数学建模MATLAB算法大全第02章 整数规划
- 格式:pdf
- 大小:406.71 KB
- 文档页数:16
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
26. 整数规划全部变量限制为整数的规划问题,称为纯整数规划;部分变量限制为整数的规划问题,称为混合整数规划;变量只取0或1的规划问题,称为0-1整数规划。
整数规划问题,建议使用Lingo 软件求解。
常用的整数规划问题解法有:(1)分枝定界法:可求纯或混合整数线性规划; (2)割平面法:可求纯或混合整数线性规划;(3)隐枚举法:用于求解0-1整数规划,有过滤法和分枝法; (4)匈牙利法:解决指派问题(0-1规划特殊情形); (5)蒙特卡罗法:求解各种类型规划。
一、分枝定界法分支定界法的基本思想是:设有最大化的整数规划问题A ,先解与之相应的线性规划问题B ,若B 的最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z*的上界,记作z2, 而A 的任意可行解的目标函数值将是z*的一个下界z1, 分支定界法就是将B 的可行域分成子区域(称为分支)的方法,逐步减小z2和增大z1, 最终求到z*。
例1 分枝定界法原理示例:1212120max 58s. t. 65945 () 0, Z (1,2)i i z x x x x x x P x x i =++≤+≤≥∈=用Lingo软件求解:代码:max 5x1+8x2stx1+x2<=65x1+9x2<=45endgin 2运行结果:Global optimal solution found.Objective value: 40.00000Objective bound: 40.00000 Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 0.000000 -5.000000X2 5.000000 -8.000000Row Slack or Surplus Dual Price1 40.00000 1.0000002 1.000000 0.0000003 0.000000 0.000000二、0-1整数规划变量x i只能取值0,1,该约束条件可表示为:0≤x i≤1, x i∈N 或x i (1-x i)=0 1. 隐枚举法例2求解下列0-1规划问题:1231231231223 max 325s. t. 2 2 () 4 4 () 3 () 4 6 z x x x x x x a x x x b x x c x x =-++-≤++≤+≤+≤123 () ,,0 1d x x x =或求解思路:(1)先试探性地求一个可行解,易看出(x1, x2, x3)=(1, 0, 0)满足约束条件,故是一个可行解,相应的目标函数值为z=3.(2)由于是求极大值,故目标值z<3的解,不必检验是否满足约束条件即可删除,于是可增加一个约束条件(称为过滤条件):1233253x x x -+≥ (e)(3)用全部枚举法,3个变量共23=8种可能的组合,用过滤条件(并计算目标函数值,不断改进过滤条件)筛选每个可能的组合,最终得到问题的最优解。
matlab学习——02整数规划(蒙特卡洛法,指派问题,混合整数规划)02整数规划蒙特卡洛法(随机取样法)编写⽂件mengte.m,⽬标函数f和约束向量gfunction[f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)^2-8*x(1)-2*x(2)-3*x(3)-x(4)-...2*x(5);g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-8002*x(1)+x(2)+6*x(3)-200x(3)+x(4)+5*x(5)-200]; 主函数format compact;rand('state',sum(clock)); % 初始化随机数发⽣器p0=0;tic % 计时开始for i=1:10^6x=randi([0,99],1,5); % 产⽣1⾏5列的区间[0,99]上的随机整数[f,g]=mengte(x);if all(g<=0)if p0<fx0=0;p0=f; % 记录下当前较好的解endendendx0,p0toc % 计时结束指派问题clearC=[2 10 9 715 4 14 813 14 16 114 15 13 9];A = perms(1:4);%perm显⽰1,2,3,4四个数的全排列L = length(A)for i=1:La = zeros(4,4);b = A(i,:);%遍历全排列中的每⼀种c = 1:4;a(sub2ind(size(a), b, c))=1;%a矩阵指定的位置赋值为1D{i}=a;S(i)=sum(sum(a.*C));%求出费⽤和end[a,b]=find(S==min(S))D{b}S(b)%适⽤于任意n阶系数矩阵clear all;C=[2 10 9 7,15 4 14 8,13 14 16 11,4 15 13 9,];%效率矩阵Cn=size(C,1);%计算C的⾏列数nC=C(:);%计算⽬标函数系数,将矩阵C按列排成⼀个列向量即可。
数学规划模型——整数规划问题title: 数学规划模型——整数规划问题date: 2020-02-27 00:37:35categories: 数学建模tags: [MATLAB, 数学规划模型]整数规划整数规划:线性整数规划 - Matlab可进⾏求解(线性的意思在线性规划的基础上 , 加⼊决策变量取整数的条件)⾮线性整数规划→⽆特定算法, 只能⽤近似算法 , 如蒙特卡罗模拟、智能算法 ( 后续会讲到)特例: 特殊的整数规划 , Matlab中也只能求解线性01规划, 对于⾮线性 0-1规划也只能近似求解 。
(数模⽐赛中常出现)Matlab整数规划求解线性整数规划求解[x ,fval] = linprog [ c, A, b, Aeq, beq, lb, ub, X0] -> 线性规划的函数[x ,fval] = intlinprog [ c, intconA, b, Aeq, beq, lb, ub]→ 线性整数规划的求解注 :intlinpng 不能指定初始值 ;加⼊了 inton 参数可以指定哪些决策变量是整数。
例如决策变量有三个 : x1,x2,x3 ; 若x1和x3,是整数 , 则 intcon= [1 , 3] 。
线性 0-1规划求解仍然使⽤intlinprog 函数 , 只不过在 lb和ub上作⽂章 。
例如决策变量有三个 : x1,x2,x3 ; 若x1和x3是0-1变量,x2不限制, 则 intcon= [1 , 3] ,lb=[0 -inf 0]',ub=[1,+inf,1]。
⼩例题%% 线性整数规划问题%% 例1c=[-20,-10]';intcon=[1,2]; % x1和x2限定为整数A=[5,4;2,5];b=[24;13];lb=zeros(2,1);[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)fval = -fval%% 例2c=[18,23,5]';intcon=3; % x3限定为整数A=[107,500,0;72,121,65;-107,-500,0;-72,-121,-65];b=[50000;2250;-500;-2000];lb=zeros(3,1);[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)%% 例3c=[-3;-2;-1]; intcon=3; % x3限定为整数A=ones(1,3); b=7;Aeq=[4 2 1]; beq=12;lb=zeros(3,1); ub=[+inf;+inf;1]; %x(3)为0-1变量[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)整数规划的典型例题背包问题%% 背包问题(货车运送货物的问题)c = -[540 200 180 350 60 150 280 450 320 120]; % ⽬标函数的系数矩阵(最⼤化问题记得加负号)intcon=[1:10]; % 整数变量的位置(⼀共10个决策变量,均为0-1整数变量)A = [6 3 4 5 1 2 3 5 4 2]; b = 30; % 线性不等式约束的系数矩阵和常数项向量(物品的重量不能超过30)Aeq = []; beq =[]; % 不存在线性等式约束lb = zeros(10,1); % 约束变量的范围下限ub = ones(10,1); % 约束变量的范围上限%最后调⽤intlinprog()函数[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)fval = -fval指派问题%% 指派问题(选择队员去进⾏游泳接⼒⽐赛)clear;clcc = [66.8 75.6 87 58.6 57.2 66 66.4 53 78 67.8 84.6 59.4 70 74.2 69.6 57.2 67.4 71 83.8 62.4]'; % ⽬标函数的系数矩阵(先列后⾏的写法)intcon = [1:20]; % 整数变量的位置(⼀共20个决策变量,均为0-1整数变量)% 线性不等式约束的系数矩阵和常数项向量(每个⼈只能⼊选四种泳姿之⼀,⼀共五个约束)A = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1];% A = zeros(5,20);% for i = 1:5% A(i, (4*i-3): 4*i) = 1;% endb = [1;1;1;1;1];% 线性等式约束的系数矩阵和常数项向量(每种泳姿有且仅有⼀⼈参加,⼀共四个约束)Aeq = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];% Aeq = [eye(4),eye(4),eye(4),eye(4),eye(4)]; % 或者写成 repmat(eye(4),1,5)% Aeq=zeros(4,20);% for i = 1:4% for j =1:20% if mod(j,4)==i% Aeq(i,j)=1;% end% if i==4% if mod(j,4)==0% Aeq(i,j)=1;% end% end% end% endbeq = [1;1;1;1];lb = zeros(20,1); % 约束变量的范围下限ub = ones(20,1); % 约束变量的范围上限%最后调⽤intlinprog()函数[x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)% reshape(x,4,5)'% 0 0 0 1 甲⾃由泳% 1 0 0 0 ⼄蝶泳% 0 1 0 0 丙仰泳% 0 0 1 0 丁蛙泳% 0 0 0 0 戊不参加钢管切割问题%% 钢管切割问题%% (1)枚举法找出同⼀个原材料上所有的切割⽅法for i = 0: 2 % 2.9m长的圆钢的数量for j = 0: 3 % 2.1m长的圆钢的数量for k = 0:6 % 1m长的圆钢的数量if 2.9*i+2.1*j+1*k >= 6 & 2.9*i+2.1*j+1*k <= 6.9disp([i, j, k])endendendend%% (2) 线性整数规划问题的求解c = ones(7,1); % ⽬标函数的系数矩阵intcon=[1:7]; % 整数变量的位置(⼀共7个决策变量,均为整数变量)A = -[1 2 0 0 0 0 1;0 0 3 2 1 0 1;4 1 0 2 4 6 1]; % 线性不等式约束的系数矩阵b = -[100 100 100]'; % 线性不等式约束的常数项向量lb = zeros(7,1); % 约束变量的范围下限[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)。
Matlab求解线性规划和整数规划问题线性规划(Linear Programming)是一种优化问题的数学建模方法,用于求解线性约束条件下的最优解。
整数规划(Integer Programming)是线性规划的一种扩展形式,要求变量取整数值。
在Matlab中,可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
以下将详细介绍如何使用Matlab进行线性规划和整数规划的求解。
1. 线性规划问题的求解步骤:a. 定义目标函数:首先,需要定义线性规划问题的目标函数。
目标函数可以是最小化或者最大化某个线性表达式。
b. 定义约束条件:其次,需要定义线性规划问题的约束条件。
约束条件可以是等式或者不等式形式的线性表达式。
c. 构建模型:将目标函数和约束条件组合成一个线性规划模型。
d. 求解模型:使用Matlab中的优化工具箱函数,如linprog,对线性规划模型进行求解。
e. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
2. 整数规划问题的求解步骤:a. 定义目标函数和约束条件:与线性规划问题类似,首先需要定义整数规划问题的目标函数和约束条件。
b. 构建模型:将目标函数和约束条件组合成一个整数规划模型。
c. 求解模型:使用Matlab中的优化工具箱函数,如intlinprog,对整数规划模型进行求解。
d. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
下面以一个具体的例子来说明如何使用Matlab求解线性规划和整数规划问题。
例子:假设有一家工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为200元。
生产一个单位的产品A需要2小时,生产一个单位的产品B需要4小时。
工厂的生产能力限制为每天最多生产10个单位的产品A和8个单位的产品B。
求解如何安排生产,使得利润最大化。
1. 定义目标函数和约束条件:目标函数:maximize 100A + 200B约束条件:2A + 4B <= 8A <= 10B <= 8A, B >= 02. 构建模型:目标函数可以表示为:f = [-100; -200],即最大化-f的线性表达式。
Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数学软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将介绍如何使用Matlab求解这两类问题,并分析其优点和适用范围。
正文内容:1. 线性规划问题1.1 线性规划问题的定义线性规划问题是指在一定的约束条件下,通过线性目标函数求解最优解的问题。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧向量。
1.2 Matlab中的线性规划求解函数Matlab提供了linprog函数来求解线性规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界,来求解线性规划问题的最优解。
1.3 线性规划问题的应用线性规划问题在实际应用中非常广泛,例如生产计划、资源分配、运输问题等。
通过Matlab求解线性规划问题,可以高效地得到最优解,为实际问题的决策提供科学依据。
2. 整数规划问题2.1 整数规划问题的定义整数规划问题是指在线性规划问题的基础上,决策变量的取值限制为整数。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0x为整数其中,c、A、b的定义与线性规划问题相同,x为整数。
2.2 Matlab中的整数规划求解函数Matlab提供了intlinprog函数来求解整数规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界和整数约束条件,来求解整数规划问题的最优解。
2.3 整数规划问题的应用整数规划问题在实际应用中常见,例如生产调度、投资决策、路径规划等。
通过Matlab求解整数规划问题,可以考虑到决策变量的整数性质,得到更为实际可行的解决方案。
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:线性规划和整数规划是数学中常见的优化问题,通过Matlab可以方便地求解这些问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,包括问题的建模、求解方法和实际操作步骤。
一、线性规划问题的建模和求解1.1 确定优化目标:线性规划问题的目标是最大化或者最小化一个线性函数,通常表示为目标函数。
1.2 约束条件建模:线性规划问题还需要满足一系列线性约束条件,这些约束条件可以通过不等式或者等式表示。
1.3 使用Matlab求解:在Matlab中,可以使用linprog函数来求解线性规划问题,将目标函数和约束条件输入函数即可得到最优解。
二、整数规划问题的建模和求解2.1 确定整数规划问题:整数规划是线性规划的一个扩展,其中变量需要取整数值。
2.2 整数规划建模:整数规划问题可以通过将变量限制为整数来建模,通常使用0-1整数变量表示。
2.3 使用Matlab求解:Matlab中提供了intlinprog函数来求解整数规划问题,输入目标函数、约束条件和整数变量的取值范围即可得到最优解。
三、线性规划和整数规划问题的实际操作步骤3.1 准备数据:首先需要准备问题的数据,包括目标函数系数、约束条件系数和整数变量范围。
3.2 建立模型:将数据输入Matlab中的相应函数,建立线性规划或者整数规划模型。
3.3 求解问题:调用Matlab函数求解问题,得到最优解和最优值。
四、Matlab求解线性规划和整数规划问题的优势4.1 高效性:Matlab提供了高效的优化算法,能够快速求解复杂的线性规划和整数规划问题。
4.2 灵便性:Matlab支持多种约束条件和整数变量类型,可以灵便应对不同类型的优化问题。
4.3 可视化:Matlab还可以将优化结果可视化展示,匡助用户更直观地理解问题和解决方案。
五、总结通过本文的介绍,我们了解了如何使用Matlab求解线性规划和整数规划问题,包括建模方法、求解步骤和优势。
matlab解决整数规划问题(蒙特卡洛法)整数规划:clc,clear;c = [-40;-90];A = [9 7;7 20];b = [56;70];lb = zeros(2,1);[x,fval]= intlinprog(c,1:2,A,b,[],[],lb);fval = -fvalx分⽀定界法或者割平⾯法求解纯或者混合整数线性规划问题;输出:当条件A,B之间不是且关系⽽是或的时候:固定成本问题(最优化函数中含有与xi⽆关的常量,相当于固定成本,优化函数可以写成总固定成本加上总可变成本之和):0-1整数规划问题(过滤隐枚举法,分枝隐枚举法)指派问题(0-1规划特殊情形:匈⽛利法)蒙特卡洛法(求解各种类型规划)下⾯主要介绍蒙特卡洛法(随机取样法):例题:如果⽤显枚举法试探,需要计算1010个点,计算量巨⼤。
但是⽤蒙特卡洛去计算106个点便可以找到满意解。
前提:整数规划的最优点不是孤⽴的奇点;⽽采集106个点后,我们有很⼤把握最优值点在106个点之中;function [f,g] = mengte(x);f = x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-...x(4)-2*x(5);g = [sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-8002*x(1)+x(2)+6*x(3)-200x(3)+x(4)+5*x(5)-200];rand('state',sum(clock));p0 = 0;ticfor i = 1:10^6x = 99*rand(5,1);x1 = floor(x);x2 = ceil(x);[f,g] = mengte(x1);if sum(g<=0)==4if p0<=fx0 = x1;p0=f;endend[f,g] = mengte(x2);if sum(g<=0)==4if p0 <= fx0 = x2;p0 = f;endendendx0,p0toc输出:蒙特卡洛法得到的解为最优解的近似解,10^6个数据已经⽤了将近7s的时间,所以如果增加⼗倍,可能得70s时间才能得到结果。
MATLAB 求解线性规划(含整数规划和0-1规划)问题线性规划是数学规划中的一类最简单规划问题,常见的线性规划是一个有约束的,变量范围为有理数的线性规划。
如:max 712z x y =+9430045200s.t 310300,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩对于这类线性规划问题,数学理论已经较为完善,可以有多种方法求解此类问题。
但写这篇文章的目的并不是为了介绍数学理论,我们这里主要讲解如果利用工具求解这一类线性规划问题。
最著名,同时也是最强大的数学最优化软件是LINGO/LINDO 软件包,它能够求解多种的数学规划问题,同时还提供了多种的分析能力。
但LINGO 软件并不容易上手,同时,应用LINGO 的场合一般是大规模的线性规划问题,小小的线性规划完全可以不使用它。
一个更受科研人员欢迎的数学软件是MATLAB ,它以功能强大而称著,并有数学软件中的“航空母舰”之称。
我们这里就是要学习使用MATLAB 软件求解线性规划(含整数规划和0-1规划)问题。
为了使得不熟悉MATLAB 的人员也能够使用MATLAB 进行线性规划问题求解,本文将对MATALB 中使用到的函数和过程以及结果进行详细的分析,最后会对每一个问题都给出一个可以完全“套用”的MATLAB 程序。
我们首先从上面的线性规划问题开始,为了便于表达,将上面的式子写成矩阵形式:max 712z x y =+9430045200s.t 310300,0x y x y ⎧⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪∙≤⎪ ⎪ ⎪ ⎪⎨⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎪⎪≥⎩于是约束就表达为了一个Ax b ≤不等式。
求解MATLAB 线性规划时,最常用的函数是linprog 函数,下面来介绍一下这个函数的使用。
打开MATLAB 帮助文档(PS:帮助文档的内容是最全的,只要你的英文过了专业8级),可以看到linprog 函数求解的是具有如下标准形式的线性规划:min .Tx f x A X b s t Aeq X beq lb x ub ≤⎧⎪=⎨⎪≤≤⎩公式中各符号的意义是自明的,在这里简单介绍下,首先MATLAB 中求解的是目标函数是最小值的问题,但如果我们的目标函数是求最大值,可以通过对目标函数中每一项中乘以-1,将求最大值问题转化为求最小值问题;A ,b 分别为不等式约束中的系数矩阵。