轴对称中几何动点最值问题总结
- 格式:docx
- 大小:237.54 KB
- 文档页数:8
二轮复习之八解析几何中的最值、定值、对称问题一、最值问题 (1)函数法例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2219x y +=上移动,试求PQ 的最大值。
练习:若(,0)A a ,P 为双曲线221169x y -=上一点,若P 为双曲线左顶点时,AP 长度最小,则_____________∈a(2)不等式法例2、已知:21,F F 是椭圆)0(12222>>=+b a b y a x 的两个焦点,P 是椭圆上任一点。
证明:(1)当P 为椭圆短轴端点时,三角形21F PF 面积最大。
(2)当P 为椭圆短轴端点时,21F PF ∠最大。
练习:设21,F F 是椭圆1422=+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ∙的最大值是(3)几何法例题:函数8x 4x 73x 6x y 22+-+++=的最小值为____________。
练习:函数1)4x (25)4x (y 22++-+-=的最大值为M ,最小值为N ,则M -N=_________ 二、定值问题例题:如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. (1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹。
练习:在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.三、对称问题 (1)代入法对称例题:已知双曲线C :1222=-y x ,点M (0,1),设P 是双曲线上的点,Q 是点P 关于原点的对称点,记t =的范围求t ,∙练习:曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.(2)解析法对称例题:已知椭圆方程为13422=+y x ,试确定实数m 的取值范围,使得椭圆上有不同的两点关于直线m x y +=4对称。
中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。
①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
专题复习1:利用轴对称求最值Ⅱ. 请你设计一个用时最少的方案.二、关于两(多)条线段和最小问题思路指导:此类问题一般通过适当的几何变换实现“折”转“直”。
即将连接两点的折线转化为线段最短问题1.直接运用两点间线段最短解决问题.例:如图8,已知A(1,1)B(3,-3),C为x轴上一个动点,当AC+BC最小时,C点坐标为,此时AC+BC的最小值为.练习:如图9,四边形ABCD为边长为5的正方形,以B为圆心4为半径画弧交BA与M,交BC于N,P在MN上运动,则PA+PB+PC的最小值为.2.平移后应用两点间线段最短例:已知:如图10,A(1,2),B(4,-2),C(m,0),D(m+2,0)(1)在图中作出当AC+CD+DB最小时C点的位置,并求出此时m的值(2)求AC+CD+DB的最小值.练习:如图11,NP,MQ为一段河的两岸(河的两侧为平坦的地面,可以任意穿行),NP∥MQ,河宽PQ 为60米,在NP一侧距离河岸110米处有一处藏宝处A,某人从MQ一侧距离河岸40米的B处出发,随身携带恰好横穿(与河岸垂直)河面的绳索(将绳索利用器械投掷至河对岸并固定,人扶绳索涉水过河),请计算此人从出发到目的地最少的行进路程,并确定固定绳索处(MQ一侧)到B处的最近距离.3.旋转后应用两点间线段最短例:如图12,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为31+时,求正方形的边长.练习:点O 为正方形ABCD内一点,(1)正方形边长为4,求OB+OD的最小值(2)若OB+OC+OD的最小值为26+,求正方形的边长4.对称后应用两点间线段最短数学模型已知:如图14,直线l 及直线同侧两点P、Q,在直线l 上求作点M,使线段PM+QM最小,并说明理由关系探究上图中:相等的角:线段关系:类型一:单动点单对称轴(直线同侧两线段和转化为异侧,进而应用两点间线段最短)练习:1.如图15,已知菱形ABCD的边长为6,M、N 分别为AB、BC边的中点,P为对角线AC上的一动点,则PM+PN的最小值.2. 如图16,已知菱形ABCD的边长为6,点E为AB边的中点,∠BAD=60°,点P为对角线AC上的一动点,则PE+PB的最小值..3. 如图17,已知正方形ABCD的边长为2,点M为BC 边的中点,P为对角线BD上的一动点,则PM+PC的最小值4. 如图18,正方形ABCD的面积为a,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,PD+PE的和最小值为4,则a= .5.如图19,已知⊙O的半径为1,AB、CD为⊙O的两互相垂直的直径,点M在弧AD上,且∠MOD=30°,点P为半径OD上的一动点,则PM+PA的最小值.6. 如图20,已知⊙O的半径为1,AB为⊙O的直径,C是⊙O上的一点,且∠CAB=30°点M是弧CB的中点,,点P为直径AB上的一动点,则PM+PC的最小值.7.如图21,⊙O的直径为10,A,B在圆周上,AC⊥MN,BD⊥MN,AC=6,BD=8.P为MN上一个动点,则PA+PB的最小值为.8.如图22,已知∠AOB=60°,OA=6,C为OA的中点,OD平分∠AOB,M为OD上一动点,则AM+CM的最小值为9.如图23,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为.10.如图24,已知抛物线y=x2-2x-3,与x轴相交于点A、B两点(点A在点B的左边),与y轴相较于点C,P 为抛物线对称轴上的一点,则PO+PC的最小值是.11.如图25,以正方形ABCD中AB为边向外作等边三角形AMB,N为对角线BD上一点,若AN+MN的最小值为2226,则正方形边长为.12.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设C为AB的中点,P为OB上一动点,求PC+PA取最小值时P点的坐标.13.如图27,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由14.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.类型二:双动点单对称轴(在类型一基础上应用垂线段最短)例:如图,已知∠CAB=30°,BA=6,AF平分∠BAC,P,Q分别为AB,AF上的动点,则BQ+PQ的最小值为练习:1.如图29,正方形ABCD中,AE为∠BAC的平分线,M,N分别为AE,AB上的动点,若MN+BM最小值为3,则正方形边长为.2.如图30,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D, M、N分别是AD和AB上的动点,则BM+MN的最小值是___________ .3.如图31,矩形ABCD中,AB=6,BC=8,M,N分别为BD,BC上的动点,则CM+MN的最小值为. 类型三:单动点双对称轴例:如图32,已知:∠AOB=30°,P为∠AOB内一点,OP=6,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.练习:1.如图33,已知:∠AOB=60°,P为∠AOB内一点,OP=10,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.2.如图34,两个镜子成45°角,P为夹角内一个光源,P距离交点2米,光线从P发出后经过OB,OA反射后经过点P,则光线经过的路线长为.3.如图35,已知A(3,2)为坐标平面上一点,在x,y 轴上确定点M,N,使△AMN周长最小,并求出此时M,N坐标.类型四. 双动点双对称轴例:已知P,Q为∠AOB内两个定点,M,N分别为OA,OB上的动点。
坐标对称及最值问题是数学中的常见问题,常常出现在函数、几何、三角函数等领域。
这类问题需要运用对称思想,以及寻找最值的方法。
下面列举了5种常见的题型及相应的解法。
题型一:函数的最值对于函数f(x),其最值可能出现在最小值(f(x)min)和最大值(f(x)max)上。
对于这类问题,我们通常需要观察函数的对称性,例如,如果函数是关于原点对称的,那么最小值和最大值可能在左右两侧取得。
解法上,我们通常需要利用导数或其他方法来找到函数的极值点,从而确定最值。
题型二:两点之间的距离在两点之间的距离问题中,如果两个点关于某个轴对称,那么它们之间的距离可以通过简单的轴对称距离公式来计算。
解法上,我们通常需要利用轴对称距离公式,以及两点之间的距离公式来求解。
题型三:圆的半径的最值在圆的半径的最值问题中,如果圆关于某条直线对称,那么我们需要找到圆的半径与对称轴的位置关系,从而确定圆的半径的最值。
解法上,我们通常需要利用圆的半径公式,以及对称轴的位置关系来求解。
题型四:三角形的重心坐标在三角形的重心坐标问题中,如果三个顶点关于某条直线对称,那么我们需要找到重心坐标与对称轴的关系,从而确定重心的坐标。
解法上,我们通常需要利用重心的几何性质,以及对称轴的位置关系来求解。
题型五:椭圆的离心率在椭圆的离心率问题中,如果焦点关于某轴对称,那么我们需要找到椭圆的离心率与对称轴的关系,从而确定椭圆的离心率。
解法上,我们通常需要利用椭圆的离心率公式,以及对称轴的位置关系来求解。
总的来说,坐标对称及最值问题的解法主要依赖于对称性和位置关系。
对于不同类型的题目,我们需要灵活运用这些方法来解决问题。
同时,对于不同类型的题目,也需要进行相应的变化和拓展,以适应更复杂的情况。
希望以上信息对您有所帮助。
如果您有任何具体问题或需要进一步的解释,请随时告诉我。
图(5)CEDPBA 与轴对称相关的最值问题【典型题型一】:如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P,使PA+PB 最小.【典型题型二】如图,直线l 和l 的同侧两点A 、B,在直线l 上求作一点P ,使PA+PB 最小。
【练习】1、(温州中考题)如图(5),在菱形ABCD 中,AB=4a ,E 在BC 上,EC=2a ,∠BAD=1200,点P 在BD 上,则PE+PC 的最小值是( )解:如图(6),因为菱形是轴对称图形,所以BC 中点E 关于对角线BD 的对称点E 一定落在AB 的中点E 1,只要连结CE 1,CE 1即为PC+PE 的最小值。
这时三角形CBE 1是含有300角的直角三角形,PC+PE=CE 1=23a 。
所以选(D )。
2、如图(13),一个牧童在小河南4英里处牧马,河水向正东方流去,而他正位于他的小屋B 西8英里北7英里处,他想把他的马牵到小河边去饮水,然后回家,他能够完成这件事所走的最短距离是( )(A ) 4+185英里 (B ) 16英里(C ) 17英里 (D) 18英里3.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD,ED ⊥BD,连接AC 、EC 。
已知AB=5,DE=1,BD=8,设CD=x.请问点C 满足什么条件时,AC +CE 的值最小?4.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上 一动点,则EC +ED 的最小值为_______。
即是在直线AB 上作一点E ,使EC+ED 最小作点C 关于直线AB 的对称点C ’,连接DC'交 AB 于点E,则线段DC ’的长就是EC+ED 的最小值。
在直角△DBC'中DB=1,BC=2, 根据勾股定理可得,DC'=错误!5.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边 上的一动点,则PB+PE 的最小值为 即在AC 上作一点P ,使PB+PE 最小 作点B 关于AC 的对称点B',连接B ’E ,交AC 于点P,则B’E = PB'+PE = PB+PE B ’E 的长就是PB+PE 的最小值 在直角△B'EF 中,EF = 1,B'F = 3根据勾股定理,B'E = 错误!6.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内, 在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .2错误! B .2错误! C .3 D .错误!即在AC 上求一点P ,使PE+PD 的值最小点D 关于直线AC 的对称点是点B ,连接BE 交AC 于点P,则BE = PB+PE = PD+PE ,BE 的长就是PD+PE 的最小值BE = AB = 2 37.如图,若四边形ABCD 是矩形, AB = 10cm,BC = 20cm ,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PD 的最小值; 作点C 关于BD 的对称点C ’,过点C',作C ’B ⊥BC ,交BD 于点P ,则C ’E 就是PE+PCFP B'EACBC'DACBEPE BCD A H PEC'D ACB的最小值直角△BCD 中,CH = 错误!错误!未定义书签。
几何最值问题总结基本思想:1、利用轴对称转化为:两点之间的距离——两点之间,线段最短(将两点之间的折线段转化为两点之间的直线段);2、利用三角形两边之和大于第三边。
两边之差小于第三边;3、利用一点到直线的距离:垂线段最短——将点到直线的折线段转化为点到直线的垂线段;4、利用特殊角度(30°,45°,60°)将成倍数的线段转化为首尾相连的折线段,再转化为两点之间的直线段最短。
5、找临界的特殊情况,确定最大和最小值。
基本类型:一、直接利用公理/定理求最值1、利用两点之间线段最短问题1:如图,有A、B、C、D四个村庄,现准备打一口井,使得水井到四个村庄的距离之和最短,请确定水井的位置。
问题解析:如图,连接AD和CB,AD和CB的交点就是所求的水井的位置所在点。
此时最短的距离就是:AD+CB的长度。
策略分析:如果不在E点,比如说在T点,那么根据三角形两边之和大于第三边得到:AT+DT>AD,且CT+BT>CB,于是AT+DT+CT+BT>AD+CB。
所以水井所在位置只能在AD与CB的交点处,才能使其到四个村庄的距离之和最小。
问题2:边长为a的正三角形ABC在第一象限,两顶点A、B分别在x轴上和y轴上移动,点C在第一象限,那么点C到原点O的最大距离是_____________问题解析:点C到原点O的距离,直接连接OC肯定不能保证其是最大值。
但是注意:直角△AOB的斜边AB是等边三角形ABC的一边,等于a,而直角三角形斜边上的中线等于斜边的一半,就是a/2,并且等边△ABC边上的中线也是定值,所以设AB边上的中点为D,连接OD,CD,则OD=a/2,CD=,在一般情况下,当O、D、C不在一条直线上(不共线)时,总有CD+CD>OC,所以当O、D、C三点共线时,OC=CD+OD,取得最大值:a/2+策略分析:不能直接转化为两点之间的距离的题目,可以利用几何图形的性质转化为“折线和”,在利用三角形三边长短关系或两点之间线段最短的性质得到结论。
初二轴对称图形难题总结如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为_________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.2.(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为_________.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP 的值最小,则BP+AP的值最小,则BP+AP的最小值为_________.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________.4.(1)观察发现:如(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P.再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为_________.(2)实践运用:如(c)图,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.(3)拓展延伸:如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.5.几何模型:条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是_________;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.6.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,﹣3),B(4,﹣1).(1)若P(p,0)是x轴上的一个动点,则当p=_________时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=_________时,四边形ABDC的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN 的周长最短?若存在,请求出m=_________,n=_________(不必写解答过程);若不存在,请说明理由.7.需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.8.如图所示,在一笔直的公路MN的同一旁有两个新开发区A,B,已知AB=10千米,直线AB与公路MN的夹角∠AON=30°,新开发区B到公路MN的距离BC=3千米.(1)新开发区A到公路MN的距离为_________;(2)现要在MN上某点P处向新开发区A,B修两条公路PA,PB,使点P到新开发区A,B的距离之和最短.此时PA+PB=_________(千米).9.如图:(1)若把图中小人平移,使点A平移到点B,请你在图中画出平移后的小人;(2)若图中小人是一名游泳者的位置,他要先游到岸边l上点P处喝水后,再游到B,但要使游泳的路程最短,试在图中画出点P的位置.10.如图,在直角坐标系中,等腰梯形ABB1A1的对称轴为y轴.(1)请画出:点A、B关于原点O的对称点A2、B2(应保留画图痕迹,不必写画法,也不必证明);(2)连接A1A2、B1B2(其中A2、B2为(1)中所画的点),试证明:x轴垂直平分线段A1A2、B1B2;(3)设线段AB两端点的坐标分别为A(﹣2,4)、B(﹣4,2),连接(1)中A2B2,试问在x轴上是否存在点C,使△A1B1C与△A2B2C的周长之和最小?若存在,求出点C的坐标(不必说明周长之和最小的理由);若不存在,请说明理由.11.某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:用尺规作图,保留作图痕迹,不写作法和证明)12.阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?_________(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为_________.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.13.如图,△ABC中AB=AC,BC=6,,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由;14.(2012•东城区二模)已知:等边△ABC中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC上,且∠MON=60°.(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.15.如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD的延长线于F,求证:DE=DF.16.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.17.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC,求证:BF=AC+AF.18.已知△ABC的角平分线AP与边BC的垂直平分线PM相交于点P,作PK⊥AB,PL⊥AC,垂足分别是K、L,求证:BK=CL.19.某私营企业要修建一个加油站,如图,其设计要求是,加油站到两村A、B的距离必须相等,且到两条公路m、n的距离也必须相等,那么加油站应修在什么位置,在图上标出它的位置.(要有作图痕迹)20.如图,在△ABC中,AB=AC,∠A=120°,BC=9cm,AB的垂直平分线MN交BC于M,交AB于N,求BM的长.21.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.22.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.参考答案与试题解析一.解答题(共22小题)1.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为2.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.考点:轴对称-最短路线问题.3113559分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×=5,∴BE+EF的最小值为.点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P 位置是解题关键.2.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP 的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.3113559专题:压轴题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.3.(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.考点:轴对称-最短路线问题.3113559专题:压轴题.分析:(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解答:解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.4.(2010•淮安)(1)观察发现:如(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P.再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用:如(c)图,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.(3)拓展延伸:如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.考点:轴对称-最短路线问题.3113559分析:(1)首先由等边三角形的性质知,CE⊥AB,在直角△BCE中,∠BEC=90°BC=2,BE=1,由勾股定理可求出CE的长度,从而得出结果;(2)要在直径CD上找一点P,使PA+PB的值最小,设A′是A关于CD的对称点,连接A′B,与CD的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.(3)画点B关于AC的对称点B′,延长DB′交AC于点P.则点P即为所求.解答:解:(1)BP+PE的最小值===.(2)作点A关于CD的对称点A′,连接A′B,交CD于点P,连接OA′,AA′,OB.∵点A与A′关于CD对称,∠AOD的度数为60°,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,∵⊙O的直径CD为4,∴OA=OA′=2,∴A′B=2.∴PA+PB=PA′+PB=A′B=2.(3)如图d:首先过点B作BB′⊥AC于O,且OB=OB′,连接DB′并延长交AC于P.(由AC是BB′的垂直平分线,可得∠APB=∠APD).点评:此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.5.(2009•漳州)几何模型:条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.考点:轴对称-最短路线问题.3113559专题:压轴题;动点型.分析:(1)由题意易得PB+PE=PD+PE=DE,在△ADE中,根据勾股定理求得即可;(2)作A关于OB的对称点A′,连接A′C,交OB于P,求A′C的长,即是PA+PC的最小值;(3)作出点P关于直线OA的对称点M,关于直线OB的对称点N,连接MN,它分别与OA,OB的交点Q、R,这时三角形PEF的周长=MN,只要求MN的长就行了.解答:解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.点评:此题综合性较强,主要考查有关轴对称﹣﹣最短路线的问题,综合应用了正方形、圆、等腰直角三角形的有关知识.6.(2006•湖州)如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,﹣3),B(4,﹣1).(1)若P(p,0)是x轴上的一个动点,则当p=时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=时,四边形ABDC的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN 的周长最短?若存在,请求出m=,n=﹣(不必写解答过程);若不存在,请说明理由.考点:轴对称-最短路线问题;坐标与图形性质.3113559专题:压轴题.分析:(1)根据题意,设出并找到B(4,﹣1)关于x轴的对称点是B',其坐标为(4,1),进而可得直线AB'的解析式,进而可得答案;(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,﹣1),连接A'F.利用两点间的线段最短,可知四边形ABDC的周长最短等于A'F+CD+AB,从而确定C点的坐标值.(3)根据对称轴的性质,可得存在使四边形ABMN周长最短的点M、N,当且仅当m=,n=﹣;时成立.解答:解:(1)设点B(4,﹣1)关于x轴的对称点是B',其坐标为(4,1),设直线AB'的解析式为y=kx+b,把A(2,﹣3),B'(4,1)代入得:,解得,∴y=2x﹣7,令y=0得x=,即p=.(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,﹣1),连接A'F.那么A'(2,3).直线A'F的解析式为,即y=4x﹣5,∵C点的坐标为(a,0),且在直线A'F上,∴a=.(3)存在使四边形ABMN周长最短的点M、N,作A关于y轴的对称点A′,作B关于x轴的对称点B′,连接A′B′,与x轴、y轴的交点即为点M、N,∴A′(﹣2,﹣3),B′(4,1),∴直线A′B′的解析式为:y=x﹣,∴M(,0),N(0,﹣).m=,n=﹣.点评:考查图形的轴对称在实际中的运用,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.7.(2007•庆阳)需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.考点:轴对称-最短路线问题.3113559专题:作图题.分析:利用轴对称图形的性质可作点A关于公路的对称点A′,连接A′B,与公路的交点就是点P的位置.解答:解:点P就是飞机场所在的位置.(5分)点评:本题主要是利用轴对称图形来求最短的距离.用到的知识:两点之间线段最短.8.(2006•贵港)如图所示,在一笔直的公路MN的同一旁有两个新开发区A,B,已知AB=10千米,直线AB与公路MN的夹角∠AON=30°,新开发区B到公路MN的距离BC=3千米.(1)新开发区A到公路MN的距离为8;(2)现要在MN上某点P处向新开发区A,B修两条公路PA,PB,使点P到新开发区A,B的距离之和最短.此时PA+PB=14(千米).考点:轴对称-最短路线问题.3113559专题:计算题;压轴题.分析:(1)先求出OB的长,从而得出OA的长,再根据三角函数求得到公路的距离.(2)根据切线的性质得EF=CD=BC=3,AF=AE+EF=AE+BC=11,再根据余弦概念求解.解答:解:(1)∵BC=3,∠AOC=30°,∴OB=6.过点A作AE⊥MN于点E,AO=AB+OB=16,∴AE=8.即新开发区A到公路的距离为8千米;(2)过D作DF⊥AE的延长线(点D是点B关于MN的对称点),垂足为F.则EF=CD=BC=3,AF=AE+EF=AE+BC=11,过B作BG⊥AE于G,∴BG=DF,∵BG=AB•cos30°=5,∴,连接PB,则PB=PD,∴PA+PB=PA+PD=AD=14(千米).点评:此题主要考查学生利用轴对称的性质来综合解三角形的能力.9.(2006•巴中)如图:(1)若把图中小人平移,使点A平移到点B,请你在图中画出平移后的小人;(2)若图中小人是一名游泳者的位置,他要先游到岸边l上点P处喝水后,再游到B,但要使游泳的路程最短,试在图中画出点P的位置.考点:轴对称-最短路线问题;作图-轴对称变换;作图-平移变换.3113559专题:作图题.分析:根据平移的规律找到点B,再利用轴对称的性质和两点之间线段最短的性质,找到点A的对称点,连接A1B与l相交于点P,即为所求.解答:解:点评:本题考查的是平移变换与最短线路问题.最短线路问题一般是利用轴对称的性质解题,通过作轴对称图形,利用轴对称的性质和两点之间线段最短可求出所求的点.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.10.(2003•泉州)如图,在直角坐标系中,等腰梯形ABB1A1的对称轴为y轴.(1)请画出:点A、B关于原点O的对称点A2、B2(应保留画图痕迹,不必写画法,也不必证明);(2)连接A1A2、B1B2(其中A2、B2为(1)中所画的点),试证明:x轴垂直平分线段A1A2、B1B2;(3)设线段AB两端点的坐标分别为A(﹣2,4)、B(﹣4,2),连接(1)中A2B2,试问在x轴上是否存在点C,使△A1B1C与△A2B2C的周长之和最小?若存在,求出点C的坐标(不必说明周长之和最小的理由);若不存在,请说明理由.考点:作图-轴对称变换;线段垂直平分线的性质;轴对称-最短路线问题.3113559专题:作图题;证明题;压轴题;探究型.分析:(1)根据中心对称的方法,找点A2,B2,连接即可.(2)设A(x1,y1)、B(x2,y2)依题意与(1)可得A1(﹣x1,y1),B1(﹣x2,y2),A2(﹣x1,﹣y1),B2(﹣x2,﹣y2),得到A1、B1关于x轴的对称点是A2、B2,所以x轴垂直平分线段A1A2、B1B2.(3)根据A1与A2,B1与B2均关于x轴对称,连接A2B1交x轴于C,点C为所求的点.根据题意得B1(4,2),A2(2,﹣4)设直线A2B1的解析式为y=kx+b则利用待定系数法.解得,所以可求直线A2B1的解析式为y=3x﹣10.令y=0,得x=,所以C的坐标为(,0).即点C(,0)能使△A1B1C与△A2B2C的周长之和最小.解答:解:(1)如图,A2、B2为所求的点.(2)设A(x1,y1)、B(x2,y2)依题意与(1)可得A1(﹣x1,y1),B1(﹣x2,y2),A2(﹣x1,﹣y1),B2(﹣x2,﹣y2)∴A1、B1关于x轴的对称点是A2、B2,∴x轴垂直平分线段A1A2、B1B2.(3)存在符合题意的C点.由(2)知A1与A2,B1与B2均关于x轴对称,∴连接A2B1交x轴于C,点C为所求的点.∵A(﹣2,4),B(﹣4,2)依题意及(1)得:B1(4,2),A2(2,﹣4).设直线A2B1的解析式为y=kx+b则有解得∴直线A2B1的解析式为y=3x﹣10,令y=0,得x=,∴C的坐标为(,0)综上所述,点C(,0)能使△A1B1C与△A2B2C的周长之和最小.点评:主要考查了轴对称的作图和性质,以及垂直平分线的性质.要知道对称轴垂直平分对应点的连线.会根据此性质求得对应点利用待定系数法解一次函数的解析式是解题的关键.11.(2001•宜昌)某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:用尺规作图,保留作图痕迹,不写作法和证明)考点:轴对称-最短路线问题.3113559专题:作图题.分析:作A关于直线L的对称点E,连接BE交直线L于C,则C为所求.解答:答:如图:.点评:本题主要考查对轴对称﹣最短路线的问题的理解和掌握,根据题意正确画出图形是解此题的关键,12.(2012•淮安)阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.考点:翻折变换(折叠问题).3113559专题:压轴题;规律型.分析:(1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠C;(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠B﹣2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、172;8、168;16、160;44、132;88°、88°.解答:解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C,∠BAC是△ABC的好角.故答案是:是;(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1﹣∠A1 B1C=∠BAC+2∠B﹣2∠C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;(3)由(2)知设∠A=4°,∵∠C是好角,∴∠B=4n°;∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n为正整数得4+4n+4mn=180∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.。
轴对称中几何动点最值问题总结
轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。
比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:
(1)两点之间线段最短;
(2)三角形两边之和大于第三边;
(3)垂线段最短。
初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。
下面对三类线段和的最值问题进行分析、讨论。
(1)两点一线的最值问题:(两个定点+ 一个动点)
问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。
核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。
方法:1.定点过动点所在直线做对称。
2.连结对称点与另一个定点,则直线段长度就是我们所求。
变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。
1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。
(2)一点两线的最值问题:(两个动点+一个定点)
问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。
核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。
变异类型:
1.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。
使∠PAB 的周长最小。
2.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小。
(3) 两点两线的最值问题: (两个动点+两个定点)
问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。
核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。
变异类型:
1.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
2.如图,已知A(1,3),B(5,1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB的值最小时,点P的坐标为( )
3.
(4)两点两线的最值问题:(两个动点+两个定点)
问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。
核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。
变异类型:演变为多边形周长、折线段等最值问题。
1. 如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使PA 与点P 到射线OM 的距离之和最小。
二、常见题目
Part1、三角形
1.如图,在等边∠ABC 中,AB=6,AD∠BC ,E 是AC 上的一点,M 是AD 上的一点,且AE=2,求EM+EC 的最小值。
2.如图,在锐角∠ABC 中,AB=42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____。
3.如图,∠ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值。
Part2、正方形
1.如图,正方形ABCD 的边长为8,M 在DC 上,丐DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。
即在直线AC 上求一点N ,使DN+MN 最小 。
2.如图所示,正方形ABCD 的面积为12,∠ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )
A .32
B .62
C .3
D .6
3.在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则∠PBQ周长的最小值为____________㎝(结果不取近似值)。
4.如图,四边形ABCD是正方形,AB = 10cm,E为边BC的中点,P为BD上的一个动点,求PC+PE 的最小值;
Part3、矩形
1.如图,若四边形ABCD是矩形,AB = 10cm,BC = 20cm,E为边BC上的一个动点,P为BD上的一个动点,求PC+PD的最小值;
Part4、菱形
1.如图,若四边形ABCD是菱形,AB=10cm,∠ABC=45°,E为边BC上的一个动点,P为BD上的一个动点,求PC+PE
的最小值;
Part5、直角梯形
1.已知直角梯形ABCD中,AD∠BC,AB∠BC,AD=2,BC=DC=5,点P在BC上秱动,则当P A+PD取最小值时,∠APD 中边AP 上的高为()
Part6、一次函数
一次函数 b kx y +=的图象与y x , 轴分别交于点).4,0(),0,2(B A
(1)求该函数的解析式;
(2)O 为坐标原点,设AB OA ,的中点分别为D C ,,P 为OB 上一动点,求 PD PC +的最小值,并求取得最小值时P 点坐标.。