微处理器实验报告1
- 格式:doc
- 大小:41.00 KB
- 文档页数:4
《微处理器实验》实验报告一、实验目的与任务1、掌握80C51单片机程序的调试与下载方法。
2、掌握80C51单片机并口的工作原理及输入输出控制方法。
3、理解和学会单片机外部中断的使用;4、学习单片机定时器/计数器的应用。
二、实验原理介绍80C51单片机包括P0~P3共4个并口,除可作为普通I/O口使用外,P0口还可用作8位数据总线口和低8位地址口,P2可用作高8位地址口,P3.6、P3.7可用作外部RAM或I/O接口的读、写控制引脚,P3.0~P3.5可用作串口、外部中断、计数器的功能引脚。
ZSC-1实验箱包括4个单片机,其中1#单片机(MCU1)和2#单片机(MCU2)的型号都是STC12C5A60S2,只是封装不同。
STC12C5A60S2采用80C51内核,片内资源和性能较标准80C51单片机增强了许多。
本课程的全部实验只用到MCU1。
图3-1为本实验对应的硬件电路。
P0口用于控制发光管L101~L108,口线输出0(低电平)时,对应的发光管点亮,口线输出1(高电平)时,对应的发光管熄灭。
P3口的4根口线连接独立按键KX0~KX3,由于P3口内部上拉电阻的作用,按键松开时,对应的口线表现为1状态(高电平),按键按下时,对应的口线表现为0状态(低电平)。
中断是指在突发事件到来时先中止当前正在进行的工作,转而去处理突发事件。
待处理完成后,再返回到原先被中止的工作处,继续进行随后的工作。
引起突发事件的来源称为中断源,中断源要求服务的请求称为中断请求,对中断请求提供的服务称为中断服务,中断管理系统处理事件的过程称为中断响应过程。
51类单片机至少包括5个中断源:INT0:外部中断0,由P3.2端口线引入,低电平或下跳沿引起。
(本实验用)INT1:外部中断1,由P3.3端口线引入,低电平或下跳沿引起。
T0:定时器/计数器0中断,由T0计满回零引起。
(本实验用)T1:定时器/计数器l中断,由T1计满回零引起。
微处理器实验报告摘要:本文旨在介绍微处理器实验及其结果,内容包括实验目的、实验器材与方法、实验过程、实验结果和分析以及实验结论等。
通过本次实验,我们对微处理器的工作原理和应用有了更深刻的理解,并能够熟练地进行一些简单的微处理器操作。
1. 引言微处理器是现代计算机的核心组成部分,其作用是负责指令的执行和数据的处理。
在这个实验中,我们将通过操作微处理器,深入了解其内部构造和工作原理。
同时,我们也将学习如何正确地使用微处理器进行一些简单的计算和控制任务。
2. 实验目的本次实验的目的是:- 了解微处理器的基本工作原理;- 掌握微处理器的基本操作方法;- 理解不同指令的功能和使用方法;- 实现一些简单的计算和控制任务。
3. 实验器材与方法3.1 实验器材:- 微处理器实验箱- 示波器- PC机3.2 实验方法:首先,根据实验指导书上给出的实验电路图,按照电路图连接实验器材。
然后,将微处理器与PC机通过串口或者并口连接起来。
接下来,根据实验指导书上给出的指令,编写相应的程序代码并将其烧录到微处理器中。
最后,通过操作微处理器,观察实验结果并进行实验数据的采集和分析。
4. 实验过程4.1 硬件连接:根据实验指导书上的电路图,连接实验箱和示波器,保证电路的正常工作。
4.2 软件编程:根据实验指导书上的指令,使用相应的软件工具或编程语言编写程序代码,并将其烧录到微处理器中。
4.3 实验操作:按照实验指导书上的要求,操作微处理器进行各种指令的执行,观察实验结果并记录相关数据。
5. 实验结果与分析通过本次实验,我们成功地完成了一些简单的微处理器操作,并观察到了相应的实验结果。
在实验中,我们使用了一些常见的指令,如加法指令、乘法指令和逻辑指令等,并实现了一些简单的计算和控制任务。
同时,我们还观察到了微处理器的运行速度以及实验过程中的一些注意事项。
通过对实验数据的分析,我们发现微处理器在执行指令时的速度非常快,能够实时处理大量的数据,并及时给出相应的计算结果。
单片机实验报告1单片机实验报告1一、实验目的本实验的目的是通过学习单片机的基本知识和原理,了解单片机的工作原理,熟悉编写单片机程序并进行实验验证。
二、实验器材和软件实验器材:单片机开发板、USB数据线、LCD液晶屏、面包板、电缆线、电阻、LED等。
实验软件:KEIL C51开发软件、Proteus电路仿真软件。
三、实验原理单片机是一种集成度很高的微处理器芯片,本实验使用的单片机开发板中集成了一款8051系列的单片机。
这款单片机具有强大的数据处理能力和丰富的接口资源,可以用来实现各种功能。
四、实验内容本实验主要分为两个部分:第一部分是通过LED灯的亮灭来实现二进制数的计数;第二部分是通过LCD液晶屏显示温度和湿度数值。
1.二进制数计数利用单片机的IO口,将LED灯连接到P2口,通过对P2口的输出信号进行控制,实现二进制数的计数。
2.温湿度显示利用单片机的ADC(模数转换)功能,将温湿度传感器与单片机相连,通过ADC模块将温湿度信号转换成数字信号,并通过LCD屏幕显示出来。
五、实验步骤1.硬件连接将开发板与电脑连接,使用数据线将开发板上的USB接口与电脑的USB接口相连。
然后将LCD液晶屏和温湿度传感器连接到开发板上的相应接口,并将LED灯连接到P2口。
2.编写程序使用KEILC51软件编写程序,通过编写相应的代码,实现LED灯计数和温湿度显示功能。
4.运行实验将开发板上的拨码开关打开,开启单片机的电源。
LED灯开始计数并显示在开发板上,LCD屏幕同时显示温度和湿度的数值。
六、实验结果经过实验,LED灯能够正常进行二进制数的计数,LCD屏幕也能够准确地显示温度和湿度的数值。
七、实验总结通过本实验,我对单片机的工作原理和编程有了更深入的了解。
实验中遇到的问题,我通过查找资料、请教老师和同学进行了解决,提高了我的解决问题的能力。
通过实验,我进一步认识了单片机在各个领域中的重要性和应用价值,对未来的学习和工作有了更加明确的方向。
目录目录 (1)表目录 (2)图目录 (3)1文档说明(Introduction) (4)2描述习惯(Conventions) (5)3微处理器各功能模块 (6)3.1概述 (6)3.2结构框图 (6)3.2.1ALUpart (6)3.2.2controlpart (9)3.2.3CPU (11)3.3功能列表 (12)3.3.1ALUpart (12)3.3.2controlpart (13)3.3.2.1状态转移图 (13)3.4工作环境介绍 (14)3.4.1设计代码 (14)3.4.2测试平台 (14)3.4.3电路综合环境 (16)3.4.4后仿真环境 (16)3.5功能验证结果 (17)3.5.1前仿真结果 (17)3.5.2后仿真结果 (19)3.6综合结果 (20)表1 ALU8模块I/O接口表2 通用寄存器堆模块I/O接口表3 alupart输入输出I/O口列表表4 控制器模块I/O接口表5 IRRAM模块I/O接口表6 Control-part结构整体I/O接口表7 CPU整体模块I/O接口表8 ALU 指令集表9 添加的JUMP指令图1 ALU8模块框图图2 通用寄存器RAM模块框图图3 ALUpart模块框图图4 控制器模块框图图5 IRRAM模块框图图6 Control-part结构框图图7 CPU结构框图图8 ALUpart状态转移图图9 controlpart状态转移图图10 CPU计算5!的全图图11 controllpart执行一条指令的波形图图12 control 执行非跳转指令的状态机波形图13 control 执行跳转指令的状态机波形图14 ALUpart执行一条指令的波形图图15 ALUpart执行指令状态机的波形图16 综合的Timing report图17 综合的Area report图18 门级仿真5!的波形结果图19 门级仿真产生的延时1文档说明(Introduction)本文档描述了简单微处理器的总体设计,如功能、模块结构、关键时序等等。
《微处理器实验》实验报告一、实验目的与任务1、掌握80C51单片机程序的调试与下载方法。
2、掌握80C51单片机并口的工作原理及输入输出控制方法。
3、理解和学会单片机外部中断的使用;4、学习单片机定时器/计数器的应用。
二、实验原理介绍80C51单片机包括P0~P3共4个并口,除可作为普通I/O口使用外,P0口还可用作8位数据总线口和低8位地址口,P2可用作高8位地址口,P3.6、P3.7可用作外部RAM或I/O接口的读、写控制引脚,P3.0~P3.5可用作串口、外部中断、计数器的功能引脚。
ZSC-1实验箱包括4个单片机,其中1#单片机(MCU1)和2#单片机(MCU2)的型号都是STC12C5A60S2,只是封装不同。
STC12C5A60S2采用80C51内核,片内资源和性能较标准80C51单片机增强了许多。
本课程的全部实验只用到MCU1。
图3-1为本实验对应的硬件电路。
P0口用于控制发光管L101~L108,口线输出0(低电平)时,对应的发光管点亮,口线输出1(高电平)时,对应的发光管熄灭。
P3口的4根口线连接独立按键KX0~KX3,由于P3口内部上拉电阻的作用,按键松开时,对应的口线表现为1状态(高电平),按键按下时,对应的口线表现为0状态(低电平)。
中断是指在突发事件到来时先中止当前正在进行的工作,转而去处理突发事件。
待处理完成后,再返回到原先被中止的工作处,继续进行随后的工作。
引起突发事件的来源称为中断源,中断源要求服务的请求称为中断请求,对中断请求提供的服务称为中断服务,中断管理系统处理事件的过程称为中断响应过程。
51类单片机至少包括5个中断源:INT0:外部中断0,由P3.2端口线引入,低电平或下跳沿引起。
(本实验用)INT1:外部中断1,由P3.3端口线引入,低电平或下跳沿引起。
T0:定时器/计数器0中断,由T0计满回零引起。
(本实验用)T1:定时器/计数器l中断,由T1计满回零引起。
:
模块:
串口:
网络接口:
New(新建)工程
保存位置为D:\shb;
成功创建工程
5、思考题
(1)写出嵌入式系统的定义和应用,嵌入式有哪些开发工具?
硬件部分可以分成嵌入式处理器和外部设备。
处理器是整个系统的核心,负责处理所有的软件程序以及外部设备的信号。
外部设备在不同的系统中有不同的选择。
比如在汽车上,外部设备主要是传感器,用于采集数据;而在一部手机上,外部设备可以是键盘、液晶屏幕等。
软件部分可以分成两层,最靠近硬件的是嵌入式操作系统。
操作系统是软硬件的接口,负责管理系统的所有软件和硬件资源。
操作系统还可以通过驱动程序与外部设备打交道。
最上层的是应用软件,应用软件利用操作系统提供的功能开发出针对某个需求的程序,供用户使用。
用户最终是和应用软件打交道,例如在手机上编写一条短信,用户看到的是短信编写软件的界面,而看不到里面的操作系统以及嵌入式处理器等硬件。
微处理器设计实验任务&目标利用Verilog HDL语言,基于Xilinx FPGA nexys4实验平台,设计一个能够执行以下MIPS指令集的单周期类MIPS处理器,要求完成所有支持指令的功能仿真,验证指令执行的正确性,要求编写汇编程序将本人学号的ASCII码存入RAM的连续内存区域微处理器各个模块硬件设计原理、Verilog代码顶层模块ROM块采用异步输出,RAM同步输出,异步写入。
该方案有三个部分用到了时钟信号:指令指针赋值,寄存器文件写入数据,数据存储器输出数据。
指令指针赋值与始终上升沿同步,而寄存器文件数据写入以及数据存储器数据输出、输入与时钟下降沿同步Verilog代码module top(input reset);reg [31:0] PC;wire J,B,Bzero,zero,M2R,memwr,Imm,regwr,RtDst;wire [1:0] ALUop;wire [3:0] ALUctr;wire [31:0] NewPC,JMPPC,BranPC,Imm32L2,Imm32,NotJMPPC,TempPC;wire [31:0] Instr,WriteData,DataOut,Res,RsData,RtData,in2;wire [4:0] WriteAddr;assign Imm32={{16{Instr[15]}},Instr[15:0]};assign WriteAddr=RtDst?Instr[15:11]:Instr[20:16];assign in2=Imm?Imm32:RtData;assign WriteData=M2R?DataOut:Res;assign NotJMPPC=Bzero?BranPC:NewPC;assign TempPC=J?JMPPC:NotJMPPC;assign Bzero=B&zero;assign Imm32L2=Imm32<<2;assign JMPPC={NewPC[31:28],Instr[25:0],2'b00};assign BranPC=NewPC+Imm32L2;assign NewPC=PC+4;always@(posedge clk)if(!reset)PC=TempPC;elsePC=32'b0;mainctr mainctr1(Instr[31:26],ALUop,RtDst,regwr,Imm,memwr,B,J,M2R);ALU alu(RsData,in2,ALUctr,Res,zero);aluctr_gzt aluctr1(ALUop,Instr[5:0],ALUctr);DataRAM dram(Res[7:2],RtData,!clk,memwr,DataOut);InstrROM irom(PC[8:2],Instr);regFile regfile(clk,reset,regwr,Instr[25:21],Instr[20:16],WriteAddr,WriteData,RsData,RtData); endmodule主控制器module mainctr(input [5:0] opCode,output [1:0] ALUop,output RtDst,output regwr,output Imm,output memwr,output J,output M2R);reg [8:0] outputtemp;assign RtDst=outputtemp[8];assign Imm=outputtemp[7];assign M2R=outputtemp[6];assign regwr=outputtemp[5];assign memwr=outputtemp[4];assign B=outputtemp[3];assign J=outputtemp[2];assign ALUop=outputtemp[1:0];always@(opCode)case(opCode)6'b000010:outputtemp =9'bxxx0_001_xx; //imp6'b000000:outputtemp =9'b1001_000_10; //R6'b100011:outputtemp =9'b0111_000_00; //lw6'b101011:outputtemp =9'bx1x0_100_00; //sw6'b000100:outputtemp =9'bx0x0_010_01; //beq6'b001000:outputtemp =9'b0101_000_11;default:outputtemp =9'b000000000;endcaseendmoduleALU运算模块module ALU(input [31:0] in1,input [31:0] in2,input [3:0] ALUctr,output reg [31:0] Res,output reg zero);always @(in1 or in2 or ALUctr)begincase(ALUctr)4'b0000: //andRes = in1&in2;4'b0001: //orRes = in1 | in2;4'b0010: //addRes = in1 + in2;4'b0110: //subbeginRes = in1 - in2;zero = (Res == 0)?1:0;end4'b0111:Res=(in1<in2)?1:0;default: //othersRes = 0;endcaseendendmoduleALU控制器module aluctr_gzt(input [1:0] ALUop,input [5:0] func,output reg [3:0] ALUctr);always @(ALUop or func)casex({ALUop,func})8'b00xxxxxx: ALUctr=4'b0010; //lw,sw8'b01xxxxxx: ALUctr=4'b0110; //beq8'b10xx0000: ALUctr=4'b0010; //add8'b11xxxxxx: ALUctr=4'b0010;8'b10xx0010: ALUctr=4'b0110; //sub8'b10xx0100: ALUctr=4'b0000; //and8'b10xx0101: ALUctr=4'b0001; //or8'b10xx1010: ALUctr=4'b0111; //sltdefault : ALUctr=4'b0000;endcaseendmodule寄存器文件module regFile(input clk,input reset,input regwr,input [4:0] RsAddr,input [4:0] RtAddr,input [4:0] WriteAddr,input [31:0] WriteData,output [31:0] RsData,output [31:0] RtData);reg [31:0] regs [0:31];assign RsData = (RsAddr == 5'h0)?32'h0:regs[RsAddr];assign RtData = (RsAddr == 5'h0)?32'h0:regs[RtAddr];integer i;always@(negedge clk or posedge reset)if (reset)for(i=0;i<32;i=i+1)regs[i]<=0;else if(regwr)regs[WriteAddr] <= WriteData;endmoduleROM汇编程序设计代码main:add $14,$12,$13addi $11,$0,200addi $12,$0,85 #Usw $12,36($11)addi $13,$0,50 #2sw $13,32($11)addi $14,$0,48 #0sw $14,28($11)addi $15,$0,49 #1sw $15,24($11)addi $16,$0,55 #7sw $16,20($11)addi $17,$0,49 #1sw $17,16($11)addi $18,$0,51 #3sw $18,12($11)addi $19,$0,53 #5sw $19,8($11)addi $14,$0,53 #5sw $14,4($11)addi $18,$0,55 #7sw $18,0($11)add $4,$2,$3lw $4,4($2)sw $2,8($2)sub $2,$4,$3or $2,$4,$3and $2,$4,$3slt $2,$4,$3beq $4,$3,exitj mainexit: lw,$2,0($3)j mainRegfile模块仿真激励代码module regSim();reg clk ;reg reset;reg regwr;reg [4:0] RsAddr;reg [4:0] RtAddr;reg [4:0] WriteAddr;reg [31:0] WriteData;wire [31:0] RsData;wire [31:0] RtData;regFile uut(clk,reset,regwr,RsAddr,RtAddr,WriteAddr,WriteData,RsData,RtData);parameter PERIOD = 10; //clk period 10nsalways beginclk = 1'b0;#(PERIOD/2) clk = 1'b1; //rising edge#(PERIOD/2); //falling edgeendinitial beginreset=1; //reset 14 nsRsAddr=3;RtAddr=0;WriteAddr=5;WriteData=8;regwr=1;#14 reset=0; //20ns writedata stored in writeaddr $5=8#20 RsAddr=5; //34ns RsData=8;endendmodule仿真截图验证Regfile模块正确性首先将光标移到14ns处,reset一直为有效电平,故regs值一直为0,符合复位功能要求。
《微处理器与嵌入式系统设计》实验报告
微处理器与嵌入式系统设计实验报告
实验目的
本实验旨在通过使用微处理器和嵌入式系统设计,加深对相关
概念和原理的理解,并能够实际运用这些知识进行系统设计与开发。
实验步骤
1. 阅读相关理论材料,了解微处理器和嵌入式系统设计的基本
概念和原理。
2. 确定实验所需的硬件和软件资源,并进行准备工作。
3. 根据实验要求,进行系统设计与开发。
4. 实施系统测试与调试,确保系统正常运行。
5. 撰写实验报告,总结实验过程及结果。
实验结果
本实验按计划完成了实验步骤,并成功设计并开发了一个微处
理器和嵌入式系统。
实验分析
通过本实验,进一步加深了对微处理器和嵌入式系统设计的理解。
通过实践,我们能够更好地掌握其设计原理和应用技术,并能够运用这些知识解决实际问题。
总结
通过本次实验,我们深入研究了微处理器和嵌入式系统设计的基本概念和原理,并通过实践运用这些知识进行系统设计与开发。
通过实验的完成,我们对微处理器和嵌入式系统设计有了更深入的了解,对其应用领域和技术有了更清晰的认识。
参考文献
- [参考文献1]
- [参考文献2]。
电子科技大学实验报告课程名称微处理器系统结构与嵌入式系统设计实验名称ARM汇编基础实验任课教师 XXX 实验教师 XXX姓名黑XX学号2012XXXXXXXXX 实验地点 XXXXXXX 分组号 X组时间 XXXX年 X月X日XX:XX~XX:XX一、实验目的1.掌握ARM汇编指令。
2.学习掌握C与汇编混合编程基础。
3.熟练使用ARM调试工具RVDS进行调试操作。
二、实验内容1.熟悉ARM汇编。
2.用ARM汇编实现1+2+...+N。
3.C调用汇编实验(实现字符串拷贝功能)。
4.汇编调用C实验。
5.ARM汇编实现冒泡算法(选做)三、实验步骤1)用ARM汇编实现1+2+….n的运算。
在sum.s文件中,添加如下代码:SUN_L1ADD R0,R1BVS SUM_ENDCMP R1,R2BHS SUM_ENDADD R1,#1B SUN_L12)理解C和汇编,并用汇编程序实现字符串拷贝,并在C程序中调用该汇编程序。
在汇编文件testfile1. s中添加两行汇编代码,实现:拷贝源字符串的一个字节到R2中,将拷贝的字节复制到目标空间。
关键代码如下:strcopy;------------------------------------------;用汇编实现字符串拷贝LDRB R2,[R1],#1 ;R1对应源字符串首地址,利用寄存器间接寻址读取字符到R2STRB R2,[R0],#1 ;R0对应目的字符串首地址,利用寄存器间接寻址保存字符CMP R2,#0BNE strcopyMOV PC,LR;------------------------------------------END ;文件结束3)在汇编中调用C函数。
在汇编文件testfile2.s中相应位置添加汇编代码,通过调用c函数g()实现1+2+3+glovb1,结果存在R8中。
关键代码如下:STR LR,[SP,#-4]!MOVS R0,#1MOVS R1,#2MOVS R2,#3LDR R4,=glovb1LDR R3,[R4] ;传递参数BL gMOV R8,R0ADD sp,sp,#4LDR pc,[sp],#4中,通过伪指令EQU,定义N的值。