从高斯公式到高斯定理
- 格式:pdf
- 大小:177.97 KB
- 文档页数:2
电磁学中有三大实验定律:库仑定律,安培定律及法拉第电磁感应定律;并在此基础上,麦克斯韦进行归纳总结,得出了描述宏观电磁学规律的麦克斯韦方程组。
1 电荷守恒与库伦定律1.1 电荷守恒定律摩擦起电和静电感应实验表明,起电过程是电荷从某一物体转移到另一物体的过程。
电荷守恒定律电荷不能被创造,也不能被凭空消失,只能从一个物体转移到另外的物体,或者是从物体的一部分转移到另一部分。
也就是说,在任何物理过程中,电荷代数式守恒的。
在1897年,英国科学家汤姆逊在实验中发现了电子;1907-1913年,美国科学家密立根通过油滴实验,精确测定除了电荷的量值:e =1.602 177 33×10^-19 C。
这表明电子式量子化的。
1.2 库伦定律库伦定律两个静止电荷q1和q2之间的相互作用力大小和与q1与q2的乘积呈正比,和它们之间的距离r的平方呈反比;作用力的方向沿着它们的联线,同号电荷相斥,异号电荷相吸,即:其中,ε0为真空介电常数。
ε0 ≈8. 854187817×10-12 C2 / (N?m2)。
在MKSA单位制中,1库伦定义为:如果导线中有1A的恒定电流,在1s内通过导线横截面的电量为1C,即:1 C=1 A?s。
1.3 电场强度电场强度E 这是一个矢量,表示置于该点的点位电荷所受到的力,是描述电场分布的物理量,即:场强叠加原理由于电场是矢量,服从矢量叠加原理,因此我们可以得出:电荷组所产生的电场在某点的场强等于各点电荷单独存在时所产生的电场为该点场强的矢量叠加。
电场线形象描述电场分布,我们可以引入电场线的概念,利用电场线可以得出较为直观的图像。
1.4 电荷分布为了对概念有更清晰的认识,我们介绍实际带电系统中电荷分布的4种形式:体分布电荷;面分布电荷;线分布电荷及点电荷。
电荷体密度:电荷连续分布于体积V 内,用电荷体密度来描述其分布,即:电荷面密度:若电荷分布在薄层上,当仅考虑薄层外、距薄层的距离要比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电场时,可将该薄层的厚度忽略,认为电荷是面分布。
高斯定理和高斯数学的关系
高斯定理和高斯公式都是以德国数学家卡尔·弗里德里希·高斯的名字命名的,他们在数学和物理中都有重要的应用。
数学中的高斯公式是曲面积分的一个重要公式,它把闭合曲面的第二类曲面积分和三重积分联系了起来。
物理电磁学中的高斯定理同样是求场强的一个重要定理,它把“面”与“体积”联系了起来,即闭合曲面的电场强度通量与闭合曲面内的电量。
我们可以通过高斯公式来推出高斯定理。
这种综合运用各学科知识的学习方法,能够帮助我们更好地理解所学的知识点。
总的来说,高斯定理和高斯公式都是高斯数学的重要组成部分,它们在解决实际问题时提供了强大的工具。
静电场中的高斯定理:高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。
可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。
表达式为01()1/n i i S E ds q φε==∙=∑⎰⎰ (1)高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。
典型情况有三种:1) 球对称性, 如点电荷, 均匀带电球面或球体等;2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。
根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。
选取的原则是:○1 待求场强的场点必须在高斯面上;○2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○3 与E 垂直的那部分高斯面上各点的场强应相等;○4 高斯面的形状应是最简单的几何面。
最后由高斯定理求出场强。
高斯定理说明的是通过闭合曲面的电通量与闭合曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。
但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。
下面举一些例子来说静电场中高定理的应用:例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。
高斯公式又叫高斯定理(或散度定理)矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。
是研究场的重要公式之一。
公式为:∮F·dS=∫▽·Fdv ▽是哈密顿算符 F、S为矢量高斯定理在物理学研究方面,应用非常广泛。
如:电场E为电荷q(原点处)在真空中产生的静电场,求原点外M(x,y,z)处的散度divE(M).解:div(qR/(4πr^3)=0 R/r--为r的单位矢量,本例说明静电场E是无源场。
应用高斯定理(或散度定理)求静电场或非静电场非常方便。
特别是求静电场中的场强,在普通物理学中常用,这里就再举二例。
现在用高斯公式推导普通物理中的高斯定理,设S内有一点电荷Q其电场过面积元dS的通量为E·dS=Ecosθds=Q/(4πε0r^2)* cosθds θ为(ds^r) ε0----真空中的介电常数显然cosθds为面元投影到以r为半径的球面的面积,在球体内,面元dS对电荷Q所张的立体角为dΩ= cosθds/r^2故E·ds= Q/(4πε0)dΩ因此,E对闭合曲面S的通量为∮E·dS=Q/(4πε0) ∮dΩ=Q/ε0场强学过普通物理的多数人都知道下面用高斯公式来推导电荷守恒定律,设空间区域V,边界为封闭面S,通过界面流出的电流应等于体积V内电量的减小率,即∮J·dS=-∫(dρ/dt)dV J,S ---矢量, dρ/dt--------- 这里为ρ对的偏导数(由于符号在这里用d来代替偏导的符号)ρ-电荷密度注:J=Ρv’ V’---为速度矢量用高斯公式进行积分变换,∮J·dS=∫▽·JdV可得到电荷守恒定律的微分形式:▽·J+ dρ/dt=0,此式称电流的连续性方程。
高斯定理由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。
高斯定理的内容及公式高斯定理高斯定理(也称为散度定理)是微积分中重要的定理之一,它描述了向外流过封闭曲面的矢量场的总流量与该矢量场在曲面内部的散度之间的关系。
高斯定理在物理学、工程学和数学中具有广泛的应用。
定理表述高斯定理可以用数学公式来表示如下:∮F S ⋅n dA=∭∇V⋅F dV其中, - ∮S表示对封闭曲面S进行的积分; - F表示矢量场;- n表示曲面元素dA的外向单位法向量; - dA表示曲面S上的面积元素; - ∭V表示对体积V进行的积分; - ∇⋅F表示矢量场F的散度; - dV表示空间中的体积元素。
该定理表述了一个关键的观察结果:向外流过曲面S的总流量等于该矢量场在曲面内部的散度的体积积分。
例子解释下面通过一个例子来解释高斯定理的应用。
假设有一个电场E,我们想计算通过一个封闭曲面S的电场流量。
根据高斯定理,电场流量可以通过计算电场的散度来得到。
假设电场在空间中的散度为∇⋅E=ρ,其中ρ是电荷密度。
根据高斯定理,我们可以得到以下等式:∮E S ⋅n dA=∭∇V⋅E dV左边表示通过封闭曲面S的电场流量,右边表示电场散度的体积积分。
假设曲面S是一个球面,且电场在球内是均匀的。
此时,由于电场的散度是常数,我们可以简化上述公式为:E⋅4πr2=ρ⋅43πr3其中E表示电场强度,r表示球面的半径。
通过这个例子,我们可以看到高斯定理的应用。
它提供了一种计算封闭曲面内部矢量场的性质(如流量、散度等)的方法,从而使我们能够更好地理解和分析物理现象和数学问题。
总结高斯定理是微积分中的重要定理,它描述了向外流过封闭曲面的矢量场的总流量与该矢量场在曲面内部的散度之间的关系。
通过高斯定理,我们能够更好地理解和计算各种物理场的性质。
其应用范围广泛,包括物理学、工程学和数学等领域。
公式的推导高斯定理的推导过程如下:首先,我们考虑一个封闭曲面S,并给曲面上每一个点选取一个面积元素dA,它的法向量记为n。
我们将n⋅dA称为面积元素dA的矢量,它是法向量乘以面积元素的结果。
高斯定理推导
高斯定理是电磁学中的重要定理,用于计算电场和磁场的通量。
根据高斯定理,闭合曲面上电场或磁场的总通量等于该闭合曲面包围
的电荷或磁荷的代数和的1/ε0倍,其中ε0是真空中的介电常数。
为了推导高斯定理,首先考虑一个闭合曲面S,该曲面包围着一
个点电荷q。
我们将曲面S分割成许多小面元dS。
在每个小面元dS处,电场的矢量和可以近似为电场强度E与dS面元法向量n的乘积。
因此,每个小面元dS的电场通量可以表示为E·dS。
然后,考虑闭合曲面S的电场通量ΦE,它是所有小面元dS上电场通量的代数和。
我们可以通过对所有小面元的电场通量进行累加来
计算ΦE,即ΦE=∑(E·dS)。
由于曲面上的电场强度在各点可能不同,我们需要将所有小面元的电场通量进行累加。
现在我们研究闭合曲面S包围的电荷q的情况,在每个小面元dS 处,电场通量等于E·dS=q/ε0。
将这个等式代入到ΦE=∑(E·dS)中,我们得到ΦE=q/ε0。
这就是高斯定理的推导过程。
根据高斯定理,闭合曲面上的电场
通量ΦE等于该闭合曲面所包围的电荷q的代数和的1/ε0倍。
高斯定理公式推导过程高斯定理,在物理学中可是个相当重要的家伙!它就像一把神奇的钥匙,能帮我们打开很多关于电场的秘密之门。
咱先来说说啥是高斯定理。
简单来讲,它说的是通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷量除以真空中的介电常数。
听起来有点晕乎?别急,咱们慢慢推导。
想象一下,咱们有一个正点电荷 Q ,周围的电场就像从这个电荷向四面八方发射出去的光线一样。
现在,咱们画一个以这个点电荷为球心的球面。
这个球面就是咱们说的闭合曲面啦。
那电通量是啥呢?电通量就是电场通过这个曲面的“流量”。
咱们来算一算这个球面的电通量。
在球面上取一个面积元 dS ,这个面积元上的电场强度 E 的大小都是一样的,因为是个均匀的球面嘛。
而且电场强度 E 的方向都和面积元 dS 垂直。
根据电场强度的定义,E = kQ / r²,其中 k 是库仑常量, r 是点电荷到面积元的距离。
那通过这个面积元的电通量dΦ 就等于 E 和 dS 的点乘,也就是E · dS 。
因为 E 和 dS 垂直,所以dΦ = E dS = kQ / r² dS 。
那整个球面的电通量Φ 呢?就是把所有面积元的电通量加起来。
因为整个球面的面积是4πr² ,所以Φ = ∫ dΦ = ∫ (kQ / r²) dS = kQ ∫ (1 / r²)dS 。
而∫ (1 / r²) dS ,因为 r 是常量,对整个球面积分的结果就是4π ,所以Φ = kQ × 4π 。
又因为在真空中,介电常数ε₀ = 1 / (4πk) ,所以k = 1 / (4πε₀) ,把这个代入上面的式子,就得到Φ = Q / ε₀。
这就是高斯定理啦!我记得我上高中的时候,刚开始学这个高斯定理,那叫一个头疼。
老师在讲台上讲得眉飞色舞,我在下面听得云里雾里。
特别是那些公式和符号,感觉就像一群调皮的小精灵在我眼前跳来跳去,就是不让我抓住它们的规律。
高斯定理的解释和公式
高斯定理,也称为散度定理,是数学中的一个重要定理。
它描述了一个向量场通过一个封闭曲面的总量。
高斯定理在物理学和工程学的许多领域中都有广泛的应用,如电磁学、流体力学和热传导等。
高斯定理的数学表达形式如下:
对于一个平滑的三维矢量场F=(Fx,Fy,Fz),定义一个封闭曲面S来围绕一个具有体积V的区域D。
那么,高斯定理可以写作:
∬S F·dS = ∭D ∇·F dV
其中,F·dS表示向量场F在曲面元dS上的点积积分,∇·F表示向量场F的散度,dV表示体积元。
这个定理的物理解释是,对于一个流经封闭曲面的流体量,其发散性(流出和流入区域的总和)等于其在包围该区域的体积中的源和汇的总量。
高斯定理的应用非常广泛。
在电磁学中,它可以用来计算通过一个闭合曲面的电场强度和磁场强度的总量。
在流体力学中,它可以用来计算液体或气体通过一个封闭曲面的流量。
在热传导中,它可以用来计算热量通过一个封闭曲面的扩散量。
总之,高斯定理提供了一个非常强大的工具,用于计算向量场通过封闭曲面的总量。
它在物理和工程学中的应用使得我们能够更好地理解和分析各种自然现象和工程问题。
高斯定理的三个公式高斯定理在物理学中可是个相当重要的概念,它有三个关键公式,咱们一起来瞅瞅。
咱先来说说高斯定理的第一个公式。
这就好比你有一个充满电荷的球体,你想知道这个球体产生的电场强度在球体外的分布情况。
这个时候,高斯定理就派上用场啦!它能帮咱们快速算出电场的分布。
想象一下,你站在一个大大的操场上,操场上有一个透明的大球,里面装满了电荷。
你从远处观察这个球,虽然看不到里面的电荷具体是怎么分布的,但通过高斯定理,就能算出这个球在周围空间产生的电场强度。
接下来是第二个公式。
这就像是在一个封闭的房间里,电荷在房间里到处跑,但不管它们怎么跑,通过高斯定理咱们都能清楚地知道整体的情况。
比如说,你在一个房间里,灯光有点昏暗,电荷就像那些忽明忽暗的光影,而高斯定理就是能让你看清整体状况的神奇工具。
最后是第三个公式。
这个公式就更有趣啦!它就像一个超级侦探,能帮我们解决很多复杂的电场问题。
比如说,有一个形状不规则的带电体,用常规方法很难计算它产生的电场,但是用高斯定理的第三个公式,就能巧妙地找到答案。
记得我之前给学生们讲高斯定理的时候,有个小家伙一脸迷茫地问我:“老师,这高斯定理到底有啥用啊?”我笑着回答他:“这就好比你要在一堆乱麻中找到线头,高斯定理就是那根能让你快速理清头绪的神奇线头!”然后我给他举了个例子,假如我们要计算一个无限大带电平面产生的电场,按照常规思路,那得费好大的劲。
但是用高斯定理,咱们只需要做一个合适的高斯面,就能轻松得出结果。
那个小家伙听完,眼睛一下子亮了起来,好像突然明白了其中的奥妙。
其实啊,高斯定理的这三个公式就像是三把神奇的钥匙,能打开很多电学难题的大门。
只要我们认真理解、多多练习,就能熟练运用它们解决各种各样的问题。
不管是在学习中还是在实际的科学研究中,高斯定理都是我们的得力助手。
所以,同学们,可别小看了这三个公式,好好掌握它们,能让我们在电学的世界里畅游无阻!。
高斯定律解析高斯定律是电磁学中的重要定律之一,描述了电场和电荷之间的关系。
该定律由德国物理学家卡尔·弗里德里希·高斯于19世纪提出,被广泛应用于电磁场、静电场和电力学的研究中。
一、高斯定律的基本原理高斯定律给出了一个描述闭合曲面上的电场总通量和该闭合曲面中所包含的电荷大小之间的关系。
其数学表达式为:∮ E·dA = 1/ε0 · Q式中,∮E·dA表示电场E对曲面上的面积元素dA进行积分求和,求得电场总通量;ε0为真空介电常数,约等于8.854 × 10^-12C^2/(N·m^2);Q表示闭合曲面内所包含的电荷总量。
根据高斯定律,如果闭合曲面内没有电荷,则电场总通量为零;如果闭合曲面内有电荷,则电场总通量与该闭合曲面所包含的电荷量成正比。
高斯定律给出了电场与电荷之间的重要关系,能够帮助我们理解电场的分布和性质。
二、高斯定律的应用高斯定律在电磁学的研究中有着广泛的应用。
以下列举了一些高斯定律的具体应用场景。
1. 静电场分析在分析复杂的静电场分布时,高斯定律是一个非常有效的工具。
我们可以选择一个适当的闭合曲面,通过计算曲面上的电场总通量来求解该闭合曲面所包含的电荷量。
这对于研究电荷的分布和性质非常有帮助。
2. 均匀带电球体的电场分析对于一个均匀带电球体,可以利用高斯定律来求解球外的电场分布。
选择一个以球心为中心的闭合球面,计算球面上的电场总通量,由高斯定律可知,球面上的电场总通量与球内的电荷量成正比,进而求解出球体内、球体外的电场分布。
3. 均匀带电球壳的电场分析与均匀带电球体相似,对于一个均匀带电球壳,可以利用高斯定律来求解球外的电场分布。
选择一个以球心为中心的闭合球面,计算球面上的电场总通量,由高斯定律可知,球面上的电场总通量与球内的电荷量成正比,进而求解出球壳内、球壳外的电场分布。
4. 电场的对称性分析高斯定律对于具有一定对称性的电场分布有着特殊的应用价值。
高斯定理的推导过程1. 高斯定理的表述- 真空中的高斯定理:varPhi_E = frac{Q_{enc}}{ε_0},其中varPhi_E=∮_{S}→E· d→S为通过闭合曲面S的电通量,Q_{enc}是闭合曲面S所包围的电荷总量,ε_0是真空介电常数。
2. 以点电荷为例推导高斯定理 - 计算点电荷产生的电场通过包围它的球面的电通量- 设点电荷q位于球心,半径为r的球面S包围该点电荷。
- 根据库仑定律,点电荷q在距离r处产生的电场强度→E=(1)/(4πε_0)(q)/(r^2)r̂,其中r̂是沿径向的单位矢量。
- 对于球面S,d→S = r^2sinθ dθ dφr̂(在球坐标系下)。
- 计算电通量varPhi_E=∮_{S}→E· d→S,将→E和d→S代入可得:- varPhi_E=∮_{S}(1)/(4πε_0)(q)/(r^2)r̂· r^2sinθ dθ dφr̂- 由于r̂·r̂ = 1,则varPhi_E=(q)/(4πε_0)∫_{0}^2πdφ∫_{0}^πsinθ dθ - 先计算∫_{0}^πsinθ dθ=-cosθ_{0}^π=2,再计算∫_{0}^2πdφ = 2π。
- 所以varPhi_E=(q)/(ε_0),这表明点电荷q产生的电场通过包围它的球面的电通量等于(q)/(ε_0)。
3. 以点电荷为例推导高斯定理 - 计算点电荷产生的电场通过任意闭合曲面的电通量- 根据电场线的性质,电场线是连续的,从正电荷出发到负电荷终止或者延伸到无穷远。
- 对于包围点电荷q的任意闭合曲面S',以点电荷为中心作一个半径为r的球面S。
- 由于电场线的连续性,通过闭合曲面S'和球面S的电场线数目相同,即它们的电通量相等。
所以通过任意包围点电荷q的闭合曲面的电通量varPhi_E=(q)/(ε_0)。
4. 多个点电荷情况推导高斯定理- 设空间中有n个点电荷q_1,q_2,·s,q_n,其中闭合曲面S包围了m个点电荷q_1,q_2,·s,q_m。