探索勾股定理1
- 格式:doc
- 大小:36.50 KB
- 文档页数:4
第3题 第6题 B A C D E 第9题2.7探索勾股定理 (一)A 组1. 如图,正方形网格中,每个小正方形的边长为1,则网格上三角形ABC 中,边长为无理数的边有( )A .3条B .2条C .1条D .0条2.已知一直角三角形的两条边长为3,4,则第三边的长为 ( )A .5B .7C .7或5D .无法判断3.如图,数轴上点A 所表示的数为a ,则a 的值是( )A .51-B .51-+C .51+D .54.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑( ) A.9分米 B.15分米 C.5分米 D.8分米5.已知一个直角三角形的两条直角边是6和8,则这个直角三角形斜边上的高为_______,斜边上的中线为_______.6.如图,分别以DEF Rt ∆的三边为边向外作正方形,已知正方形M和Q 的面积分别是21和13,则正方形P 的面积是______.7.若等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为 .8.已知在Rt △ABC 中,AB=c ,BC=a ,AC=b ,∠C =90°. (1)若a =6,b =8,求c ;(2)若a =2,c =6,求b ;(3)若c =34,:8:15a b =,求a ,b 的值。
9. 如图,有一个直角三角形纸片,两条直角边BC =6cm ,AC =8cm ,现将直角边BC 沿直线BD 折叠,使它落在斜边AB 上,且与BE 重合,求CD 的长.10.在△ABC 中,AB=13 cm ,AC =20 cm ,BC 边上的高为12 cm ,求△ABC 的面积. 第1题B 组★11.小刚测量河水的深度,他把一根竹竿竖直插到离岸边1.5米远的水底,竹竿高出水面0.5米,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度是____米.★12.在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B’始终落在边AC上。
北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。
教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。
我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。
教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。
1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C 中有_______个小方格,即A 的面积为______个单位。
1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。
2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
§探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,了解并掌握勾股定理的内容。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生在探索过程中发现问题、总结规律的意识和能力。
重点难点:重点:勾股定理的内容及探究。
难点:勾股定理的发现教学方法:讲练结合、合作交流。
教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1 章前的图文)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影第一节首电线杆拉线问题,出示课题。
二、做一做1、各学习小组在纸上画若干个直角三角形,分别测量它们的三条边的长,看看三边长的平方之间又怎样的关系小组内进行交流。
教师强调所画三角形尽量是任意三角形。
2、出示P2 书中的P2 图1—2)并回答:(1)观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C中有_______个小方格,即A的面积为______个单位。
(2)你是怎样得出上面的结果的在学生交流回答的基础上教师直接发问:(3)图1—2中,A,B,C之间的面积之间有什么关系学生交流后形成共识,教师板书:A+B=C。
3、出示(书中P2图1—3)提问:(1)图1—3中,A,B,C之间有什么关系(2)从图1—2,1—3,中你发现什么学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
4、学生讨论:(1)图1—2、1—3中,你能用三角形的边长表示正方形的面积吗(2)你能发现直角三角形三边长度之间的关系吗在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。
这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,a2+b2=c2,我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
第一章勾股定理1.1.1 探索勾股定理(一)学习目标:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
学习过程:一、自主学习画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
(勾3,股4,弦5)。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42_____52,52+122_____132,那么就有_____2+_____2=_____2。
(用勾、股、弦填空)对于任意的直角三角形也有这个性质吗?勾股定理内容文字表述:几何表述:二、交流展示例1、已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:⑴准备多个三角形模型,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S△+S小正=S大正即4×21×+﹝﹞2=c2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达300余种。
这个古老而精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=_____________右边S=_____________左边和右边面积相等,即_________________________化简可得_______________________三、合作探究bbbccccaabbbaaccaabcc1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则⑴c= 。
课题:§1、1、3探索勾股定理导学稿
主备:审核: 审批:班级:使用人:
【学习目标】
1、使学生通过对“青朱出入图”的探究,通过操作活动感受勾股定理的“无字证明”。
2、理解并掌握勾股定理,用它解决一些简单的问题。
【学习重点】
动手拼摆“五巧板”进一步验证勾股定理。
【学前准备】
1、按照课本13页的“做一做”,用较硬的纸制作两幅“五巧板”。
(要求:尽可能做大一些)
2、什么是勾股定理?
【自学探究】
1、能否将两个大小相等的正方形拼成一个较大的正方形?若能,大小正方形的边长之比是多少?
2、通过看课本和查资料了解“青朱出入图”。
预习后你还有什么问题?最想和大家讨论交流的问题是什么?
【合作交流】
1、“青朱出入图”
2、做一做:(要求:实际动手拼摆后,课后将其粘到导学稿上)
(1)取两幅五巧板,将其中的一幅拼成一个以c为边长的正方形;将另一副拼成两个边长分别为a、b的正方形。
(2)你能拼出“青朱出入图”吗?当然可能有部分是重复的了。
(3)利用五巧板,你还能通过怎样的拼图验证勾股定理?与同伴交流。
3、课本14页的“议一议”
问题:
如果一个三角形不是直角三角形,那么它的三边a、b、c满足a2+b2=c2吗?
【随堂练习】
课本15页的问题解决第1题(要求抄题画图)
【小结】
通过这节课的学习,你有什么收获?还有什么问题?
【今日作业】
1、一个直角三角形的斜边为20cm,且两直角边的长度比为3:4,求两直角边的长。
【巩固与拓展】
1、课本15页的问题解决第2题(要求:实际动手操作)
2、课本16页的联系拓广3
3、从网上收集有关勾股定理的资料,撰写小论文,与同伴交流。
家校联系:(家长反馈意见或签名)。