《矿山(工程)测量》课程设计
- 格式:doc
- 大小:1.45 MB
- 文档页数:33
矿井联系测量一、目的和任务矿井联系测量就是将地面上的平面坐标系统和高程坐标系统传递到井下的测量。
目的就是使地面和井下测量控制网采用同一坐标系统。
联系测量的主要任务是:(1) 确定井下经纬仪导线起算边的坐标方位角; (2) 确定井下经纬仪导线起算点的平面坐标x 和y ; (3) 确定井下水准基点的高程H 。
二、地面近井点的测设(1)地面近井点的精度要求 ⒈近井点测量精度的要求近井点可在矿区三、四等三角网、测边网的基础上,用插网、插点和敷设经纬仪导线,及GPS 等方法测设。
对于一般网型,近井点的精度,对于测设它的起算点来说,其点位中误差不得超过±7cm ,后视边方位角中误差不得超过±10″。
GPS 测量必须按照1992年我国测绘局发布的《全球定位系统(GPS )测量规范》进行,近井点可以采用D 级和E 级测设。
⒉井口高程基准的精度要求井口水准基点的高度精度应该满足相邻井口间进行主要巷道贯通的要求,由于两井间进行主要的巷道贯通时,高程上允许的误差是=0.2m z m ±允,则其中误差为=0.1m z m ±,一般要求两井口水准基点相对的高程中误差引起的贯通点K 在z 轴方向上的偏差中误差不超过m3z±=±0.03m。
所以近井点高程测量,可以应该采用四等水准测量的精度要求测设。
(2)近井点布设方案本次近井点(水准基点)通过GPS进行布设,使用Trimble5800、5700GPS接收机,利用国家四等控制点为起算点,采取插网方式建立矿井E级GPS近井网,布网形式为同步图形扩展式。
测设了主井近井点坐标和高程。
三、立井定向《煤矿测量规程》规定的联系测量的主要精度要求实际定向精度与规程限差要求3.1两井定向方案本次设计方案的矿山有主井和副井各一个,因此投点时在两个井筒内各挂一根垂球线,采用单重稳定投点。
投点时必须采用有效的措施减小投点误差,这些主要措施包括:<1>定向时最好停止风机运转或增设风门,以减少风速;<2>采用小直径、高强度的钢丝,建议采用80kg重的垂球,并将垂球浸入稳定液中,并在大水桶上加挡水盖以减少滴水对垂球的影响。
矿山测量课程设计大纲第一篇:矿山测量课程设计大纲矿山测量课程设计大纲一、课程设计的基本要求及安排矿山测量课程设计是在学完矿山测量学课程和完成矿山测量教学实验之后进行的。
是对学生进行测绘高级工程人才基本训练的一个重要环节。
其目的在于通过对某矿井的主要矿山测量工作的设计,培养学生独立分析问题和解决问题的能力及其创新能力。
本大钢列出了设计内容与要求,并给予必要的指导,以期达到统一要求,提高设计质量的目的。
在进行设计时,必须遵守国家颁布的各种测量技术规程与图式,对各种测量方案与测量方法的选取择,既要大胆采用新技术与新设备提介创新,又要密切结合我国的实际情况,全面考虑其合理性、可能性与必要性,务必使自己的设计在理论上是正确的,在施工时是可行的。
误差预计可利用现有程序用计算机进行,并进行方案比较。
本课程设计的时间定为一周。
要求编写设计说明书及绘制图。
设计说明书的任务是对全部测量方案、测量方法及精度分析作一简要而系统的说明,并附有必要的图表。
说明书应尽量避免冗长的文字上的讨论与解释,一般以直接叙述为主。
若在理论论上与实践上有创见,可作必要的讨论与解释。
设计中,学生若遇疑难问题,经过充分的独立思考后,可向指导教师提出,并说明自己对问题的看法,指导都是在答疑中应与学生共同进行讨论,帮助分析问题,指出可能产生的技术及设计思想方面的错误,提出解决问题的正确方法,引导学生寻找正确合理的方案,但不应代替学生作出技术决定,以发挥学生的主动性与创造性。
说明书的编写与图表的绘制,均由学生本人独立地完成,并在编写和绘制前向指导教师说明自己似编写和绘制的内容,经教师审查确认符合大纲规定后,再进行定稿编写说明书和绘制设计图。
设计完成后,学生应按时将装订好的说明书和清绘好的设计图交指导教师评审,指导教师根据有关规定给同学生的设计成绩。
二、矿井井下平面控制测量(一)生产限差[设计内容]根据矿井的具体情况确定生产限差的数值。
[指导]确定矿井生产限差的方法有:1.按一般采矿工程对测量工作的要求来确定。
矿山测量教案(精)第一章:矿山测量概述1.1 矿山测量的定义和意义解释矿山测量的概念阐述矿山测量在矿山工程中的重要性1.2 矿山测量的主要任务描述矿山测量的主要工作内容解释矿山测量在矿产资源开发中的应用1.3 矿山测量的方法和手段介绍矿山测量常用的方法和手段分析各种测量方法的优缺点1.4 矿山测量的发展历程和趋势回顾矿山测量的发展历程探讨矿山测量的未来发展趋势第二章:矿山测量基础理论2.1 矿山测量的基本原理讲解矿山测量的基础理论阐述矿山测量中的数学模型2.2 矿山测量的坐标系统和基准介绍矿山测量的坐标系统和基准解释坐标转换和基准变换的方法2.3 矿山测量的误差理论讲解矿山测量中误差的来源和性质阐述误差分析和修正的方法2.4 矿山测量的数据处理介绍矿山测量数据处理的方法和技术解释数据平差和数据优化的重要性第三章:矿山测量仪器与设备3.1 矿山测量仪器的分类和功能介绍矿山测量中常用的仪器设备和功能解释各种测量仪器的使用方法和技术要求3.2 矿山测量仪器的维护和校准讲解矿山测量仪器的维护和保养方法阐述仪器校准的重要性和校准方法3.3 矿山测量仪器的发展趋势回顾矿山测量仪器的发展历程探讨矿山测量仪器的未来发展趋势3.4 矿山测量设备的应用案例分享矿山测量设备在实际工程中的应用案例分析设备应用的效果和效益第四章:矿山控制测量4.1 矿山控制测量的概念和意义解释矿山控制测量的定义和作用阐述矿山控制测量在矿山工程中的重要性4.2 矿山控制测量的方法和技术介绍矿山控制测量的常用方法和手段解释矿山控制测量的技术要求和方法选择4.3 矿山控制测量的数据处理和精度评价讲解矿山控制测量数据处理的方法和步骤阐述矿山控制测量精度的评价指标和评价方法4.4 矿山控制测量的应用案例分享矿山控制测量在实际工程中的应用案例分析控制测量应用的效果和效益第五章:矿山施工测量5.1 矿山施工测量的概念和意义解释矿山施工测量的定义和作用阐述矿山施工测量在矿山建设中的重要性5.2 矿山施工测量的方法和技术介绍矿山施工测量的常用方法和手段解释矿山施工测量的技术要求和方法选择5.3 矿山施工测量的数据处理和精度评价讲解矿山施工测量数据处理的方法和步骤阐述矿山施工测量精度的评价指标和评价方法5.4 矿山施工测量的应用案例分享矿山施工测量在实际工程中的应用案例分析施工测量应用的效果和效益第六章:矿山变形监测6.1 矿山变形监测的概念和意义解释矿山变形监测的定义和作用阐述矿山变形监测在矿山安全中的重要性6.2 矿山变形监测的方法和技术介绍矿山变形监测的常用方法和手段解释矿山变形监测的技术要求和方法选择6.3 矿山变形监测的数据处理和精度评价讲解矿山变形监测数据处理的方法和步骤阐述矿山变形监测精度的评价指标和评价方法6.4 矿山变形监测的应用案例分享矿山变形监测在实际工程中的应用案例分析变形监测应用的效果和效益第七章:矿山测量数据管理7.1 矿山测量数据管理的重要性阐述矿山测量数据管理的重要性解释良好数据管理对矿山测量工作的影响7.2 矿山测量数据管理的方法和工具介绍矿山测量数据管理的方法和工具解释数据存储、检索和共享的技术7.3 矿山测量数据的质量控制讲解矿山测量数据质量控制的方法和步骤阐述数据质量控制对矿山测量结果的影响7.4 矿山测量数据管理的应用案例分享矿山测量数据管理在实际工程中的应用案例分析数据管理应用的效果和效益第八章:矿山测量安全与伦理8.1 矿山测量安全的重要性阐述矿山测量安全的重要性解释安全措施在矿山测量工作中的作用8.2 矿山测量安全的原则和措施介绍矿山测量安全的原则和措施解释安全培训、个人防护装备和安全规范的意义8.3 矿山测量伦理和职业责任讲解矿山测量伦理和职业责任的重要性阐述诚信、公正和透明在矿山测量工作中的应用8.4 矿山测量安全与伦理的应用案例分享矿山测量安全与伦理在实际工程中的应用案例分析安全与伦理应用的效果和效益第九章:矿山测量新技术与应用9.1 矿山测量新技术的发展趋势回顾矿山测量技术的发展历程探讨矿山测量新技术的未来发展趋势9.2 矿山测量新技术的方法和手段介绍矿山测量新技术的常用方法和手段解释新型测量技术如GNSS、激光扫描和无人机测量的应用9.3 矿山测量新技术的优点和挑战分析矿山测量新技术的优点和潜在挑战讨论新技术在矿山测量中的限制和解决方法9.4 矿山测量新技术的应用案例分享矿山测量新技术在实际工程中的应用案例分析新技术应用的效果和效益第十章:矿山测量案例分析10.1 矿山测量案例研究的重要性阐述矿山测量案例研究的重要性解释案例分析对矿山测量实践的指导作用10.2 矿山测量案例的选择和分析方法介绍矿山测量案例选择和分析的方法解释案例研究的技术和步骤10.3 矿山测量案例的分析和总结讲解矿山测量案例的分析和总结方法阐述案例分析对矿山测量实践的启示10.4 矿山测量案例的应用案例分享矿山测量案例在实际工程中的应用案例分析案例分析应用的效果和效益重点和难点解析教案中需要重点关注的环节包括:1. 矿山测量的定义和意义:理解矿山测量的基本概念,以及它在矿山工程中的重要性。
矿山测量设计课程设计-采矿巷道设计计
算书
介绍
这份报告旨在介绍我们在矿山测量设计课程中完成的采矿巷道设计计算书。
我们的目标是为同学们提供一个完整的、清晰的设计方案,以便他们能够理解和应用矿山测量学的基本原理。
设计目标
本设计的目标是为一个矿山生产巷道提供一个准确而安全的测量方案。
我们的设计考虑了以下因素:
- 要提供足够的空间来容纳巷道上的设备,同时还要保证巷道的稳定性
- 要确保巷道的坡度和弧形符合国家安全标准
- 要使用符合工程要求的测量方法
设计过程
我们的设计过程分为以下步骤:
步骤一:巷道位置
我们首先确定了巷道的位置,确保其符合设计要求并不会对现
有地质构造造成影响。
步骤二:巷道断面设计
我们按照国家标准设计了巷道的断面。
我们考虑了巷道内的设
备和运输要求,确保其能够容纳所有必要的设备。
步骤三:坡度、弧形和节点设计
我们使用了最先进的测量方法来设计巷道的坡度、弧形和节点。
我们考虑了国家安全标准和工程要求,以确保设计的合理性和安全性。
步骤四:计算和检测
我们使用了国际上公认的计算方法来进行巷道设计的各个方面
的计算和检测。
我们确保所有的结果都符合国内外工程要求和标准。
结论
我们的测量设计方案为矿山生产巷道提供了一个准确而安全的
解决方案。
我们的设计过程遵循了国家安全标准和工程要求,并使
用了最先进的测量方法和计算技术。
通过此课程设计,我们得到了
对矿山测量学的深入理解,也为我们的未来工作奠定了坚实的基础。
矿山测量学课程设计矿山测量学课程设计矿山测量学是矿山工程学科中不可或缺的一部分,它是矿山工程中量测、计算、分析和绘图等方面的理论与实践的综合。
本文将就矿山测量学课程的设计和教学策略等方面进行探讨。
一、课程目标矿山测量学是一门实用性很强的工程学科,它主要的目的是学习矿山测量技术,帮助学生掌握先进的测量技术,教会学生运用各种测量仪器与软件,较好的完成矿山勘探、采矿、设计与管理等各环节的测量工作,这些都要具有较高的技术水平、职业素质和实践经验。
二、课程内容1. 矿山测量基础知识:矿山测量学的概念、基本测量方法、要素、公差、误差、精度、准确度等。
2. 矿山测量仪器操作:包括全站仪、激光测距仪、测距仪、自动水平仪等的操作原理、使用方法和日常维护。
3. 矿山测量数据获取与处理:包括测量数据的采集与处理、测图软件操作技巧、数据分析与评估、图像处理等。
4. 矿山测量工程应用:包括矿山地面及井下测量、矿山设计测量、开采进度测量、矿区地质地形图、矿山立体测量、地震测量等方面的测量应用实例分析。
三、课程教学策略1. 实现理论和实践相结合:组织学生参观矿山实地测量现场,亲身体验现场搭建、数据采集、反复计算数据、精度评定等环节,解决学生用书本知识和实际操作分离的问题。
2. 强调实验性讲授:课程的教学应具备实验性特点,和研究性特点。
为学生提供多种实验和实践的机会,使学生能够亲身进行实测操作,从而深化对测量原理的理解和掌握。
3. 强化实用导向:注重矿山工程实用技术的教学方法。
结合实际工程案例分析,注重矿区地质地貌、地震灾害、生态环境治理、矿山资源保护等方面的矿山测量工程应用,让学生有实践经验。
四、评估方式由于矿山测量学是一门以技能为主导的综合性学科,为了更好的评估学生的掌握情况,应在理论和实验中分别进行测量演练,通过任务跟踪、最终成果展示等多种评估方式进行量化评估。
五、参考文献1. 刘国玉,黄道南,张明,等. 矿山测量学[M]. 北京:矿业出版社,2009.2. 牟间积,雷思勇. 《矿山测量学》课程教学改革的思考[J]. 教育教学论坛,2012, 56(11):22-24.6. 邓乐天. 矿山测量学课程设计[J]. 科技创新导刊,2015(18):42.。
目录1、设计背景矿山测量学课程设计的主要目的在于通过对某矿井的主要矿山测量工作的设计:1.加深对课堂所学基本理论知识、基本概念和基本方法的理解;2.培养学生独立分析问题和解决问题的能力及其创新能力;3.为后续专业课的学习打下良好的基础。
2矿山基本情况2、设计要求1. 在进行设计时,必须遵守国家现行的测量规范、规程与图式。
2.对各种测量方案与测绘方法的选择,既要大胆采用新技术与新设备提倡创新,又要密切结合我国的实际情况,全面考虑其合理性、可能性与必要性,务必使自己的设计在理论上是正确的,在施工时是可行的。
3. 设计中应发挥学生的主动性与创造性,同学间可以讨论交流;若遇疑难问题,经过充分的独立思考后,可向指导教师提出,但技术决定必须由学生独立做出。
4.设计说明书的任务是对全部测量方案、测量方法及精度分析作一简要而系统的说明,并附有必要的图表。
说明书中应尽量避免冗长的文字上的讨论与解释。
一般以直接叙述为主。
若在理论上与实践上有创见,可作必要的讨论与解释。
5. 说明书的编写与图表的绘制,均由学生本人独立地完成。
说明书与设计图要求内容正确、文理通顺、精简明了,图纸整洁。
3、测区已有测绘资料及成果利用收集资料收集矿区内各种已有的测绘资料,包括地形图、交通图、基本矿图、专门矿图、日常生产用图和生产交换图以及基础控制成果(成果表、点之记、网图、技术总结)及鉴定结论等。
平面控制资料为了使矿区坐标系统的一致性。
选用二个矿区一级三角点,这二个控制点X1,X2,都是矿区首级平面控制测量的起算点。
高程控制资料为使矿区高程系统相一致,故矿区首级水准控制网的高程系统选择1985黄海高程系,并且二个水准点为Y1,Y2。
表已知控制点数据4、坐标系统一个矿区应采用统一的坐标和高程系统。
为了便于成果、成图的相互利用,采用国家3°带高斯平面坐标系统。
在特殊情况下,可采用任意中央子午线或矿区平均高程面的矿区坐标系统。
平面坐标系采用1954北京坐标系。
矿山测量教案河南工程技术学校2007.5课程教学说明一、课程的性质矿山测量是采矿专业学生的一门必修课程,属于采矿类专业的一门技术性课程。
主要为学习后续专业课程和将来从事矿井技术管理工作奠定基础。
对采矿专业而言,虽然不需要我们直接到井下去测量,但是我们且要利用测量资料去分析和解决开采技术和管理问题,因此,了解测量工作的基本原理、基本方法、矿图绘制及精度要求是必要的。
特别是具备矿图识图和用图基本知识尤为重要。
各类工程设计(包括毕业设计)、了解生产、指挥生产、制定生产计划、确定开采方案等都需要借助于矿图来进行。
二、课程任务与教学目标本课程的主要任务是:学习测量学和矿山工程测量的基本内容,具备必需的矿山测量技术的基本知识和基本技能;为学习专业知识和职业技能提高全面素质、增强适应职业变化的能力打下一定的基础。
学生通过学习应达到下列目标:1.了解矿山测量技术中的基本概念和基本原理;2.熟悉测量仪器的结构与使用方法;3.能用经纬仪导线法布设图根控制点和井下导线点,掌握测回法测量水平角、竖直角和用水准仪进行等外水准测量的方法,并能用计算器完成坐标和高程计算,会整理测量成果;4.初步掌握大比例尺地形图的测绘方法和巷道施工中线、腰线的标定方法,能正确阅读和使用各种矿图和测绘资料。
能够用岩层与地表移动资料合理留设保护煤柱;5.具有热爱科学、实事求是的学风和创新意识、创新精神。
三、教学环节总课时:4*12=48 学时授课:34学时实训:10学时复习总结:2学时机动:2学时2周教学实习考试。
四、学习要求及学习方法略。
第一章测量基本知识第一节点位的表示方法测量工作的实质:确定地面点的空间位置。
数学上是在空间坐标系里用三维坐标来表示点的空间位置的,如图1—1。
图1—1 点的空间坐标图1测量坐标图1—3 数学坐标一、测量常用坐标系统1.地理坐标系地理坐标系是一球面坐标系。
在地理坐标系中,地面点在球面上的位置用经度和纬度表示的称为地理坐标。
矿山测量课程设计背景介绍矿山测量是矿山工程学中的重要学科,它是矿山工程设计和实施的基础和保障。
矿山测量课程是矿山工程专业中的重要基础课程之一,学生通过该课程的学习,能够全面掌握矿山测量的基本理论和方法,提高测量实践能力,为今后从事矿山工程的设计、施工和管理等方面打下坚实的基础。
课程目标本课程旨在使学生:1.掌握矿山测量的基本概念、理论与实践操作方法;2.具有初步的现场实地测量和数据处理能力;3.了解矿山测量在矿山生产与环境保护中的应用;4.了解矿山测量技术的发展趋势。
课程内容第一章矿山测量概论本章主要介绍矿山测量的概念、意义和分类,包括测量基准、测量工具、测量精度等方面的基本知识。
第二章实地测量本章主要介绍矿山开采现场测量和地下空间测量技术,包括:矿井结构、巷道与矿山脉、地表控制点和地下控制点的测量方法和技术,以及测量设备、数据处理与质量控制等方面的内容。
第三章矿山测量应用本章主要介绍矿山测量在矿山工程设计、施工和管理等方面的应用,包括巷道与洞阵布置设计、大型开采设备定位、测量数据管理、三维建模等内容。
课程设计矿山测量课程设计是教学过程中不可或缺的一环。
通过矿山测量课程设计的实践环节,学生将会得到更深入的知识理解和实践能力的提升。
在本门课程的课程设计中,可以设计如下的课程内容:实地测量课程设计学生将组成小组,进行实地测量课程设计。
学生需要在现场完成不同类型的测量任务,并应用所学到的理论知识和实践技能来进行数据处理。
课程设计的具体内容包括:1.开挖控制点的选取和布设;2.巷道偏差调查和矿脉定向;3.钻孔导线测量;4.洞阵定位测量等。
三维建模课程设计在三维建模课程设计中,学生需要利用测量数据,进行三维建模。
课程设计的具体内容包括:1.知道三维建模的基本原理和方法;2.使用三维建模软件完成矿山内部和地表的建模;3.进行三维建模后的数据分析和应用。
综合性课程设计在综合性课程设计中,学生需要应用所学的理论知识,综合运用测量、建模以及其他相关技术,解决矿山工程实践中的实际问题。
第一章 测量学的基础知识一、学习目的与要求1.掌握测量学的基础知识,2.了解水准面与水平面的关系。
3.明确测量工作的基本概念。
4.深刻理解测量工作的基本原则。
5.充分认识直线定向的含义。
6. 了解测量误差的概念。
二、课程内容与知识点1.测绘学研究的对象,测绘学的分科,现代测绘学的发展现状,我国测绘事业的发展。
2. 了解矿山测量学的在采矿工程建设中的作用。
3.地球特征,大地水准面的形成,地球椭球选择与定位。
地球形状和大小。
水准面的特性。
参考椭球面。
4.确定点位的概念。
点的平面位置和高程位置。
5.测量中常用的坐标系统,坐标系间的坐标转换。
天文坐标(λ,φ),大地坐标(L ,B ),空间直角坐标(X ,Y ,Z ),高斯平面直角坐标(x ,y ),独立平面直角坐标(x ,y )。
高斯投影中计算带号的公式:()()取整数部分取整数部分=+︒-==+=13/'30116/P P n N λλ 计算中央子午线的公式:n N 33636=︒-︒=︒︒λλ6.地面点的高程。
1985年国家黄海高程基准。
高程与高差的关系:''A B A B AB H H H H h -=-=。
7.测量工作的基本概念。
测量工作的原则:从整体,到局部;先控制,后碎部;步步检核。
测量工作的内容:地形图测绘,施工测量。
8.直线定向:清楚标准方向的建立,方位角之间的关系,方位角的推算。
三北方向:真北、轴北、磁北、子午线收敛角、磁偏角。
关系公式:γδδϕγ-==m RL tan 方位角的概念,标准方向线,真方位角。
坐标方位角。
磁方位角。
磁偏角与子午线收敛角,不同方位角之间的关系。
公式: γδγαδ-+=+=+=m m A A A A A坐标方位角的推算公式:︒±±=︒±=180180左右后前正反βαααα9.测量误差的来源,分类,衡量精度的指标及误差传播定律。
误差的定义,测量误差来源,测量误差种类。
矿山测量课程设计1矿山测量课程设计一、两井定向计算某矿做了一次两井定向,根据地面连接导线求得垂球线A 的坐标X A =3431.525m ;两垂球A 、B 间距离L AB =110.442m (如图1所示)。
设两垂球联线的方位角αAB =25°12′20″+10°×n (n 为每个同学的序号),试根据表1中井下连接导线的数据,按地面坐标系统计算井下连接导线各边的方位角及各点坐标。
图1提示:1. 根据L AB 及a ab 算出垂球B 线的地面坐标X B 和Y B 。
2. 按假定坐标系统,即设A 为原点,A1边为X′轴,计算B 点的假定坐标X′B 、Y′B 并算出α′AB ,进而算出ΔC=L′AB -L AB 3. 给出ΔC 允=0.02米,按规程要求,ΔC 应小于ΔC 允。
4. 按地面坐标系统计算井下连接导线各边的坐标方位角及坐标,并求得坐标闭合差f x ,f y 。
5. 将坐标闭合差按边长成比列地分配给井下导线各边的坐标增量上,最后求得各点改正后的坐标。
1920749β'''=︒2922122β'''=︒3910243β'''=︒1129.241m =2150.551m=31104.443m =42811558β'''=︒4131.432m =5980328β'''=︒5129.182m =61492753β'''=︒6120.691m =7128.422m=解:(1)n取20时,则αAB=25°12′20″+10°×20=225°12′25″X B=X A+ΔX A B= X A+L AB·cosαAB=3431.525+110.442×cos(225°12′25″)=3353.711m (2)按假定坐标系统,即设A为原点,A1边为X′轴,计算B点的假定坐标X B′、Y B′。
目录引言 (1)一工程概况 (2)1.1 交通位置与自然地理条件 (2)1.2 地质采矿条件简介 (2)1.3 工程概况 (3)1.4 已有测量成果概况 (5)1.5 设计依据 (5)1.6 贯通限差的确定 (6)二地面连接测量的方案设计 (7)2.1 技术规范及限差要求 (7)2.2 平面连接测量方案设计 (8)2.3 高程连接测量方案设计 (9)三联系测量方案设计 (9)3.1 立井几何定向 (9)3.2 投点及连接 (11)3.3 联系测量的测量误差 (11)3.4 工作组织与安全措施 (13)3.5 高程导入 (15)3.6 高程导入精度估算 (16)四井下控制测量方案设计 (16)4.1 井下导线测量 (16)4.2 井下高程测量 (17)4.3 测量方案的实施 (19)五陀螺定向方案设计 (19)5.1 陀螺经纬仪定向步骤 (19)5.2 陀螺定向精度估计 (20)六贯通误差预计 (25)6.1 方案一 (25)6.2 方案二 (28)6.3 方案三 (30)6.4 竖直方向上重要误差预计 (32)引言**煤矿南区布设两个立井,进风井和回风井,目前正在施工,现回风井施工已接近一水平-796m。
施工回风井-796m井底车场时,需进行矿井联系测量,将地面坐标、方位及高程传递到井下。
考虑到连接中央区和南区主要工程“南翼胶带机大巷和轨道大巷”的贯通距离长达10km(含地面测量部分,中央区井筒和南区井筒间距离约5km),为确保中央区和南区间井巷按设计进行正确施工,保证中央区和南区大巷的准确贯通,南区回风井联系测量的起始数据系统必须和中央区统一,达到足够的精度。
为此需要进行中央区和南区地面(井下)控制测量、连接测量、联系测量,包括陀螺定向,使中央区与南区的井上下测量系统保持一致,确保本矿区测量系统技术合理,安全可靠,为生产安全做好技术服务。
为此,需建立中央区和南区间的井上下测量基准,为下一步的生产决策服务。
同时本次地面控制成果,将作为调整本矿区GPS基站系统的基础资料,使得RTK流动站在矿区范围内的测量精度进一步提高,GPS RTK技术在矿区的生产建设中发挥更大作用。
其次,改扩建现有矿区控制网,将今后位于开采影响范围内的矿区三等测点,改建到近10年内不会受到开采影响的范围内,保持本矿区控制基准的延续性,因而本次地面控制测量意义重大。
“**煤矿南区联系测量”工程技术项目包括矿区平面与高程控制测量、中央区-南区地面连接导线测量、南区矿井联系测量和南翼轨道大巷及井底车场陀螺定向四个部分。
一工程概况1.1 交通位置与自然地理条件该矿区淮南市位于亚热带和暖温带的过渡地带,气候条件优越,其主要气候特征是:春温多变,夏季雨水集中(占全年雨量的50%),春季次之,秋季较少,冬季最少,累计年平均降水为937.2毫米。
秋高气爽、冬季干冷、季风显著、四季分明。
累计年平均气温为15.3℃。
无霜期较长,最长为261天,最短为179天,平均为224天。
冻土深度为0.3m。
井田范围北起F81断层,南止F211断层,西自1煤层隐伏露头,东至三十一勘探线和13-1煤层-1000m底板等高线地面垂直投影线。
全井田南北走向长平均约13km,东西倾斜宽平均11km左右,面积约140km2。
测区内总体地势平坦,最大高差不足4m;村庄密集,高大树木较多,不利于采用常规三角网和导线网进行平面控制;乡村道路较为发达,大部分道路能通行汽车,其余部分可通行三轮摩托车,交通便利。
1.2 地质采矿条件简介地层及煤层:本井田新生界松散层厚224.10~576.00m。
含煤地层为石炭、二叠系,共有9层可采煤层,平均总厚度24.11m,其中13-1、11-2、8、6-2和1煤层为主采煤层,平均总厚度21.14m,各煤层赋存稳定,倾角一般5°~15°。
地质构造:本井田地层形态总体为一走向近南北、倾向东的反“S”型单斜构造。
共发现断层167条,大致可划分为近东西、北西、北东向3个断层组。
由于受区域构造作用影响,井田五线以北构造中等,五线~F92断层之间构造简单,F92断层以南构造中等偏复杂。
煤炭:9层可采煤层共有地质储量(因无D级储量,亦为工业储量)26.3亿吨。
可采储量12.97亿吨(-850m以上7.60亿吨)。
煤质:为中灰~富灰、特低硫、低磷~特低磷、富油~高油、高熔~难熔灰分、具较强粘结的气煤和1/3焦煤。
可供动力、炼焦配煤和化工之用。
水文:本井田新生界松散层自上而下可分为3部分;每部分又分为3个含水组和3个隔水组,共计分为4个含水组、4个隔水组和1个碎石层。
其中下3含水组在七线以北与基岩直接接触,为基岩含水层的主要补给水源;二叠系砂岩以中、细粒为主,富水性弱,以储存量为主,为矿坑的充水因素之一;煤系地层下伏的太原群灰岩距1煤层约16~20m,灰岩水水压较高,在开采1煤层时需采取疏水降压措施。
区域资料表明,奥陶系灰岩的中上部岩溶裂隙比较发育,虽分布不均,但富水性较强,系太灰的主要补给水源。
矿井初期开采4-1~17-2煤时正常涌水量为850m3/h,最大涌水量为1330m3/h;开采1煤时,经蔬水降压后,另增太灰涌水量805m3/h。
瓦斯:本矿井属高瓦斯矿井。
地温:本井田平均地温梯度为3.08℃/100m;预计-780m水平地温为37.7℃~43.7℃,平均40.1℃,属地温异常区。
煤层可燃性及煤尘爆炸性:本井田可采煤层除6-2和1煤层不自燃~很易自燃以外,其余均很易自燃。
煤尘均具有强爆炸性。
地下水资源:本井田地下水资源十分丰富。
新生界第二含水组水质均符合饮用水标准,含水组沙层较厚,水量丰富,水质优良,可作为矿井饮用水等生活用水水源;另外,矿井井下排水量较大,正常涌水量为850m3/h,经深度净化处理后也可满足矿井生产用水的要求,因此矿井供水水源丰富可靠。
本井田面积大,煤层埋藏深,煤层数目多且赋存平缓,因此设计确定矿井采用立井、分区开拓、分区通风、集中出煤的开拓方式。
主要巷道采用主要石门及分层(组)大巷布置形式。
全井田划分为中央区、西区、北区和南区4个分区。
矿井初期先开中央区,其他分区为接替区。
根据矿井提升、通风等要求,矿井投产时在中央区工业场地内设主井、副井和中央回风井3个井筒;并预留1个主井位置。
西区、南区和北区分别设进、回风井井筒各1个,形成各自独立的通风系统;其中进风井装备提升设备,用于各分区辅助提升。
全矿井共设井筒11个。
全井田划分2个生产水平开采。
其中,一水平标高为-780m,采用上、下山开采,下山采至-850m;二水平标高-950m,亦采取上、下山开采,下山采至-1000m。
本矿井煤层倾角小,一般5°~15°。
因此,根据不同采区块段的开采条件及开拓布置,确定采区采用走向长壁与倾斜长壁相结合的布置方式。
1.3 工程概况1.3.1南区井巷工程概况南区主要作为整个矿井的后备采区,为该矿的后备主力采场,出煤系统仍由中央区主井承担。
考虑到行人运料战线长以及通风能力不足,南区布设进风井和回风井2个立井,设计断面进风井φ8.6m、回风井φ7.2m。
回风井2008年7月正式开挖,进风井2008年10月,第一水平设计标高-796m,第二水平-905m。
水文地质情况:表土(新地层)段300~350m,以沙层为主,富水性强。
基岩段以泥岩、砂质泥岩和砂岩为主,局部砂岩富水性较强,井筒穿过煤层主要为11-2和13-1煤层。
施工方法采用冻结法,井筒外围预注浆,局部通风机供风。
表土(新地层)段人工挖掘,基岩段炮掘,模板浇注混凝土,其中基岩段双层井壁,内壁采用套壁法施工。
单层井壁厚度0.5~0.8m,施工时井筒内主要设施包括吊盘、模板、风水管路、电缆线、吊桶、散钻、大抓、双路风筒等目前,进风井已掘至-550m标高,回风井接近第一水平-796m。
回风井-796m 马头门拨开后,便施工-796m井底车场,首先与进风井贯通。
1.3.2 中央区井巷工程概况中央区与南区均为立井开拓,中央区第一水平标高-780m,南区第一水平设计标高-796m,第二水平-905m。
南区布设两个井筒进风井和回风井,中央区副井与南区回风井间直线距离4.6km。
根据设计图纸和生产安排,中央区与南区第一水平大巷预计2009年下半年进行贯通,中央区与南区大巷总长约4.9km,共设计三条大巷,即胶带机大巷、轨道大巷和回风大巷,设计巷道净断面5.6m×4.4m,锚网喷支护一次成巷,软岩地段采用U型钢二次支护。
地质概况:目前该矿南翼采区处于开拓之中,南翼轨道大巷将先后穿过∠60~80˚、H=0~50m的FD95逆断层,∠50~55˚、H=5~55m的FD108-1正断层,∠65˚、H=0~85m FD108正断层, ∠70~80˚、H=0~30m的F114-1正断层等大型断层。
该区为地质异常带,有新构造断层活动的迹象,目前南翼轨道大巷迎头底板距11-2煤层顶板法距约25m,巷道向前掘进过FD95逆断层后巷道顶板距13-1下煤层底板法距约20m左右;穿过FD108-1正断层后将进入13-1煤层顶板地层中掘进,巷道底板距13-1煤层顶板最小法距不到20m;穿FD108正断层后将揭露13-1煤层,并穿过13-1煤层,进入其底板中掘进;在穿F114-1断层附近将可能揭露11-2煤层,巷道穿F114-1断层后最终进入11-2煤层底板中掘进。
该区域构造极其复杂,断层众多且落差较大,受其影响,巷道施工层位及岩层产状变化强烈,岩性复杂且岩体破碎。
水文地质概况:南翼轨道大巷构造发育,岩体破碎,受其影响,煤系砂岩含水层富水性好,巷道掘进时将会时常发生顶底板涌水现象。
巷道在穿FD95及F108等断层时,受大断层影响,砂岩富水性将会进一步增强,且存在导通新生界下含水的可能性。
该区域构造复杂。
中央区向南施工的“南二11-2胶带机大巷和南二11-2轨道大巷”是连接中央区和南区间运输与回风的主干工程,到2009年4月,分别掘进 约1.9km 和1.6km ,与南区西翼轨道石门剩余贯通距离约 3.0km ,待南区西翼轨道石门施工后,中央区和南区大巷将进行对向掘进,巷预计09年下半年进行贯通,为确保中央区与南区两井间长距离大巷的准确贯通,按《煤矿测量规程》的要求,应进行贯通测量方案的设计。
1.4 已有测量成果概况该矿区平面控制网属原矿务局的三等三角网。
该网是×××物测队于1981年建立的,根据该市城建局于1975年施测的三等三角网和物测队于1981年施测的三等三角网组合而成,其成果经物测队进行两网的整体平差后提供的。
平差采用的坐标系统为BJ-54坐标系,中央子午线经度为120°,投影带为3°带的第40带。