蛋白对内皮细胞的黏附作用D.通过微管的解聚促进细胞变形E.中间纤维蛋白的磷酸化作用50.下列关于细胞骨架在有丝分裂中作用的叙述,正确的是A.微丝在染色单体分离中起主要作用B.微丝参与纺锤体的形成C.微管和微管结合蛋白参与收缩环的形成D.中间纤维参与核膜的崩解E.微管参与胞质分裂51.角蛋白主要分布于A.肌细胞B.表皮细胞C.神经细胞D.白细胞E.成纤维细胞52.关于细胞运动的正确叙述是A.细胞通过纤毛摆动进行游走B.细胞通过鞭毛摆动清除细胞表面异物C.精子细胞运动涉及二联管间的滑动D.细胞运动与微丝无关E.微管聚合可促进细胞伪足的形成53.关于 Rho GTP酶家族的错误叙述是A.Cdc42的活化可促进肌动蛋白聚合B.Cdc42的活化可促进丝状伪足的形成C.Rac的活化可促进片状伪足形成D.Rac的活化可促进微绒毛的形成E.Rho活化可促进应力纤维的形成54.动物细胞中微管的负极位于A.内质网B.中心体C.细胞膜D.细胞核E.线粒体55.核纤层蛋白主要分布于A.肌细胞B.神经细胞C.神经干细胞D.表皮细胞E.各种类型细胞56.与游离的肌动蛋白单体结合后使其聚合的是A. GTHB. GDPC. ATPD.ADPE.UTP57.只存在于轴突中的微管结合蛋白是A. MAP-1B. MAP-2C. MAP-4D.tauE.肌球蛋白58.关于阿尔茨海默病的错误叙述是A.患者的神经细胞中可见不溶性神经纤维缠结B.与tau蛋白的过度磷酸化有关C.患者的神经细胞中微管蛋白数量显著减少D.患者的神经细胞中存在微管聚集缺陷E.患者的神经细胞中微管稳定性降低59.下列关于中间纤维结构的错误叙述是A.均含4段高度保守的α-螺旋B.亚基装配时靠a-螺旋配对形成二聚体C.均含有中间杆状区D.均含3段间隔区E.N端和C端均呈无规则卷曲状60.下列关于培养细胞爬行过程的错误叙述是A.通过肌动蛋白聚合形成伪足B.通过微丝与微丝结合蛋白相互作用介导微丝生长C.肌动蛋白在中心体处成核D.ARP2/3复合物促进片状伪足的形成E.需要整联蛋白的参与三、多项选择题1.中间纤维组装过程中,具有极性的是A.单体B.二聚体C.四聚体D.八聚体E.原纤维2.下列属于细胞中微管组织中心的结构是A.纺锤体B.中心体C.纤毛基体D.鞭毛基体E.鞭毛3.以下药物可以直接抑制动物细胞的胞质分裂的是A.秋水仙素B.肌球蛋白抗体C.细胞松弛素D.微管蛋白抗体E.肌动蛋白抗体4.下列属于马达蛋白的是A.微管蛋白B.肌动蛋白C.驱动蛋白D.动力蛋白E.肌球蛋白5.中间纤维组装的动态调节方式包括A.甲基化B.磷酸化C.泛素化D.去甲基化E.去磷酸化6.参与构成细胞连接的细胞骨架成分是A.微管B.微丝C.中间纤维D.钙黏着蛋白E.整联蛋白7.中间纤维组装过程中,呈非极性的结构是A.单体B.聚体C.四聚体D.八聚体E.原纤维8.鬼笔环肽可影响的细胞活动是A.胞质分裂B.肌肉收缩C.纺锤体的形成D.变形运动E.肠上皮细胞的吸收作用9.动物细胞中微管的负极位于A.鞭毛基体B.中心体C.纤毛基体D.纤毛E.鞭毛10.下列药物只抑制胞质分裂的是A.长春花碱B.紫杉醇C.秋水酰胺D.细胞松弛素E.鬼笔环肽参考答案名词解释1.细胞骨架( cytoskeleton):真核细胞质中的蛋白质纤维网架体系,包括微管、微丝和中间纤维对于细胞的形状、细胞的运动、细胞内物质运输、染色体的分离和细胞分裂等起重要作用。
细胞运动与细胞骨架细胞是生物体的基本结构单位,它们能够通过细胞运动来实现自身的定位、迁移和形态改变。
而细胞运动的基础是细胞骨架,也称作细胞支架,在细胞的内部提供了结构支持和蛋白质运输的网络系统。
本文将探讨细胞运动与细胞骨架的关系,以及细胞骨架的组成和功能。
一、细胞运动的类型细胞运动包括主动运动和被动运动。
在主动运动中,细胞通过细胞骨架的重塑和细胞质流动的驱动,实现细胞的自发定向运动,如细胞迁移和细胞轴向改变。
而被动运动是指细胞受外力作用而发生运动,如血液中的白细胞在血管内的顺行滚动。
二、细胞骨架的组成细胞骨架主要由三种纤维蛋白组成,分别是微丝、中间丝和微管。
1. 微丝(Actin Filaments):微丝是由肌动蛋白蛋白链聚合而成的螺旋形纤维,直径约为7纳米。
它们广泛存在于细胞的边缘区域,起到细胞的支持、形态维持和细胞运动的作用。
2. 中间丝(Intermediate Filaments):中间丝是由多种蛋白亚单位聚合而成的纤维,直径约为10纳米。
它们主要存在于细胞核和细胞质中,提供细胞的结构支持和机械强度。
3. 微管(Microtubules):微管是由α-β二聚体聚合而成的管状结构,直径约为25纳米。
它们主要分布在细胞的中心区域,并参与细胞质内物质的输送和细胞有丝分裂的过程。
细胞骨架的形成和维持离不开各类细胞骨架相关蛋白的参与,如微丝相关蛋白(actin-binding proteins)、中间丝相关蛋白和微管相关蛋白。
这些蛋白在细胞骨架的稳定性、动态性和功能调控中起到重要的作用。
三、细胞骨架与细胞运动的关系细胞骨架通过对细胞形态的调控参与了细胞的运动过程。
细胞骨架对于细胞的变形和移动提供了力学支撑,并且在细胞运动的各个步骤中发挥重要作用。
1. 细胞定位和定向运动:细胞骨架通过微丝的再组装和重塑来影响细胞的定位和定向运动。
细胞通过调控微丝的聚合和解聚,以及使用微丝相关蛋白的定位,能够实现细胞向特定方向的迁移和定位。
第七章细胞骨架与细胞的运动第一节微管真核细胞中细胞骨架成分之一。
是由微管蛋白和微管结合蛋白组成的中空柱状结构。
还能装配成纤毛、鞭毛、基体、中心体、纺锤体等结构,参与细胞形态的维持、细胞运动、细胞分裂等。
微管蛋白与微观的结构存在:所有真核细胞,脊椎动物的脑组织中最多。
直径:24-26纳米中空小管基本构件:微管蛋白α、β异二聚体。
13根原纤维合拢成一段微管。
极性:增长快的为正端,另一端为负端。
(与细胞器定位分布、物质运输方向灯微管功能密切相关)γ微管蛋白:定位于微管组织中心,对微管的形成、数量、位置、极性的确定、细胞分裂有重要作用。
存在形式:单管(存在于细胞质,不稳定)、二联管(AB两根单管构成,主要分布于纤毛和鞭毛)、三联管(ABC三根单管组成,分布于中心粒、纤毛和鞭毛的基体中)一、微管结合蛋白碱性微管结合区域:明显加速微管的成核作用。
酸性突出区域:决定微管在成束时的间距大小种类:MAP-1,MAP-2,MAP-4,tau不同的微管结合蛋白在细胞中有不同的分布区域:tau只存在于轴突中,MAP-2则分布于胞体和树突中。
三,微管的装配的动力学装配特点:动态不稳定性装配过程:1、成核期(延迟期)α和β微管蛋白聚合成短的寡聚体结构,及核心的形成,接着二聚体再起两端和侧面增加使其扩展成片状带当片状带加宽至13根原纤维时,即合拢成一段微管。
是限速过程。
2、聚合期(延长期)细胞内高浓度的游离微管蛋白聚合速度大于解聚速度,新的二聚体不断加到微管正端使其延长。
3、稳定期(平衡期)胞质中游离的微管蛋白达到临界浓度,围观的组装与去组装速度相等(一)微管装配的起始点是微管组织中心中心体和纤毛的基体称为微管组织中心。
作用:帮助大多数细胞质微管装配过程中的成核。
γTuRC:刺激微管核心形成,包裹微管负端,阻止微管蛋白的渗入。
可能影响微管从中心体上释放。
中心体:包括中心粒,中心粒旁物质。
间期位于细胞核的附近,分裂期位于纺锤体的两极。