单片机最小系统之-复位电路设计
- 格式:docx
- 大小:9.86 KB
- 文档页数:2
51单片机最小系统复位电路
51单片机最小系统需要一个复位电路,以确保在上电时单片机
处于正确的状态。
复位电路可以使单片机在正常运行之前进行初始化。
这篇文章将介绍51单片机最小系统的复位电路。
复位电路通常由电容和电阻组成。
电容用于存储电荷,电阻用于限制电流。
当单片机上电时,复位电路会将电容充电,直到电压达到一定值,然后电路将引导单片机复位。
具体来说,在51单片机最小系统中,复位电路包括一个1K欧姆的电阻,一个10uF的电容和一个复位电路芯片。
电容和电阻在芯片
的两个引脚之间连接。
这些引脚连接到单片机的复位引脚。
当单片机上电时,电容会开始充电。
当电容电压达到芯片规定的复位电压时,芯片将输出一个低电平信号,使单片机复位。
复位完成后,单片机将开始初始化过程。
总之,51单片机最小系统的复位电路可以确保单片机在上电时
处于正确的状态。
这是一个非常重要的电路,如果没有它,单片机可能会处于不稳定或错误的状态。
- 1 -。
C51单片机最小系统的电路原理与制作——吴越1 C51单片机最小系统电路图及电路原理单片机最小系统,是指用最少的元件组成并可工作的单片机系统,相关的资料网上或书店都很多。
图1为一个常见的单片机最小系统电路图。
C51最小系统电路由复位电路、时钟电路组成。
另外还需要DC+5V的电源最小系统才能工作。
(1)复位电路:复位电路在单片机系统中很关键,当程序运行不正常或死机时,就需要进行复位,一般有两种复位方式。
①上电复位:由电容C3和电阻R1串联组成,系统一通电,RST脚(9脚)为高电平,这个高电平持续的时间由电路的RC值来决定。
典型的C51单片机当RST脚的高电平持续两个机器周期以上就将复位,适当组合RC的取值就可以保证可靠的复位。
一般C3取10μF、R1取10K。
也有不同取值的,原则是RC组合要在RST脚上产生2个机器周期以上的高电平。
②手动复位:由电阻R2和开关S组成,R2取值没有严格的要求,一般能把复位脚的电压下拉至0.5V以下即可,可以把R2理解为缓冲电阻或与C3、R1组成防抖动电路,也有不用R2的。
单片机通电启动后,电容C3两端的电压持续充电约为5V,此时电阻R1两端的电压接近于0V,RST脚为低电平,系统进入正常工作状态。
当按下开关S时,开关导通,电容被短路,电容释放之存储的电量。
电容两端的电压从5V降到约等于0V,电阻R1两端的电压上升到约等于5V,RST脚为高电平,系统进入复位状态。
(2)时钟电路:时钟电路由晶振CY和C1、C2组成,一般晶振的取值1.2MHz~24MHz。
典型的晶振取11.0592MHz或12MHz,11.0592MHz适用于串口通讯,12MHz适用于定时控制,C1、C2一般取15pF~50pF。
如果要自己设计单片机系统的PCB板,注意,C1、C2要紧靠晶振CY,并且晶振CY和C1、C2要紧靠C51芯片,以保证振荡器可靠的工作。
系统通电后可以检测一下晶振是否起振。
若起振,可以用示波器观察到XTAL2会输出很漂亮的正弦波波型,也可以用万用表测量(用直流档)XTAL2和地之间的电压,可以看到有2V左右的电压(有效电压值)。
51单片机最小系统原理图51单片机最小系统原理图的功能详解单片机的最小系统是由组成单片机系统必需的一些元件构成的,除了单片机之外,还需要包括电源供电电路、时钟电路、复位电路。
单片机最小系统下面着重介绍时钟电路和复位电路。
1)时钟电路单片机工作时,从取指令到译码再进行微操作,必须在时钟信号控制下才能有序地进行,时钟电路就是为单片机工作提供基本时钟的。
单片机的时钟信号通常有两种产生方式:内部时钟方式和外部时钟方式。
内部时钟方式的原理电路如图所示。
在单片机XTAL1和XTAL2引脚上跨接上一个晶振和两个稳频电容,可以与单片机片内的电路构成一个稳定的自激振荡器。
晶振的取值范围一般为0~24MHz,常用的晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz等。
一些新型的单片机还可以选择更高的频率。
外接电容的作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率的作用,一般选用20~30pF的瓷片电容。
外部时钟方式则是在单片机XTAL1引脚上外接一个稳定的时钟信号源,它一般适用于多片单片机同时工作的情况,使用同一时钟信号可以保证单片机的工作同步。
时序是单片机在执行指令时CPU发出的控制信号在时间上的先后顺序。
AT89C51单片机的时序概念有4个,可用定时单位来说明,包括振荡周期、时钟周期、机器周期和指令周期。
振荡周期:是片内振荡电路或片外为单片机提供的脉冲信号的周期。
时序中1个振荡周期定义为1个节拍,用P表示。
时钟周期:振荡脉冲送入内部时钟电路,由时钟电路对其二分频后输出的时钟脉冲周期称为时钟周期。
时钟周期为振荡周期的2倍。
时序中1个时钟周期定义为1个状态,用S表示。
每个状态包括2个节拍,用P1、P2表示。
机器周期:机器周期是单片机完成一个基本操作所需要的时间。
一条指令的执行需要一个或几个机器周期。
一个机器周期固定的由6个状态S1~S6组成。
指令周期:执行一条指令所需要的时间称为指令周期。
单片机最小系统组成及电源/复位/振荡电路解析
单片机最小系统主要由电源、复位、振荡电路以及扩展部分等部分组成。
最小系统原理图如图所示。
电源模块
对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。
51单片机虽然使用时间最早、应用范围最广,但是在实际使用过程中,一个和典型的问题就是相比其他系列的单片机,51单片机更容易受到干扰而出现程序跑飞的现象,克服这种现象出现的一个重要手段就是为单片机系统配置一个稳定可靠的电源供电模块。
最小系统原理图
电源模块电路图
此最小系统中的电源供电模块的电源可以通过计算机的USB口供给,
也可使用外部稳定的5V电源供电模块供给。
电源电路中接入了电源指示LED,图中R11为LED的限流电阻。
S1为电源开关。
复位电路
单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。
单片机复位电路工作原理
单片机是一种集成了微处理器、存储器和输入输出功能的微型计算机系统,广
泛应用于各种电子设备中。
在单片机系统中,复位电路是非常重要的一部分,它能够确保单片机在启动时处于一个可靠的状态,从而保证系统的稳定性和可靠性。
复位电路的作用是在单片机系统上电或者复位时,将单片机的内部状态清零,
使其处于一个确定的初始状态,以便系统能够正常工作。
在单片机复位电路中,通常包括复位按钮、复位电路和复位控制器三个部分。
首先,复位按钮是用户手动按下的按钮,当按下复位按钮时,会引起复位电路
的动作,从而实现对单片机系统的复位。
复位按钮通常连接在单片机系统的外部,用户可以通过按下按钮来实现对系统的复位操作。
其次,复位电路是实现复位功能的关键部分,它通常由复位芯片和相关的电路
组成。
复位芯片是一种专门用于生成复位信号的集成电路,它能够监测单片机系统的电源状态和复位按钮的状态,并在需要时产生复位信号,从而实现对单片机系统的复位操作。
最后,复位控制器是单片机内部的一个模块,它接收来自复位电路的复位信号,并对单片机的内部状态进行清零操作,以确保系统处于一个可靠的初始状态。
复位控制器通常包括复位向量和复位延时两个部分,复位向量用于指示系统复位时的初始状态,而复位延时则用于确保系统在复位后能够稳定运行。
总的来说,单片机复位电路通过复位按钮、复位电路和复位控制器三个部分共
同工作,能够确保单片机系统在启动时处于一个可靠的状态,从而保证系统的稳定性和可靠性。
在实际的单片机系统设计中,合理设计和实现复位电路是非常重要的,它能够有效地提高系统的可靠性和稳定性,从而确保系统能够正常工作。
电子教材-时钟电路
——组建单片机最小系统
复位就是使中央处理器(CPU)以及其他功能部件都恢复到一个确定的初始状态,并从这个状态开始工作。
单片机在开机时或在工作中因干扰而使程序失控或工作中程序处于某种死循环状态等情况下都需要复位。
单片机的复位靠外部电路实现,信号由RST (RESET、9引脚)引脚输入,高电平有效,在振荡器工作时,只要保持RST引脚高电平两个机器周期,单片机即复位。
复位后,程序计数器PC的内容为0000H,即复位后将从程序存储器的0000H 单元读取第一条指令码。
其他特殊功能寄存器的复位状态见表1 。
表1 复位后各寄存器的状态
和时钟电路一样,复位电路也是单片机系统的正常运行必须的外部电路。
复位电路一般采用上电复位电路,如图1a所示,其工作原理是:系统通电瞬间,电容相当于短路,RST 引脚为高电平,然后电源通过电阻对电容充电,RST端电压下降到一定程度,即为低电平,单片机开始正常工作。
复位电路还可以选择上电和按键均有效的复位,如图1b所示。
其上电复位与前述相同,在单片机运行期间,手动复位时,单击复位按钮,电容C迅速放电,RST 端出现高电平,使单片机复位;复位按钮松开后,电容C通过R1和内部下拉电阻充电,逐渐使RST端恢复为低电平。
51单片机最小系统复位电路
51单片机是一款广泛应用的单片机,它的复位电路十分重要。
本文将介绍51单片机最小系统的复位电路设计。
复位电路的作用是在单片机启动时对其进行初始化,确保其能够正常工作。
51单片机的复位电路主要包括复位电源、复位电路元件和复位控制器三部分。
首先是复位电源,它是复位电路的基础。
复位电源可以是单独的电源,也可以是单片机电源的一部分。
在一般情况下,复位电源应该保证在单片机电源上电之前就能够正常工作。
如果复位电源是单片机电源的一部分,那么它的电源电压应该低于单片机的最小工作电压,以保证单片机能够正常工作。
接下来是复位电路元件,它是复位电路的核心。
复位电路元件主要包括电容器和电阻器两种。
其中,电容器用来储存电荷,电阻器用来限制电流。
在51单片机最小系统的复位电路中,电容器的电容量应该在1uf左右,电阻器的阻值应该在10k左右。
最后是复位控制器,它是复位电路的决策者。
复位控制器主要有两种类型,一种是基于电路的复位控制器,另一种是基于软件的复位控制器。
在51单片机最小系统的复位电路中,我们可以使用基于电路的复位控制器来实现复位功能。
综上所述,51单片机最小系统的复位电路设计需要注意复位电源、复位电路元件和复位控制器三个方面。
只有这三个方面都得到了充分的考虑和设计,才能保证51单片机最小系统的复位电路能够正
常工作。
stm32单片机最小系统复位电路下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!STM32单片机最小系统复位电路单片机作为现代电子产品中不可或缺的一部分,其复位电路是保证系统正常工作的关键部分。
单片机最小系统的设计
单片机最小系统是指由单片机芯片、电源、复位电路、时钟电路和最小外围电路组成的基本系统。
它是单片机应用的基础,是进行单片机学习和开发的起点。
设计单片机最小系统需要考虑以下几个方面: 1. 选择合适的单片机芯片
根据应用需求选择合适的单片机型号,考虑存储空间、/接口数量、功耗等因素。
常用的单片机芯片有51系列、系列、 -系列等。
2. 设计电源电路
为单片机提供稳定的工作电压,通常使用线性稳压器或开关电源模块。
需要注意电源滤波、防反接等设计。
3. 设计复位电路
复位电路用于在上电或异常情况下将单片机重新复位,常用电阻-电容复位电路或监视电路。
4. 设计时钟电路
为单片机提供稳定的时钟信号,可使用外部晶振电路或内部振荡器。
晶振电路需要根据单片机要求选择合适的晶振频率。
5. 设计最小外围电路
根据应用需求设计最小外围电路,如显示电路、按键输入电路、串行通信电路等。
6. 设计程序下载电路
为了将程序下载到单片机,需要设计相应的下载电路,如下载电路或下载电路。
7. 设计布局
将上述电路合理布局在印制电路板上,注意走线布局、元器件摆放、电磁兼容性等因素。
设计单片机最小系统需要掌握单片机原理、电路设计和布局知识。
通过搭建最小系统,可以熟悉单片机的工作原理和编程方法,为后续的应用开发奠定基础。
单片机最小系统之|复位电路设计昨天讲解了,也就是最小系统。
单片机的最小系统包括:复位电路、晶振电路、电源电路、下载电路。
从今天开始讲解每个电路,并结合实际设计,展示实际电路。
1.什么是单片机的复位电路单片机的复位电路就是在单片机的复位引脚产生一个复位信号,使单片机处于复位状态,使单片机的程序从头执行,从而避免了单片机程序的跑飞。
2.单片机复位电路的作用是什么单片机复位的主要作用是把特殊功能寄存器的数值加载为默认值,由于单片机在运算过程中受外界干扰造成寄存器中数据混乱不能使其正常继续执行程序(称死机)或单片机的指令不按照程序执行而指向了未知位置(俗称跑飞),这时候就需要单片机复位一下,以使程序重新开始运行。
3.单片机复位有哪几种方式单片机的复位一般有三种方式:上电复位,看门狗复位,手动复位等。
上电复位:单片机在上电瞬间,给复位引脚一个复位信号(一定时间的高电平或者低电平),以实现单片机的复位,待稳定后,单片机开始执行程序。
看门狗复位:看门狗复位不同于上电复位,上电复位是单片机从头开始执行程序;而看门狗复位时当某一个程序块不受控制时,将程序计数器清零,使该段程序从头执行,为了使单片机系统正常运行要在程序中定时喂狗。
手动复位:在单片机的复位引脚接一个按键,手动按下该按键使单片机复位。
4.单片机的复位电平不同的单片机其复位电平不同,有的单片机是高电平复位,有的单片机是低电平复位。
下面就看复位电路。
单片机上电高电平复位电路:上电高电平复位电路上电瞬间,由于电容两端的电压不能发生突变,所以电容两端的电位都是VCC(此时充电电流最大,电容相当于短路),即RST是高电平,而随着VCC通过RC电路对电容充电,当电容两端的电压达到VCC时,电容相当于断路(此时电容充电电流为0,即隔直流),RST的电平为低电平,单片机正常工作。
单片机上电低电平复位电路:上电低电平复位电路上电瞬间,由于电容两端的电压不能发生突变,所以电容两端的电位都是GND,即RST是低电平,而随着VCC通过RC电路对电容充电,当电容两端的电压达到VCC时,RST的电平为高电平,单片机正常工作。
单片机复位电路设计一、概述影响单片机系统运行稳定性的因素可大体分为外因和内因两部分:1、外因射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰;电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。
2、内因振荡源的稳定性,主要由起振时间频率稳定度和占空比稳定度决定。
起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电路的可靠性。
二、复位电路的可靠性设计1、基本复位电路复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。
为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。
图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。
但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整 RC 常数改变延时会令驱动能力变差。
左边的电路为高电平复位有效右边为低电平 Sm为手动复位开关Ch 可避免高频谐波对电路的干扰。
图1 RC复位电路图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。
图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果图2 增加放电回路的RC复位电路使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。
图4 是一个实例当 VCC x (R1/(R1+R2) ) = 0.7V时,Q1截止使系统复位。
Q1的放大作用也能改善电路的负载特性,但跳变门槛电压 Vt 受 VCC 影响是该电路的突出缺点,使用稳压二极管可使 Vt 基本不受VCC影响。
见图5,当VCC低于Vt(Vz+0.7V)时电路令系统复位。
图3 RC复位电路输入-输出特性图4 带电压监控功能的复位电路图5 稳定门槛电压图6 实用的复位监控电路在此基础上,增加延时电容和放电二极管构成性能优良的复位电路,如图6所示。
单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.下面给出一个51单片机的最小系统电路图.说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC 值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R 取8.2K.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.复位电路:一、复位电路的用途单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。
单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。
单片机复位电路如下图:二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。
所以可以通过按键的断开和闭合在运行的系统中控制其复位。
51单片机几种实用的复位电路设计
51单片机是一种广泛应用于嵌入式系统的芯片,其稳定性和
可靠性非常重要。
复位电路是保证单片机正常工作的核心部分,如果该电路不正确设计,那么就可能会导致单片机出现故障,影响整个系统的稳定性。
本文将介绍几种51单片机常用的复
位电路设计,希望对读者有所帮助。
1. 基于RC电路的复位电路
这种设计是比较简单和常见的复位电路,在实际应用中也被广泛使用。
这种电路的原理基于RC电路的分时常数,因此当电
源电压出现波动或者干扰时,可以通过RC冲放来稳定电压并
保证单片机正常工作。
2. 基于电容的复位电路
这种设计是直接通过电容来实现复位电路的设计,相比上一种设计方法,更加精确和稳定。
当电源电压出现干扰时,可以通过电容来缓解电压的变化,从而使单片机能够正常工作。
3. 基于外部看门狗的复位电路
这种设计方法是通过在单片机的外部添加看门狗芯片来实现复位电路的设计。
在这个设计中,看门狗芯片会不断检测单片机的运行状态,如果发现单片机出现故障,那么就会触发复位操作,从而使整个系统恢复正常工作。
4. 基于软件的复位电路
这种设计方法是通过编写软件代码来实现复位电路的设计。
在这个设计中,程序会不断检测单片机的运行状态,如果发现单
片机出现故障,那么就会触发复位操作,从而保证整个系统的稳定性。
总之,复位电路是保证单片机正常工作的核心部分,其设计必须合理、稳定,才能保障系统的可靠性。
因此,在实际应用中,需要选择合适的方法来实现复位电路的设计,从而保证系统的正常运行。
单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.下面给出一个51单片机的最小系统电路图.说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC 值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R 取8.2K.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.复位电路:一、复位电路的用途单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。
单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。
单片机复位电路如下图:二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。
所以可以通过按键的断开和闭合在运行的系统中控制其复位。
最小系统的复位电路原理最小系统的复位电路是指嵌入式系统中的一个重要电路,用于在系统上电或出现异常时将系统恢复到初始状态,确保系统能够正常工作。
复位电路一般包括复位电源、复位触发电路和复位信号生成电路。
复位电源是复位电路的供电来源,一般采用外部电源或者是系统中的电源模块。
复位电源必须能够提供稳定的电压和电流,以保证复位电路能够正常工作。
复位触发电路一般由复位按钮、复位电路以及辅助触发元件组成。
复位按钮是用于手动触发复位操作的按钮,用户按下按钮时可以将复位信号切换为低电平。
复位电路用于检测复位按钮信号,并将复位按钮信号转换为系统能够接受的复位信号。
辅助触发元件一般是用于检测系统供电是否正常,如果出现异常情况,如供电电压过高或过低,辅助触发元件会通过复位电路将系统复位。
复位信号生成电路是将复位触发电路产生的复位信号转换为系统能够识别的复位信号。
复位信号生成电路通常采用门电路、多谐振荡电路或者计数器电路等。
复位电路的工作原理如下:1. 系统上电时,复位电路中的复位电源将电压供应给复位触发电路和复位信号生成电路。
2. 用户按下复位按钮时,复位按钮会关闭复位电路中的开关,并将复位信号切换为低电平。
3. 复位电路中的复位触发电路检测到低电平的复位信号后,会将触发信号传递给复位信号生成电路。
4. 复位信号生成电路接收到触发信号后,会对系统进行复位操作。
复位操作的具体方式根据系统的要求不同而有所差异,可以是清零寄存器、重新加载程序或者是重新启动。
5. 复位信号生成电路在将系统复位之后,会产生一个复位完成的信号,表示系统已经复位完成。
需要注意的是,复位电路的设计应该兼顾系统启动的时间和复位的稳定性。
复位电路的延时时间应该足够长,以保证系统在复位期间可以完成必要的操作。
另外,复位电路应该对外部噪声进行抑制,以确保复位信号的稳定性。
复位电路的设计还需要考虑系统的功耗,以避免因为复位电路的功耗过高而影响系统的正常工作。
综上所述,最小系统的复位电路是一种用于保证系统能够正常工作的重要电路。
单片机最小系统之|复位电路设计
昨天讲解了,也就是最小系统。
单片机的最小系统包括:复位电路、晶振电路、电源电路、下载电路。
从今天开始讲解每个电路,并结合实际设计,展示实际电路。
1.什么是单片机的复位电路
单片机的复位电路就是在单片机的复位引脚产生一个复位信号,使单片机处于复位状态,使单片机的程序从头执行,从而避免了单片机程序的跑飞。
2.单片机复位电路的作用是什么
单片机复位的主要作用是把特殊功能寄存器的数值加载为默认值,由于单片机在运算过程中受外界干扰造成寄存器中数据混乱不能使其正常继续执行程序(称死机)或单片机的指令不按照程序执行而指向了未知位置(俗称跑飞),这时候就需要单片机复位一下,以使程序重新开始运行。
3.单片机复位有哪几种方式
单片机的复位一般有三种方式:上电复位,看门狗复位,手动复位等。
上电复位:单片机在上电瞬间,给复位引脚一个复位信号(一定时间的高电平或者低电平),以实现单片机的复位,待稳定后,单片机开始执行程序。
看门狗复位:看门狗复位不同于上电复位,上电复位是单片机从头开始执行程序;而看门狗复位时当某一个程序块不受控制时,将程序计数器清零,使该段程序从头执行,为了使单片机系统正常运行要在程序中定时喂狗。
手动复位:在单片机的复位引脚接一个按键,手动按下该按键使单片机复位。
4.单片机的复位电平
不同的单片机其复位电平不同,有的单片机是高电平复位,有的单片机。