聚合物基复合材料-1-2章
- 格式:ppt
- 大小:1.04 MB
- 文档页数:73
第二章增强材料1.增强材料的品种:1)无机纤维:(1)玻璃纤维(2)碳纤维:①聚丙烯腈碳纤维②沥青基碳纤维(3)硼纤维,(4)碳化硅纤维,(5)氧化铝纤维2)有机纤维:(1)刚性分子链——液晶(干喷湿纺):①对位芳酰胺②聚苯并噁唑③聚芳酯(2)柔性分子链:①聚乙烯②聚乙烯醇2.玻璃纤维的分类:1)按化学组成份:有碱玻璃纤维,碱金属含量>12%;中碱玻璃纤维,碱金属含量6%~12%;低碱玻璃纤维,碱金属含量2%~6%;微碱玻璃纤维,碱金属含量<2%2)按纤维使用特性分:普通玻纤(A-GF);电工玻纤(E玻纤);高强玻纤(S玻纤或R玻纤);高模玻纤(M-GF);耐化学药品玻纤(C玻纤)……3)按产品特点分:长度(定长玻纤<6-50mm>,连续玻纤);直径(粗纤维30μm,初级纤维20μm,中级纤维10-20μm,高级纤维3-9μm);外观(连续纤维,短切纤维,空心玻纤,磨细纤维和玻璃粉)3.玻璃纤维的制备:目前生产玻璃纤维最多的方法有坩埚拉丝法(玻璃球法)和池窑拉丝法(直接熔融法)4.玻璃纤维的力学特性:1)玻璃纤维的拉伸应力--应变关系:玻璃纤维直到拉断前其应力-应变关系为一条直线,无明显的屈服、塑性阶段,呈脆性材料特征2)玻璃纤维的拉伸强度较高,但模量较低;解释:(1)Griffith微裂纹理论:玻璃在制造过程中引入许多微裂纹,受力后裂纹尖端应力集中。
当应力达到一定值时,裂纹扩展,材料破坏。
所以,缺陷尺寸越大,越多,应力集中越严重,导致强度越低(2)分子取向理论:玻纤在制备过程中,受到定向牵引力作用,分子排列更规整,所以玻纤强度更大。
3)玻璃纤维强度特点:单丝直径越小,拉伸强度σb越高;试样测试段长度L越大,拉伸强度σb越低。
这两点结果被称为玻璃纤维强度的尺寸效应和体积效应,即体积或尺寸越大,测试的强度越低4)缺点:①强度分散性大,生产工艺影响②强度受湿度影响,吸水后,湿态强度下降③拉伸模量较低(70GPa),断裂伸长率约为2.6%5.玻璃纤维纱的常用术语、参数:(填空)1)原纱:指玻璃纤维制造过程中的单丝经集束后的单股纱2)表示纤维粗细的指标:①支数β:指1g原纱的长度(m),支数越大表示原纱越细②特(tex):指1000m长原纱的质量(g),tex数越大,纱越粗③旦、袋(den):指9000m长原纱的质量(g),den 数越大纱越粗3)捻度:表示纱的加捻程度,指每米长原纱的加捻数,即捻/m。
考试题型一、填空题〔1分*10题=10分〕二、判断题〔1分*6=6分〕三、名词解释〔4分*5=20分〕四、简答题〔8分*8题=64分,含1道计算题〕第一章聚合物基复合材料的概念、特性、应用与进展1.什么是复合材料?与金属材料相比有何主要差异?答:定义:复合材料是由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料。
它既保持了原组分材料的主要特色,又通过符合效应获得原组分所不具备的的新性能。
可以通过材料设计使各组分的性能互相补充并充分并联,从而获得新的优越性能,这与一般的简单的混合有本质的区别。
与金属材料的区别:2.复合材料有哪些优点?存在的主要问题是什么?答:优点:1〕比强度、比模量高;2〕耐疲劳性好,破损性能高;3〕阻尼减振性好:a.受力结构的自振频率除了与结构本身形状有关以外,还与材料的比模量平方根成正比;b.复合材料具有较高的自振频率,其结构一般不易产生共振;c.复合材料机体与纤维的界面有较大的吸收振动能量的能力,致使材料得振动阻尼很高,一旦振起来,也可在较短时间内停下来。
4〕具有多种功能性:a.瞬时耐高温性、耐烧蚀性好;b.优异的电绝缘性能和高频介电性能;c.良好的摩擦性能;d.优良的腐蚀性,维护本钱低;e.特殊的光学、电学、磁学的特性。
5〕良好的加工工艺性;6〕各向异性和性能的可设计性。
主要问题:工艺方法的自动化、机械化程度低,材料性能的一致性和产品质量的稳定性差,质量的检测方法不完善,破坏模式不确定和长期性能不确定,长期耐高温和环境老化性能不好等。
3.简述复合材料的组成。
界面为什么也是一个重要组成局部?答:复合材料是由基体材料和增强体材料构成的多项体系。
基体材料为连续相,按所用基体材料的不同,可分为金属基复合材料、无机非金属基复合材料和聚合物基复合材料。
增强材料为分散相,通常为纤维状材料,如玻璃纤维、有机纤维等。
原因:界面也是重要组成局部的原因是因为增强相与基体相的界面区域因为其特殊的结构组成,这种结构对材料的宏观性能产生影响,因此也是不可缺少的重要组成局部。
聚合物基复合材料班级:11050301学号;1105030111姓名:王雪一.聚合物基复合材料的基体聚合物基复合材料的基体是有机聚合物.二.聚合物基复合材料的增强材料(1)玻璃纤维增强树脂基复合材料;(2)天然纤维增强树脂基复合材料;(3)碳纤维增强树脂基复合材料;(4)芳纶纤维增强树脂基复合材料;(5)金属纤维增强树脂基复合材料;(6)特种纤维增强聚合物基复合材料;(7)陶瓷颗粒树脂基复合材料;(8)热塑性树脂基复合材料;(聚乙烯,聚丙烯,尼龙,聚苯硫醚(PPS),聚醚醚酮(PEEK),聚醚酮酮(PEKK))(9)热固性树脂基复合材料;(环氧树脂,聚酰亚胺,聚双马来酰亚胺(PBMI),不饱和聚酯等)(10)聚合物基纳米复合材料三.聚合物基复合材料的制备方法1、溶胶-凝胶法溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。
所谓的溶胶—凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶.溶胶—凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。
根据聚合物与无机组分的相互作用情况,可将其分为以下几类:(1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。
(2)嵌入的聚合物与无机网络有共价键作用(3)有机—无机互穿网络2、层间插入法层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机—无机纳米复合材料。
层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范围1~100 nm内。
层状矿物原料来源极其丰富,而且价廉。
插入法大致可分为以下几种: (1)熔融插层聚合(2)溶液插层聚合(3)聚合物熔融插层 (4)聚合物溶液插层3、共混法共混法类似于聚合物的共混改性,是聚合物与无机纳米粒子的共混,该法是制备纳米复合材料最简单的方法,适合于各种形态的纳米粒子。
一、1、复合材定义(ISO、GB3961)及定义包含的内容(ISO):有两种或两种以上物和化学性质同的物质组合而成的一种多和固体材。
国标GB3961 :两个或两个以上独的物相,包括粘接材(基体)和纤维或片状材所组成的一种固体物。
定义包含的内容:(1)复合材的组分材虽然保持其相对独性,但复合材的性能却是各组分材性能的简单加和,而是有着重要的改进。
(2)复合材中通常有一相为连续相,称为基体;另一相为分散相,称为增强材。
(3)分散相是以独的形态分布在整个连续相中,两相之间存在着界面。
分散相可以是增强纤维,也可以是颗状或弥散的填。
2、有机纤维碳化法将有机纤维经过稳定化处变成耐焰纤维;在惰性气氛中,于高温下进焙烧碳化,使有机纤维失去部分碳和其它非碳原子,形成以碳为主要成分的纤维状物。
3、复合材的分类按增强材形态分类:连续纤维复合材、短纤维复合材、状填复合材、编织复合材按增强纤维种类分类:玻璃纤维复合材、碳纤维复合材、玄武岩纤维复合材、有机p纤维复合材、属纤维复合材、陶瓷纤维复合材按基体材分类:环氧树脂基、酚醛树脂基、聚氨酯基、聚萨亚胺基、饱和聚芮基以及其他树脂基复合材按材作用分类:结构复合材、功能复合材4、聚合物基复合材的主要性能和目前存在的缺点:主要性能:1轻质高强(比强、比模大)2可设计性好3具有多种功能性 4过载安全性好5耐疲劳性能好6减振性好(非均相多相体系)存在的缺点:(1)材工艺的稳定性差(2)材性能的分散性大:材和产品是同时完成的,许多因素会影响到每一步的性能,质控制(3)长期耐温与耐环境化性能好(4)抗冲击性能低:大多数增强纤维伸时的断应变代小,纤维增强复合材是脆性材,抗冲击性低(5)横向强和层间剪强好等二、1、聚合物基复合材的增强材应具有的特征:(1)增强材应具有能明显提高树脂基体某种所需特性的性能,如高的比强、比模、高导热性、耐热性、低热膨胀性等,以赋予树脂基体某种所需的特性和综合性能。