自主招生中的立体几何问题
- 格式:pdf
- 大小:205.82 KB
- 文档页数:4
专题六 立体几何1、如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,BC AC ⊥,2BC AC ==,13AA =,D 为棱AC 的中点.⑴ 证明1AB ∥平面1BDC ;⑵ 求直线1AB 与平面11BCC B 所成角的正切值.C 1B 1A 1D CB EBCD A 1B 1C 1答案:⑴(本小问6分)连接1B C ,交1BC 于点E ,则E 为1B C 中点.连接DE ,由于D 为棱AC 的中点,所以在1ACB △中,1AB DE ∥,又因为DE ⊂平面1BDC ,而且1AB ⊄平面1BDC ,所以1AB ∥平面1BDC . ⑵(本小问7分)因为1AA ⊥底面ABC ,11CC AA ∥,所以1CC ⊥底面ABC ,故1CC AC ⊥.又因BC AC ⊥,于是AC ⊥平面11BCC B ,所以1AB C ∠是直线1AB 与平面11BCC B 所成的角. 1Rt ACB △中,2AC =,1B C于是,11tan AC AB C B C ∠===. 所以,直线1AB 与平面11BCC B2、如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD BC ∥,AB BC ⊥,侧面PAB ⊥底面ABCD ,1PA AD AB ===,2BC =。
(Ⅰ)证明:平面PBC ⊥平面PDC ;(Ⅱ)若o 120PAB ∠=,求二面角B PD C --的正切值。
解答:(Ⅰ)由于平面PAB ⊥底面ABCD , 且平面PAB 平面ABCD AB =,BC AB ⊥,BC ⊥平面ABP ,BC ⊂平面BCP ,所以平面PBC ⊥平面PDC .(Ⅱ)由120,1PAB AP AB AB ∠=︒==⇒由(Ⅰ)知BC ⊥平面ABP BC PB ⇒⊥,且2BC PC =⇒DCBAP由于平面PAB ⊥底面ABCD ,且平面PAB 平面ABCD AB =,AD AB ⊥且AD AB ⊥, 故AD ⊥平面PAB ,从而AD AP ⊥, 再由1AD AP ==知PD =,易见CD BD =. 设二面角B PD C --的平面角的大小为θ,则由空间余弦定理知cos cos cos cos sin sin BDC PDB PDCPDB PDCθ∠-∠⋅∠=∠⋅∠:易求得13cos 0,cos ,cos ,sin 44BDC PDB PDC PDB PDC ∠=∠=∠=-∠=∠,故cos tan θθθ===,即所求的二面角B PD C --3、在正方体ABCD —A 1B 1C 1D 1中,E 为棱AA 1的中点,F 是棱A 1B 1上的点,且A 1F :FB 1=1:3,则异面直线EF 与BC 1所成角的正弦值为( B ) (A(B(C(D4、在三棱锥ABC —A 1B 1C 1中,底面边长与侧棱长均等于2,且E 为CC 1的中点,则点C 1到平面AB 1E 的距离为 ( D ) (A(B(C(D5、圆心角为60 的扇形面积为6π,求它围成的圆锥的表面积. 【解】设扇形的半径为r ,则由21623r ππ=⨯,得6r =. 于是扇形的弧长为623l ππ=⨯=,其即为圆锥的底面周长,于是圆锥的底面半径为1,所以底面面积为21ππ⨯=,也所以圆锥的表面积为67S πππ=+=.6、正四棱锥S ABCD -中,侧棱与底面所成角为α,侧面与底面所成二面角为β,侧棱SB 与底面正方形ABCD 的对角线AC 所成角为γ,相邻两侧面所成二面角为θ, 则,,,αβγθ之间的大小关系是(B )(A)αβθγ<<< (B) αβγθ<<< (C) αγβθ<<< (D) βαγθ<<< 解:设正四棱锥的高是,h a 底面边长为可求cos ,cos =,cos =0,22a h h αβγ因为0,22ah h>>所以2παβγ<<≤,下面求cos θ,过B 作BM SC ⊥于M ,连接DM ,由对称性,可知DM SC ⊥,所以DMB ∠为二面角B SC D --的平面角,可以计算出ABDP22222212()2cos 102()4a h a a h a θ+=-<+,所以θ为钝角.选B. 7、已知三棱锥S ABC -的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是ABC的垂心,二面角H AB C --为30°,且2SA =,则此三棱锥的体积为( ) (A)12(B)(C) (D) 34 解:连接BH 交SC 于M ,因此BM SC ⊥,又A H S C ⊥,因此SC ⊥ 平面ABM ,所以SCAB ,过M 作MN ⊥AB ,连接CM ,因此AB 平面SCN ,从而AB ⊥CN ,三角形ABC 为等边三角形,因此N 为AB 的中点,又SN ⊥AB ,由三角形SAN 和三角形SAN 和三角形SBN 全等,可以得到SA=SB ,类似的做法可以证明2SA SB SC ===,S 在地面射影为三角形ABC 中心。
第5讲 竞赛和“三一”专题资料——立体几何中与球有关问题 编写林国夫班级___________姓名____________学号__________一.多面体与球的问题(1)多面体内接于球:若球O 是多面体 的外接球,则球O 的球心O 在多面体 的各个表面上的射影为该表面多边形的外心.根据这个性质我们可以确定球心的位置,结合截面法求解相应的量.(2)多面体的内切球:若球O 内切多面体 ,则球O 的球心到多面体 各个表面的距离均为球半径.根据这个性质,结合等体积法求解内切球的半径.(3)球O 被平面 相截,所得的截面为圆截面,设截面圆的圆心为1O ,则1OO 平面 . (4)若多面体是通过长方体或正方体切割所得,则求其外接球的半径可以等价转化为求长方体或正方体的外接球半径.例1(1)如图,一个四面体棱长分别为6,6,6,6,6,9, 则其外接球的半径为______________.(2)如图,已知空间一球,SC 为其直径且||4,,SC A B =为球上两点,满足:||30AB ASC BSC ︒=∠=∠=,则四面体S ABC -的体积为___________.AP(3)在四面体ABCD 中,1AD DB AC CB ====,则四面体ABCD 体积最大时,它的外接球半径R =.(4)(2018·浙江预赛)在四面体PABC 中,PA BC PB AC PC AB ======,则该四面体外接球的半径为_________.B例2 (有关几何体中球的内切问题)(1)四棱锥P ABCD -中,底面ABCD 是正方形,边长为,,a PD a PA PC ===,在这个四棱锥中放入一个球,则球的最大半径为(2)在边长为1的正方体C 内作一个内切大球1O ,再在C 内作一个小球2O ,使它与大球1O 外切,同时与正方体的三个面都相切,则球2O 的表面积为___________.(3)在正三棱锥P ABC 中,有一半球,其底面与正三棱锥的底面重合,正三棱锥的三个侧面都和半球相切. 如果半球的半径等于1,则正三棱锥的体积最小时,正三棱锥的高等于 _______________.(4)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并放入半径为r 的一个实心球,此时球与容器壁及水面恰好都相切,则取出球后水面高为_______________二.有关球与球的组合体(抓住球心构建的多面体)例3(1)若4个半径为1的球两两外切,则这4个球的外切正四面体的棱长为__________(2)桌面上有3个半径为2017的球两两相切,在其上方空隙里放入一个球,使其顶点(最高点)与3个球的顶点(最高点)在同一平面内,则该球的半径是___________.(3)若半径为R 的球的内部装有4个相同半径为r 的小球,则小球半径r 的最大可能值是________.(4)将3个半径为1的球和一个半径为1-的球叠为两层放在桌面上,上层只放一个较小的球,四个球两两相切,那么上层小球的最高点到桌面的距离是___________.O2第5讲 竞赛和“三一”专题资料——立体几何中与球有关问题(练习) 编写林国夫班级___________姓名____________学号__________一.多面体与球的问题相关练习1.外接球的半径为1的正四面体的棱长为________________2.直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .3.在四面体ABCD 中,AB BCD ⊥平面,BCD △是边长为3的等边三角形。
立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。
以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。
解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。
2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。
解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。
3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。
解题方法包括使用不等式、极值定理和优化方法等。
4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。
解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。
以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。
在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。
高考理科立体几何大题常考题型
高考理科立体几何大题常考题型包括以下几个方面:
1. 空间位置关系的证明:这类问题主要涉及线线、线面、面面的平行和垂直关系的证明。
解决这类问题需要熟练掌握相关的判定定理和性质定理,并能够灵活运用。
2. 空间角的计算:这类问题主要涉及异面直线所成的角、直线与平面所成的角、二面角的计算等。
解决这类问题需要熟练掌握相关的计算公式,并能够准确建立空间直角坐标系。
3. 空间几何体的体积和表面积计算:这类问题主要涉及圆锥、圆柱、棱锥、棱柱等基本几何体的体积和表面积的计算,以及一些组合体的体积和表面积的计算。
解决这类问题需要熟练掌握相关的计算公式,并能够根据题目要求选择合适的计算方法。
4. 投影与直观图:这类问题主要涉及根据几何体的直观图求其三视图,以及根据三视图还原几何体的直观图。
解决这类问题需要熟练掌握三视图的形成原理,并能够准确判断出几何体的各个面在三视图中的投影。
综上所述,高考理科立体几何大题常考题型多样,需要考生具备扎实的数学基础和灵活的解题能力。
建议考生在复习时注重对基础知识的理解和掌握,多做练习题,培养自己的空间想象能力和逻辑思维能力。
立体几何开放性问题1、如图,已知:在菱形ABCD 中,60DAB ∠=, PA ⊥底面ABCD ,PA DA =, E ,F 分别是AB 与PD 的中点.(1)求证:PC ⊥BD ; (2)求证:AF//平面PEC ; (3)在线段BC 上是否存在一点M ,使AF ⊥平面PDM ? 若存在,指出点M 的位置;若不存在,说明理由。
2、如图边长为4的正方形ABCD 所在平面与正PAD ∆所在平面互相垂直,Q M ,分别为AD PC ,的中点.(1)求四棱锥ABCD P -的体积; (2)求证://PA 平面MBD ;(3)试问:在线段AB 上是否存在一点N ,使得平面⊥PCN 平面PQB ?若存在,试指出点N 的位置,并证明你的结论;若不存在,请说明理由。
3、在长方体1111ABCD A B C D -中,2AB BC ==,过11A C B 、、三点的的平面截去长方体的一个角后.得到如图所示的几何体111ABCD A C D -,且这个几何体的体积为403. (1)求1A A 的长;(2)在线段1BC 上是否存在点P ,使直线1A P 与1C D 垂直, 如果存在,求线段1A P 的长,如果不存在,请说明理由.4、如图,平面四边形ABCD 中,AB =BC =CD =a , 90=∠B , 135=∠C ,沿对角线AC 将△ABC 折起,使平面ABC 与平面ACD 互相垂直. (1)求证:AB ⊥平面BCD ;(2)求点C 到平面ABD 的距离;(3)在BD 上是否存在一点P ,使⊥CP 平面ABD ,证明你的结论。
BACDA BC DC 1B 1A 15、直棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,∠BAD =∠ADC =90°,222AB AD CD ===. (Ⅰ)求证:AC ⊥平面BB 1C 1C ;(Ⅱ)在A 1B 1上是否存一点P ,使得DP 与平面BCB 1与平面ACB 1都平行?证明你的结论.6、如图所示,在直四棱柱1111D C B A A B C D-中,BC DB =, DB AC ⊥,点M 是棱1BB 上一点.(Ⅰ)求证://11D B 面BD A 1;(5分) (Ⅱ)求证:MD AC ⊥;(5分)(Ⅲ)试确定点M 的位置,使得平面1DMC⊥平面D D CC 11. (5分)7、如图,菱形ABCD 所在平面与矩形ACEF 所在平面相互垂直,点M 是线段EF 的中点。
第一讲:立体几何第一部分:立体几何中的一些结论1、如图1,分别在两条异面直线上的两点间的距离公式:l =θ为两条异面直线所成的角.2、如图2,PA 与平面π所成的角是PAO α=∠,AQ ⊆面π,QAO β=∠,QAP θ=∠,则得三线角定理:cos cos cos θαβ=.3、如图3,在二面角12l ππ--中,射线DA 、DB 分别在平面1π、2π内,已知ABD θ∠=,ADC α∠=,BDC β∠=,且θ、α、β都是锐角,ϕ是二面角12l ππ--的平面角,则cos cos cos cos sin sin θαβϕαβ-=.4、如图4,二面角12l ππ--的大小为ϕ,A ∈面1π,B ∈面2π,AB 与面1π和面2π所成的角分别为α、β,点A 、B 到棱l 的距离分别为b 、a ,AB c =,则sin sin sin a b cαβϕ==. 5、欧拉定理:设V 、E 和F 分别表示凸多面体的顶点、棱(或边)、面的个数,则2V E F -+=. 6、类比平面几何中的三角形,可以得到空间四面体的一些性质:(1)四面体的六条棱的垂直平分面交于一点,这一点叫四面体的外接球球心;A BM Ndlm n ABM Ndl m n图1PAQO图2lBA D1π2π图3ClBAD1π 2π图4Cr 、S 分别表示四面体的体积、内切球半径、表面积,则13V rS =;(3)四面体的四个面的重心与相对顶点的连线交于一点,这一点叫四面体的重心,四面体的四个面的重心与相对顶点的连线段被四面体的重心分为3:1;(4)每个四面体都有外接球和内切球;7、直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,以长方体的共顶点的三条棱的端点为顶点的四面体是直角四面体.对于直角四面体A BCD -,若直三面角的顶点为A ,互相垂直的三条棱长为a 、b 、c ,外接球半径为R ,内切球半径为r ,则有如下结论:(1)空间勾股定理:22222222221()4ABC ACD ABD BCD S S S S a b b c a c ∆∆∆∆++==++; (2)ABC ACD ABD BCD S S S S r a b c ∆∆∆∆++-=++;(3)R =;(4)直角四面体的对棱中点的连线长相等,且等于外接球半径;8、等腰四面体:三组对棱都相等的四面体统称为等腰四面体,以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,正四面体是特殊的等腰四面体(犹如平几中等腰三角形与等边三角形的关系);在等腰四面体ABCD 中,记BC AD a ==,AC BD b ==,AB CD c ==,体积为V ,外接球半径为R ,内切球半径为r ,高为h ,则有:(1)V 22222a b c k ++=;(2)R =(3)4h r =;(4)等腰四面体的四个顶点与对面重心的连线段的长相等,且可表示为m =AB DC OM 图5 ADBC图6第二部分:例题讲解【例1】(“卓越联盟”2012自招)在直角梯形ABCD 中,90ABC ∠=,1AB AD AP ===,2BC =,面ABP ⊥面A B C D. (1)求证:面PAB ⊥面PBC ;(2)若0120PAB ∠=,求二面角B PD C --的正切值.【例2】(清华2008自招)(1)一个四面体,证明:至少存在一个顶点,从其出发的三条棱可以组成一个三角形;(2)四面体的一个顶点的三个面角分别为090、060、arctan 2,求060的面和arctan 2的面所成的二面角的大小.【例3】(同济2010自招)四面体ABCD 中,AB 和CD 为对棱,设AB a =,CD b =,且异面直线AB 与CD 间的距离为d ,夹角为θ.(1)若2πθ=,且棱AB 垂直与平面BCD ,求四面体ABCD 的体积; (2)当2πθ=时,证明:四面体ABCD 的体积为定值;(3)求四面体ABCD 的体积. PAB C DAB C D ACBNO【例4】(清华2009自招)四面体ABCD 中,AB CD =,AC BD =,AD BC =. (1)求证:这个四面体的四个面都是锐角三角形;(2)设底面为BCD ,另外三个面与面BCD 所成的二面角为α、β、γ,求证:cos cos cos 1αβγ++=.【例5】(复旦2009自招)半径为R 的球内部装4个半径相同的小球,则小球半径r 的最大值为 .【例6】(1)(武大2006自招)已知一个简单多面体的每一个面均为五边形且它共有30条棱,则多面体的面数F 和顶点数V 分别是 .(2)一个凸多面体各面的内角和为20π,求它的面数、棱数和顶点数.【例7】(五校联考2010)如图,四棱锥P ABCD -中,1B 、1D 分别为PB 、PD 的中点,求两个棱锥11A B CD -、P ABCD -的体积之比11A B CD P ABCDV V --的值.(提示:本题可用这样一个结论:如图,1A 、1B 、1C 分别是OA 、OB 、OC 上(或其延长线)的点,则111111O A B C O ABCV OA OB OC V OA OB OC--=) ADBCABCDP1B1D【例8】(五校联考2010)(1)一个正三棱锥的体积为3,求它的表面积的最小值; (2)一个正n 棱锥的体积为V (定值),求一个与n 无关的充要条件,使得正n 棱锥的表面积取得最小值.【例9】(复旦2001基地)全面积为定值2a π(0a >)的圆锥中,体积的最大值为 .第三部分:练习题1、(五校联考2010)平面α∥平面β,直线m α⊆,n β⊆,A m ∈,B n ∈,AB 与平面α所成角为4π,AB n ⊥,AB 与m 的夹角为3π,则m 与n 所成的角为 .2、直线l ⊆面α,经过面α外一点A 作与直线l 、面α都成030的直线有且只有 条. 3、(华约2011自招)两条异面直线a 、b 所成角为060,点P 为空间一定点,则过点P 且与直线a 、b 所成的角都是045的直线有且只有 条.4、已知二面角l αβ--的大小为050,P 为空间一定点,则过点P 且与面α、面β所成的角都是025αβmn AB5、直线a 与平面α所成的角为030,P 为空间一定点,过P 作与直线a 、面α都成045角的直线有且只有 条.6、过正方体1111ABCD A B C D -的顶点A 作直线l ,使l 与棱AB 、AD 、1AA 所成的角都相等,这样的直线有 条.7、(复旦2008自招)空间中,与三条两两异面的直线都相交的直线有 条.8、已有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点相连能焊接成一个三棱锥的铁架,则a 的范围是 .9、一个空间四面体有5条棱长均为2,则该四面体的体积的取值范围为 . 10、在正三棱锥P ABC -中,M 为ABC ∆内(含边界)一动点,若点M 到三个侧面PAB 、面PBC 、面PCA 的距离成等差数列,则点M 的轨迹是 .11、在直三棱柱111ABC A B C -中,底面为直角三角形,090ACB ∠=,6AC =,1BC CC ==,点P 是1BC 上一动点,则1A P PC +的最小值为 .12、一个四棱锥和三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面是正方形,且底面边长和侧棱长相等,这个三棱锥的底面边长和侧棱长也相等,设四棱锥、三棱锥、棱柱的高分别为1h 、2h 、h ,则12::h h h = .13、在三棱锥O ABC -中,三条棱OA 、OB 、OC 两两垂直,且OA OB OC >>,分别过三条棱作一个截面平分三棱锥的体积,截面面积依次为1S 、2S 、3S ,则1S 、2S 、3S 的大小关系为 .14、在三棱锥P ABC -中,2PA BC ==,3PB AC ==,4PC AB ==,则此三棱锥外接球的表面积为 .15、在正三棱锥P ABC -中,E 、F 分别是PA 、AB 的中点,若090CEF ∠=,AB =,则此三棱锥的外接球球心到底面ABC 的距离是 .若M ∈面ABC ,且点M 到面PAB 、面PBC 、面PAC 的距离分别为1、2、3,则PM = .16、(华南理工2009自招)已知A 、B 、C 、D 四点是某球面上不共面的四点,且AB BC AD ===2BD AC ==,BC AD ⊥,则此球的表面积为 .17、半径为2的球面上有A 、B 、C 、D 四点,且2AB CD ==,则四面体ABCD 的体积的最大值为 .18、(复旦2008自招)在三棱柱111ABC A B C -中,M 、N 分别是1BB 和11B C 的中点,由A 、M 、N 所确定的平面将该三棱柱分割成的体积不等的两部分,则小部分的体积和大部分的体积之比为 . 19、(南大2009自招)四面体ABCD 中,平面π截四面体所得的截面为EFGH ,且AB ∥面π,CD ∥面π,AB 到平面π的距离为1d ,CD 到平面π的距离为2d ,1d k d =.则空间几何体ABEFGH 与四面体ABCD 的体积之比 .(用k 表示)20、(华南理工2009自招)在正三棱锥P ABC -中,侧棱长为3,底面边长为2,E 为BC 的中点,EF ⊥PA 于F .(1)求证:EF 为异面直线PA 与BC 的公垂线;(2)求异面直线PA 与BC 间的距离; (3)求点B 到面PAC 的距离. 21、(华约2011)在正四棱锥P ABCD -中,M 、N 分别为PA 、PB 的中点,且侧面与底面所成,则异面直线DM 与AN 所成角的余弦值为 .22、(卓越联盟2011)在三棱柱111ABC A B C -中,底面边长和侧棱长均为2,且E 为1CC 的中点,则点1C 到平面1AB E 的距离为 .23、(复旦2012)侧面积为定值a 的圆锥的最大体积的二次幂为 .24、(2011年全国高中数学联赛)在四面体ABC D 中,3A DB B DC CD A π∠=∠=∠=,3AD BD ==,2CD =,则外接球的半径是 .。
单招数学立体几何单招数学是众多学生所关注的一个热门话题,其中立体几何是单招数学中的一个难点。
下面我们将对单招数学立体几何进行重新整理。
一、什么是立体几何?立体几何是数学中的一个分支,主要研究的是几何立体的性质和变换。
它是单招数学中的一部分,包括了空间几何、向量几何等内容,也是一些专业考试的必考内容。
二、立体几何的基本概念1. 空间直线空间直线是指在三维空间中平面以外的一条直线,它可以通过两个不在同一平面上的点来确定。
2. 平面平面是指在三维空间中不切空间直线的集合,它可以由三个不共线的点唯一确定。
3. 空间角空间角是指由两个不在同一直线上的射线所张成的角,它可以用弧度或角度来度量。
4. 面积与体积在立体几何中,面积与体积是非常重要的概念。
面积指平面图形所占据的空间大小,体积则指立体图形所占据的空间大小。
三、立体几何的基本公式1. 空间直线的距离公式设直线L1的方程为A1x+B1y+C1z+D1=0,直线L2的方程为A2x+B2y+C2z+D2=0,则L1与L2的距离公式为:d = |(A1·B2 - A2·B1, A1·C2 - A2·C1, B1·C2 -B2·C1)·(P2 - P1)| / √(A^2 + B^2 + C^2)其中P1和P2分别为直线L1和L2上的任意一点,|(A1·B2 -A2·B1, A1·C2 - A2·C1, B1·C2 - B2·C1)|表示行列式的模值。
2. 空间角公式设空间角ABC所对应的角度为∠A,空间坐标为A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3),则空间角公式为:cos∠A = (AB·AC) / |AB|·|AC|其中AB和AC分别为向量AB和AC的模值。
3. 立体图形面积与体积公式对于常见的立体图形,我们也可以通过公式计算出它们的面积和体积:(1) 直角棱台S = 2a(a + b) + 2√(a^2 + b^2)h,V = (a^2 + ab + b^2)h / 3(2) 球S = 4πr^2,V = (4/3)πr^3(3) 圆锥S = πr(r + l),V = (1/3)πr^2h(4) 圆柱体S = 2πr^2 + 2πrh,V = πr^2h(5) 立方体S = 6a^2,V = a^3以上是立体几何中常见的公式,考生们需要认真掌握,才能在考试中更好的应对。
立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径AB =4,母线PH =22,M 是PB 的中点,四边形OBCH 为正方形.(1)设平面POH ∩平面PBC =l ,证明:l ∥BC ;(2)设D 为OH 的中点,N 是线段CD 上的一个点,当MN 与平面PAB所成角最大时,求MN 的长.【解析】(1)因为四边形OBCH 为正方形,∴BC ∥OH ,∵BC ⊄平面POH ,OH ⊂平面POH ,∴BC ∥平面POH .∵BC ⊂平面PBC ,平面POH ∩平面PBC =l ,∴l ∥BC .(2)∵圆锥的母线长为22,AB =4,∴OB =2,OP =2,以O 为原点,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系,则P 0,0,2 ,B 0,2,0 ,D 1,0,0 C 2,2,0 ,M 0,1,1 ,设DN =λDC =λ,2λ,0 0≤λ≤1 ,ON =OD +DN =1+λ,2λ,0 ,MN =ON -OM =1+λ,2λ-1,-1 ,OD =1,0,0 为平面PAB 的一个法向量,设MN 与平面PAB 所成的角为θ,则sin θ=1+λ,2λ-1,-1 ⋅1,0,0 1+λ 2+2λ-1 2+1 =1+λ5λ2-2λ+3,令1+λ=t ∈1,2 ,则sin θ=t 5t 2-12t +10=15-12t +101t 2=1101t -35 2+75所以当1t =35时,即λ=23时,sin θ最大,亦θ最大,此时MN =53,13,-1 ,所以MN =MN =53 2+13 2+-1 2=353.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB 为圆锥底面⊙O 的直径,C 在线段AB 上,且BC =3CA ,点D 是以BC 为直径的圆上一动点;(1)当CD =CO 时,证明:平面PAD ⊥平面POD(2)当三棱锥P -BCD 的体积最大时,求二面角B -PD -A 的余弦值.【解析】(1)∵PO 垂直于圆锥的底面,∴PO ⊥AD ,当CD =CO 时,CD =OC =AC ,∴AD ⊥OD ,又OD ∩PO =O ,∴AD ⊥平面POD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面POD ;(2)由题可知OA =OB =4,4π⋅PB =162π,∴PB =42,∴PO =4,当三棱锥P -BCD 的体积最大时,△DBC 的面积最大,此时D 为BC的中点,如图,建立空间直角坐标系O -xyz ,则A (0,-4,0),B (0,4,0),P (0,0,4),D 3,1,0 ,∴BP =0,-4,4 ,PD =3,1,-4 ,AP =(0,4,4),设平面PAD 的法向量为n 1 =(a ,b ,c ),则n 1 ⋅AP =0n 1 ⋅PD =0 ,即4b +4c =03a +b -4c =0,令a =5,则b =-3,c =3,∴n 1 =(5,-3,3),设平面PBD 的法向量n 2 =x ,y ,z ,则n 2 ⋅BP =0n 2 ⋅PD =0 ,即-4y +4z =03x +y -4z =0,令x =1,则y =1,z =1,∴n 2 =1,1,1 ,则cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2 =5-3+33×52+-3 2+32=5129129,∴二面角B -PD -A 的余弦值为-5129129.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.【解析】(1)∵PA =PB =PC =6,BC =23,PB 2+PC 2=BC 2,∴PB ⊥PC∵平面PAC ⊥平面PBC 且平面PAC ∩平面PBC =PC ,PB ⊂平面PBC ,PB ⊥PC ,∴PB ⊥平面PAC ,又PA ⊂平面PAC ,∴PB ⊥PA ,∴AB =PA 2+PB 2=23,∴∠ABC =60°,∴△ABC 是正三角形,AC =23,∵PA 2+PC 2=AC 2∴PA ⊥PC ;(2)在平面ABC 内作OM ⊥OB 交BC 于M ,以O 为坐标原点,OM ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz 如图所示:易知OB =OC =2,OP =PB 2-OB 2=2,所以B 2,0,0 ,P 0,0,2 ,C -1,3,0 ,Q 0,0,2λ ,QB =2,0,-2λ ,BC =-3,3,0 ,设平面OBC 的法向量n 1 =x ,y ,z ,依题意n 1 ⋅QB =0n 1 ⋅CB =0 ,即2x -2λz =0-3x +3y =0 ,不妨令y =3λ,得n 1 =λ,3λ,2 ,易知平面OQB 的法向量n 2 =0,1,0 ,由λ∈0,1 可知cos n 1 ,n 2 =n 1 ⋅n 2 n 1 ⋅n 2=cos60°,即3λλ2+(3λ)2+2 2=12,解得λ=12例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.【解析】(1)点F 是BC 的中点,取BC 的中点F ,连接OF ,DF ,因为O 为AB 的中点,所以OF ⎳AC ,又AC ⊂平面AEC ,OF ⊄平面AEC ,所以OF ⎳平面AEC ,由四边形DOAE 为矩形,所以DO ⎳AE ,又AE ⊂平面AEC ,OD ⊄平面AEC ,所以OD ⎳平面AEC ,因为DO ∩OF =O ,DO ,OF ⊂平面DOF ,所以平面DOF ⎳平面AEC ,因为DF ⊂平面DOF ,所以DF ⎳平面AEC ,(2)由(1)知点F 是BC 的中点,因为DA =AC =BC =2,所以AB =AC 2+BC 2=22,所以OA =OC =OB =2,且OC ⊥AB ,所以OD =AD 2-OA 2=2,所以三棱锥D -BOF 的体积V D -BOF =13S △BOF ⋅DO =13×12×2×22×2=26;又三棱锥D -BOC 的体积V D -BOC =13S △BOC ⋅DO =13×12×2×2×2=23,所以四棱锥C -DOAE 的体积V C -DOAE =13S DOAE ×2=13×2 2×2=223,所以几何体DBCAE 的体积V DBCAE =V D -BCO +V C -DOAE =2,所以体积较大部分几何体的体积为V DBCAE -V D -BOF =2-26=526;例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB 的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ.【解析】(1)证明:由题意知:PO ⊥OA ,PO ⊥OB ,OA ∩OC =0∴PO ⊥平面AOB ,又∵AB ⊂平面AOB ,所以PO ⊥AB .又点C 为AB 的中点,所以OC ⊥AB ,PO ∩OC =0,所以AB ⊥平面POC ,又∵PC ⊂平面POC ,所以PC ⊥AB .(2)以O 为原点,OA ,OB ,OP 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,设OA =2,则A 2,0,0 ,B 0,2,0 ,P 0,0,4 ,C 2,2,0 ,所以AB =-2,2,0 ,AP =-2,0,4 ,PC =2,2,-4 .设平面PAB 的法向量为n =a ,b ,c ,则n ⋅AB =-2a +2b =0,n ⋅AP =-2a +4c =0, 取c =1,则a =b =2可得平面PAB 的一个法向量为n =2,2,1 ,所以sin φ=cos n ,PC =n ⋅PC n PC =42-465=210-5 15.例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.【解析】(1)由已知EF ⊥平面ABE ,BE ⊂平面ABE ,所以EF ⊥BE ,因为AB 是圆O 1的直径,所以AE ⊥BE ,因为AE ∩FE =E ,所以BE ⊥平面AFE ,AF ⊂平面AFE ,故BE ⊥AF ,因为EF =2EA =2AG ,所以EA =2AG ,易知:Rt △AEG ∼Rt △EFA ,所以∠GEA +∠EAF =90°,从而AF ⊥EG ,又BE ∩EG =E ,所以AF ⊥平面EBG .(2)以E 为坐标原点,EA 为x 轴正方向,EA 为单位向量,建立如图所示的空间直角坐标系E -xyz ,则AB =2,BE =3,EF =2,从而A 1,0,0 ,B 0,3,0 ,D 1,0,2 ,F 0,0,2 ,AB =-1,3,0 ,AD =0,0,2 ,设n =x ,y ,z 位平面BGA 的法向量,则{n ⋅AB =0n ⋅AD =0⇒{-x +3y =02z =0⇒{x =3y =1z =0,所以n =3,1,0 ,由(1)知:平面BEG 的法向量为AF =-1,0,2 ,因为cos n ,AF =n ⋅AF n ⋅AF=-12,所以二面角E -BG -A 的正弦值为32.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.【解析】(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BP ⊥BE .(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE =(2,0,-3),AG =(1,3,0),CG =(2,0,3).设m =x 1,y 1,z 1 是平面AEG 的一个法向量,由m ·AE =0m ·AG =0 可得2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =x 2,y 2,z 2 是平面ACG 的一个法向量,由n ·AG =0n ·CG =0,可得x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos ‹m ,n ›=m ⋅n |m |⋅|n |=12, 因为<m ,n >∈[0,π],故所求的角为60°.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.【解析】(1)当点G 为CE 的中点时,DG ∥平面CFH .证明:取CF 得中点M ,连接HM ,MG .∵G ,M 分别为CE 与CF 的中点,∴GM ∥EF ,且GM =12EF =12AD ,又H 为AD 的中点,且AD ∥EF ,AD =EF ,∴GM ∥DH ,GM =DH .四边形GMHD 是平行四边形,∴HM ∥DG又HM ⊂平面CFH ,DG ⊄平面CFH∴DG ∥平面CFH(2)由题意知,AB 是半圆柱底面圆的一条直径,∴AF ⊥BF .∴AF =AB cos30°=23,BF =AB sin30°=2.由EF ∥AD ,AD ⊥底面ABF ,得EF ⊥底面ABF .∴EF ⊥AF ,EF ⊥BF .以点F 为原点建立如图所示的空间直角坐标系,则F (0,0,0),B (0,2,0),C (0,2,4),H (23,0,2)FH =(23,0,2),FC =(0,2,4)设平面CFH 的一个法向量为n =(x ,y ,z )所以n ⋅FH =23x +2z =0n ⋅FC =2y +4z =0则令z =1则y =-2,x =-33即n =-33,-2,1由BF ⊥AF ,BF ⊥FE ,AF ∩FE =F .得BF ⊥平面EFH ∴平面EFH 的一个法向量为FB =(0,2,0)设二面角C -HF -E 所成的角为θ∈0,π2则cos θ=∣cos ‹n ,FB ›=|n ⋅FB ||n ||FB |=0×-33 +(-2)×2+1×02×13+4+1=32 ∴二面角C -HF -E 所成的角为π6.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.【解析】(1)如图,取BB 1,CE 上的点N ,M .连接OM ,OF ,FM .过N 作NH ⊥A 1B 于H ,则OM ∥AE ,由题意知cos ∠FOM =36565,设⊙O 的半径为r ,AA 1=h ,由勾股定理知OF =r 2+916h 2,OM =r 2+116h 2,FM =2r 2+14h 2,由余弦定理知cos ∠FOM =OF 2+OM 2-FM 22×OF ×OM.代入解得h =2r ,因为EN ∥BC ,EN ⊄面A 1BC ,所以EN ∥面A 1BC ,故N 到面A 1BC 的距离是233,因为BC ⊥AB ,BC ⊥AA 1,AA 1∩AB =A ,所以BC ⊥面A 1AB ,BC ⊥NH ,因为NH ⊥BC ,NH ⊥A 1B ,A 1B ∩BC =B ,所以NH ⊥面A 1BC ,NH =233,而sin ∠A 1BB 1=NH BN =A 1B 1A 1B ,即233×h 2=2r 2r 2+h 2,解得r =2,h =4,即⊙O 的半径为2.(2)设上底面圆心为O 1,则O 1P =2,O 1O 2与O 1P 的夹角为θ,所以|AP |=|AO 1 +O 1P |=20+4+85cos θ=210,解得cos θ=255,过P 作PO 2⊥AO 1于O 2,则O 2P =O 1P ⋅sin θ=255,所以点P 的轨迹是以O 2为圆心,以255为半径的圆,因此可作出几何体被面AOA 1所截得到的截面,如图所示.设弧A 1C 1旋转一周所得到的曲面面积为S 1,弧PP 得到的为S 2,则S 2S 1=1-cos θS 1=12×4πr2 ,因此S 2=2πr 2(1-cos θ)=8π1-255 .因此P 点轨迹在球面上围成的面积为8π1-255.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为⊙O 的直径,所以AE ⊥BE .因为AD ,EF 是圆柱的母线,所以AD ∥EF 且AD =EF ,所以四边形AEFD 是平行四边形.所以AE ⎳DF ,所以BE ⊥DF .因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF ⊥BE .又因为DF ∩EF =F ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B -DEF 底面DEF 上的高,由(1)知EF ⊥AE ,AE ∥DF ,所以EF ⊥DF ,即底面三角形DEF 是直角三角形.设DF =AE =x ,BE =y ,则在Rt △ABE 中有:x 2+y 2=6,所以V B -DEF =13S △DEF ⋅BE =13⋅12x ⋅6⋅y =66xy ≤66⋅x 2+y 22=62,当且仅当x =y =3时等号成立,即点E ,F 分别是AB ,CD的中点时,三棱锥B -DEF 的体积最大,(另等积转化法:V B -DEF =V D -BEF =V D -BCF =V B -CDF =13S △CDF⋅BC 易得当F 与CD 距离最远时取到最大值,此时E 、F 分别为AB 、CD 中点)下面求二面角B -DF -E 的正弦值:法一:由(1)得BE ⊥平面DEF ,因为DF ⊂平面DEF ,所以BE ⊥DF .又因为EF ⊥DF ,EF ∩BE =E ,所以DF ⊥平面BEF .因为BF ⊂平面BEF ,所以BF ⊥DF ,所以∠BFE 是二面角B -DF -E 的平面角,由(1)知△BEF 为直角三角形,则BF =(3)2+(6)2=3.故sin ∠BFE =BE BF=33,所以二面角B -DF -E 的正弦值为33.法二:由(1)知EA ,EB ,EF 两两相互垂直,如图,以点E 为原点,EA ,EB ,EF 所在直线为x ,y ,z 轴建立空间直角坐标系E -xyz ,则B (0,3,0),D (3,0,6),E (0,0,0),F (0,0,6).由(1)知BE ⊥平面DEF ,故平面DEF 的法向量可取为EB =(0,3,0).设平面BDF 的法向量为n =(x ,y ,z ),由DF =(-3,0,0),BF =(0,-3,6),得n ⋅DF =0n ⋅BF =0 ,即-3x =0-3y +6z =0,即x =0y =2z ,取z =1,得n =(0,2,1).设二面角B -DF -E 的平面角为θ,|cos θ|=∣cos n ,EB =|n ⋅EB ||n |⋅|EB |=2×33×3=63,所以二面角B -DF -E 的正弦值为33例11.如图,O 1,O 分别是圆台上、下底的圆心,AB 为圆O 的直径,以OB 为直径在底面内作圆E ,C 为圆O 的直径AB 所对弧的中点,连接BC 交圆E 于点D ,AA 1,BB 1,CC 1为圆台的母线,AB =2A 1B 1=8.(1)证明;C 1D ⎳平面OBB 1O 1;(2)若二面角C 1-BC -O 为π3,求O 1D 与平面AC 1D 所成角的正弦值.【解析】(1)连接DE ,O1E ,C 为圆O 的直径AB 所对弧的中点,所以△BOC 为等腰直角三角形,即∠OBD =45°,又D 在圆E 上,故△BED 为等腰直角三角形,所以DE ⎳OC 且DE =12OC ,又CC 1是母线且O 1C 1=12OC ,则O 1C 1⎳OC ,故DE ⎳O 1C 1且DE =O 1C 1,则DEO 1C 1为平行四边形,所以EO 1⎳DC 1,而EO 1⊂面OBB 1O 1,DC 1⊄面OBB 1O 1,故C 1D ⎳平面OBB 1O 1.(2)由题设及(1)知:O 1O 、OB 、OC 两两垂直,构建如下图示的空间直角坐标系,过C 1作C 1F ⎳O 1O ,则F 为OC 的中点,再过F 作FG ⎳OD ,连接C 1G ,由O 1O ⊥圆O ,即C 1F ⊥圆O ,BC ⊂圆O ,则C 1F ⊥BC ,又OD⊥BC ,则FG ⊥BC ,故二面角C 1-BC -O 的平面角为∠FGC 1=π3,而FG =12OD =24OB =2,所以O 1O =C 1F =FG tan π3=6.则A (0,-4,0),D (2,2,0),C 1(2,0,6),O 1(0,0,6),所以AD =(2,6,0),C 1D =(0,2,-6),O 1D =(2,2,-6),若m =(x ,y ,z )为面AC 1D 的一个法向量,则m ⋅AD =2x +6y =0m ⋅C 1D =2y -6z =0,令y =6,则m =(-36,6,2),|cos <m ,O 1D >|=6614×8=32128,故O 1D 与平面AC 1D 所成角的正弦值32128.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =AA 1=2,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于E ,F ,圆台上底的圆心O 1在A 1B 1上,直径为1.(1)求A 1C 与平面A 1ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得FP ⊥AC 1,若存在,求点P 到直线A 1B 1的距离,若不存在则说明理由.【解析】(1)(1)由长方体ABCD -A 1B 1C 1D 1可知,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系如图所示,则A 12,0,2 ,C 0,4,0 ,E 2,1,0 ,D 0,0,0 .所以A 1C =(-2,4,-2),DA 1 =(2,0,2),DE =(2,1,0).设平面A 1ED 的一个法向量为n=(x ,y ,z ),则有n .DA=0n .DE =0 ,即2x +2z =02x +y =0 ,令x =1,则y =-2,z =-1,故n=(1,-2,-1),所以|cos <A 1C ,n >|=|AC ⋅n||AC ||n |=|-2-8+2|4+16+4⋅1+4+1=23,故A 1C 与平面A 1ED 所成角的正弦值为23;(2)由(1)可知,A 2,0,0 ,C 10,4,2 ,所以AC 1=(-2,4,2),假设存在这样的点P ,设P x ,y ,2 ,由题意可知(x -2)2+(y -2)2=14,所以FP =(x -2,y -3,2),因为FP ⊥AC 1,则有FP ⋅AC 1 =-2(x -2)+4(y-3)+4=0,所以x =2y -2,又(x -2)2+(y -2)2=14,所以5y 2-20y +794=0,解得x =2-55y =2-510(舍),x =2+55y =2+510,所以当P 2+55,2+510,2 时,FP ⊥AC 1,此时点P 到直线A 1B 1的距离为55.题型二:立体几何存在性问题例13.如图,三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥A -PBC 的体积;(2)在线段PC 上是否存在一点M ,使得BM ⊥AC ?若存在,求MCPM的值,若不存在,请说明理由.【解析】(1)因为AB =1,AC =2,∠BAC =60°,所以S △ABC =12⋅AB ⋅AC ⋅sin60°=32.由PA ⊥平面ABC 知:PA 是三棱锥P -ABC 的高,又PA =1,所以三棱锥A -PBC 的体积V A -PBC =V P -ABC =13⋅S △ABC ⋅PA =36.(2)在线段PC 上存在一点M ,使得BM ⊥AC ,此时MCPM =3.如图,在平面PAC 内,过M 作MN ⎳PA 交AC 于N,连接BN ,BM .由PA ⊥平面ABC ,AC ⊂平面ABC ,故PA ⊥AC ,所以MN ⊥AC .由MN ⎳PA 知:AN NC =PM MC=13,则AN =12,在△ABN 中,BN 2=AB 2+AN 2-2AB ⋅AN cos ∠BAC =12+12 2-2×1×12×12=34,所以AN 2+BN 2=AB 2,即AC ⊥BN .由于BN ∩MN =N 且BN ,MN ⊂面MB N ,故AC ⊥平面MB N .又BM ⊂平面MB N ,所以AC ⊥BM .例14.已知四棱锥P -ABCD 中,底面ABCD 是矩形,且AD =2AB ,△PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成的锐二面角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【解析】(1)因为△PAD 是正三角形,O 为AD 的中点,所以,PO ⊥AD ,因为CD ⊥平面PAD ,PO ⊂平面PAD ,∴PO ⊥CD ,∵AD ∩CD =D ,∴PO ⊥平面ABCD ,因为AD ⎳BC 且AD =BC ,O 、G 分别为AD 、BC 的中点,所以,AO ⎳BG 且AO =BG ,所以,四边形ABGO 为平行四边形,所以,OG ⎳AB ,∵AB ⊥AD ,则OG ⊥AD ,以点O 为坐标原点,OA 、OG 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AB =2,则AD =4,A 2,0,0 、G 0,2,0 、D -2,0,0 、C -2,2,0 、P 0,0,23 、E -1,1,3 、F -1,0,3 ,EF=0,-1,0 ,EG =1,1,-3 ,设平面EFG 的法向量为n=x ,y ,z ,则n ⋅EF=-y =0n ⋅EG=x +y -3z =0 ,取x =3,可得n =3,0,1 ,易知平面ABCD 的一个法向量为m=0,0,1 ,所以,cos <m ,n >=m ⋅nm ⋅n=12,因此,平面EFG 与平面ABCD 所成的锐二面角为π3.(2)假设线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,设PM=λPA =λ2,0,-23 =2λ,0,-23λ ,其中0≤λ≤1,GM =GP +PM=0,-2,23 +2λ,0,-23λ =2λ,-2,23-23λ ,由题意可得cos <n ,GM > =n ⋅GM n ⋅GM =2324λ2+4+121-λ 2=12,整理可得4λ2-6λ+1=0,因为0≤λ≤1,解得λ=3-54.因此,在线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,且PM PA=3-54.例15.已知三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34若存在,确定点P 的位置;若不存在,说明理由.【解析】(1)由AC =AA 1知:四边形AA 1C 1C 为菱形.连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1且A 1C ∩A 1B =A 1,∴AC 1⊥平面A 1CB ,BC ⊂平面A 1CB ,则AC 1⊥BC ;又∠ACB =90°,即BC ⊥AC ,而AC ∩AC 1=A ,∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)以C 为坐标原点,射线CA 、CB 为x 、y 轴的正向,平面A 1ACC 1上过C 且垂直于AC 的直线为z 轴,建立如图所示的空间直角坐标系.∵AC =AA 1=4,BC =2,∠A 1AC =60°,∴C 0,0,0 ,B 0,2,0 ,A 4,0,0 ,A 12,0,23 .设在线段AC 上存在一点P ,满足AP =λAC0≤λ≤1 ,使二面角B -A 1P -C 的余弦值为34,则AP =-4λ,0,0 ,所以BP =BA +AP=4,-2,0 +-4λ,0,0 =4-4λ,-2,0 ,A 1P =A 1A +AP=2-4λ,0,-23 .设平面BA 1P 的一个法向量为m=x 1,y 1,z 1 ,由m ⋅BP=4-4λ x 1-2y 1=0m ⋅A 1P =2-4λ x 1-23z 1=0,取x 1=1,得m=1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n=0,1,0 .由cos m ,n =m ⋅n m ⋅n =2-2λ 1+2-2λ 2+1-2λ23×1=34,解得λ=43或λ=34.因为0≤λ≤1,则λ=34.故在线段AC 上存在一点P ,满足AP =34AC ,使二面角B -A 1P -C 的平面角的余弦值为34.例16.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⎳BC ,AD ⊥CD ,且AD =CD ,BC =2CD ,PA =2AD .(1)证明:AB ⊥PC ;(2)在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,若存在,求BM 与PC 所成角的余弦值;若不存在,请说明理由.【解析】(1)证明:连接AC ,设AD =CD =1,因为AD ⊥CD ,则AC =AD 2+CD 2=2,且△ACD 为等腰直角三角形,因为AD ⎳BC ,则∠ACB =∠CAD =45∘,因为BC =2CD =2,由余弦定理可得AB 2=AC 2+BC 2-2AC ⋅BC cos45∘=2,所以,AC 2+AB 2=BC 2,则AB ⊥AC ,∵PA ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB ⊥PA ,∵PA ∩AC =A ,∴AB ⊥平面PAC ,∵PC ⊂平面PAC ,∴AB ⊥PC .(2)因为PA ⊥平面ABCD ,AB ⊥AC ,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AD =CD =1,则A 0,0,0 、B 2,0,0 、C 0,2,0 、D -22,22,0 、P 0,0,2 ,设PM =λPD =-22λ,22λ,-2λ ,其中0≤λ≤1,则AM =AP +PM=-22λ,22λ,2-2λ ,AC =0,2,0 ,设平面ACM 的法向量为m=x ,y ,z ,则m ⋅AC=2y =0m ⋅AM =-22λx +22y +2-2λ z =0,取x =2-2λ,可得m =2-2λ,0,λ ,易知平面ACD 的一个法向量为n=0,0,1 ,由题意可得cos <m ,n > =m ⋅n m ⋅n =λ41-λ 2+λ2=1717,因为0≤λ≤1,解得λ=13,此时,AM =-26,26,223 ,BM =BA +AM =-726,26,223 ,PC =0,2,-2 ,所以,cos <BM ,PC >=BM ⋅PCBM ⋅PC =-1333×2=-3322,因此,在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,且BM 与PC 所成角的余弦值为3322.例17.如图,△ABC 是边长为6的正三角形,点E ,F ,N 分别在边AB ,AC ,BC 上,且AE =AF =BN =4,M 为BC 边的中点,AM 交EF 于点O ,沿EF 将三角形AEF 折到DEF 的位置,使DM =15.(1)证明:平面DEF ⊥平面BEFC ;(2)试探究在线段DM 上是否存在点P ,使二面角P -EN -B 的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.【解析】(1)在△DOM 中,易得DO =23,OM =3,DM =15,由DM 2=DO 2+OM 2,得DO ⊥OM ,又∵AE =AF =4,AB =AC =6,∴EF ⎳BC ,又M 为BC 中点,∴AM ⊥BC ,∴DO ⊥EF ,因为EF ∩OM =O ,EF ,OM ⊂平面EBCF ,∴DO ⊥平面EBCF ,又DO ⊂平面DEF ,所以平面DEF ⊥平面BEFC ;(2)由(1)DO ⊥平面EBCF ,以O 为原点,以OE ,OM ,OD为x ,y ,z 的正方向建立空间直角坐标系O -xyz ,D (0,0,23),M (0,3,0),E (2,0,0),N (-1,3,0)∴DM =(0,3,-23),ED =(-2,0,23),由(1)得平面ENB 的法向量为n=(0,0,1),设平面ENP 的法向量为m=(x ,y ,z ),DP =λDM (0≤λ≤1),所以DP =(0,3λ,-23λ),所以EP =ED +DP =(-2,3λ,23-23λ).由题得,所以EN =(-3,3,0),所以m ⋅EN=-3x +3y =0m ⋅EP =-2x +3λy +(23-23λ)z =0,所以m =1,3,2-3λ23-23λ,因为二面角P -EN -B 的大小为60°,所以12=2-3λ23-23λ1+3+2-3λ23-23λ2,解之得λ=2(舍去)或λ=67.此时DP =67DM ,所以DP PM=6.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.【解析】(1)在图1中取CE 中点F ,连接BF ,AE ,∵CE =2ED ,CD =3,AB =2,∴CF =1,EF =1,∵DF =AB =2,DF ⎳AB ,∠D =90∘,∴四边形ABFD 为矩形,∴BF ⊥CD ,∴BE =BC =3+1=2,又CE =2,∴△BCE 为等边三角形;又AE =3+1=2,∴△ABE 为等边三角形;在图2中,取BE 中点G ,连接AG ,C 1G ,∵△C 1BE ,△ABE 为等边三角形,∴C 1G ⊥BE ,AG ⊥BE ,∴C 1G =AG =3,又AC 1=6,∴AG 2+C 1G 2=AC 21,∴C 1G ⊥AG ,又AG ∩BE =G ,AG ,BE ⊂平面ABED ,∴C 1G ⊥平面ABED ,∵C 1G ⊂平面BC 1E ,∴平面BC 1E ⊥平面ABED .(2)以G 为坐标原点,GA ,GB ,GC 1正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则B 0,1,0 ,E 0,-1,0 ,A 3,0,0 ,C 10,0,3 ,D 32,-32,0,∴DC 1 =-32,32,3 ,EB =0,2,0 ,EC 1 =0,1,3 ,设棱DC 1上存在点P x ,y ,z 且DP=λDC 1 0≤λ≤1 满足题意,即x -32=-32λy +32=32λz =3λ,解得:x =32-32λy =32λ-32z =3λ,即P 32-32λ,32λ-32,3λ,则EP =32-32λ,32λ+12,3λ ,设平面PBE 的法向量n=a ,b ,c ,则EP ⋅n =32-32λ a +32λ+12 b +3λc =0EB ⋅n =2b =0,令a =2,则b =0c =1-λλ,∴n =2,0,1-λλ,∴C 1到平面PBE 的距离为d =EC 1 ⋅nn=3-3λλ4+1-λλ2=62,解得:λ=13,∴n=2,0,2 ,又平面ABE 的一个法向量m=0,0,1 ,∴cos <m ,n >=m ⋅nm ⋅n=222=22,又二面角P -BE -A 为锐二面角,∴二面角P -BE -A 的大小为π4.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.【解析】(1)∵A 1A ⊥底面ABCD ,AC ⊂平面ABCD ∴A 1A ⊥AC又AB ⊥AC ,A 1A ∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,∴AC ⊥平面ABB 1A 1∵BE ⊂平面ABB 1A 1,∴AC ⊥BE ∵AE AB =12=ABBB 1,∠EAB =∠ABB 1=90∘,∴∠ABE =∠AB 1B∵∠BAB 1+∠AB 1B =90∘,∴∠BAB 1+∠ABE =90∘,∴BE ⊥AB 1,又AC ∩AB 1=A ,AC ,AB 1⊂平面ACB 1,∴BE ⊥平面ACB 1(2)如图,以A 为原点建立空间直角坐标系A -xyz ,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),D1(1,-2,2),E 0,0,12,由(1)知,EB =0,1,-12为平面ACB 1的一个法向量.设n=x ,y ,z 为平面ACD 1的一个法向量.因为AD 1 =(1,-2,2),AC =(2,0,0),所以n ⋅AD 1=0n ⋅AC =0 ,即:x -2y +2z =02x =0 ,不妨设z =1,可得n=(0,1,1).因此cos n ,EB =n ⋅EB n ⋅EB =1010由图可知二面角D 1-AC -B 1为锐角,所以二面角D 1-AC -B 1的余弦值为1010.(3)假设存在满足题意的点F ,设A 1F =a (a >0),则由(2)得F (0,a ,2),DF=(-1,a +2,2).由题意可知DF ⋅EB=a +2-1=0,解得a =-1(舍去),即直线DF 的方向向量与平面ACB 1的法向量不可能垂直.所以,在棱A 1B 1上不存在点F ,使得直线DF ∥平面ACB 1.例20.如图,在五面体ABCDE 中,已知AC ⊥BD ,AC ⊥BC ,ED ⎳AC ,且AC =BC =2ED =2,DC =DB =3.(1)求证:平面ABE ⊥与平面ABC ;(2)线段BC 上是否存在一点F ,使得平面AEF 与平面ABE 夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.【解析】(1)证明:∵AC ⊥BD ,AC ⊥BC ,BC ∩BD =B ,∴AC ⊥平面BCD ,∵AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,取BC 的中点O ,AB 的中点H ,连接OD 、OH 、EH ,∵BD =CD ,∴DO ⊥BC ,又DO ⊂平面BCD ,平面ABC ⊥平面BCD ,平面BCD ∩平面ABC =BC ,∴DO ⊥平面ABC ,又OH ⎳AC ,OH =12AC ,DE ⎳AC ,DE =12AC ,所以,OH ⎳DE 且OH =DE ,∴四边形OHED 为平行四边形,∴EH ⎳OD ,∵DO ⊥面ABC ,则EH ⊥平面ABC ,又∵EH ⊂面ABE ,所以,平面ABE ⊥平面ABC .(2)因为AC ⊥BC ,OH ⎳AC ,则OH ⊥BC ,因为OD ⊥平面ABC ,以点O 为坐标原点,OH 、OB 、OD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则A 2,-1,0 、B 0,1,0 、C 0,-1,0 、E 1,0,2 、H 1,0,0 ,HE=0,0,2 ,AB =-2,2,0 ,设平面ABE 的法向量为m=x 1,y 1,z 1 ,则m ⋅HE=2z 1=0m ⋅AB=-2x 1+2y 1=0 ,取x 1=1,可得m=1,1,0 ,设在线段BC 上存在点F 0,t ,0 -1≤t ≤1 ,使得平面AEF 与平面ABE 夹角的余弦值等于54343,设平面AEF 的法向量为n=x 2,y 2,z 2 ,AF =-2,t +1,0 ,AE =-1,1,2 ,由n ⋅AF=-2x 2+t +1 y 2=0n ⋅AE =-x 2+y 2+2z 2=0 ,取x 2=2t +1 ,可得n =2t +1 ,22,t -1 ,由题意可得cos <m ,n> =m ⋅n m ⋅n =2t +32⋅3t 2+2t +11=54343,整理可得2t 2-13t -7=0,解得:t =-12或t =7(舍),∴F 0,-12,0 ,则BF =32,∴BF BC =34,综上所述:在线段BC 上存在点F ,满足BF BC=34,使得平面AEF 与平面ABE 夹角的余弦值等于54343.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD 中,∠DAB =60°,点M ,N 分别是边BC ,CD 的中点,AC ∩BD =O 1,AC ∩MN =G .沿MN 将△CMN 翻折到△PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P -ABMND .(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)当四棱锥P -MNDB 体积最大时,求直线PB 和平面MNDB 所成角的正弦值;(3)在(2)的条件下,在线段PA 上是否存在一点Q ,使得二面角Q -MN -P 余弦值的绝对值为1010若存在,试确定点Q 的位置;若不存在,请说明理由.【解析】(1)在翻折过程中总有平面PBD ⊥平面PAG ,证明如下:∵点M ,N 分别是边CD ,CB 的中点,又∠DAB =60°,∴BD ∥MN ,且△PMN 是等边三角形,∵G 是MN 的中点,∴MN ⊥PG ,∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴MN ⊥AC ,∵AC ∩PG =G ,AC ⊂平面PAG ,PG ⊂平面PAG ,∴MN ⊥平面PAG ,∴BD ⊥平面PAG ,∵BD ⊂平面PBD ,∴平面PBD ⊥平面PAG .(2)由题意知,四边形MNDB 为等腰梯形,且DB =4,MN =2,O 1G =3,所以等腰梯形MNDB 的面积S =2+4 ×32=33,要使得四棱锥P -MNDB 体积最大,只要点P 到平面MNDB 的距离最大即可,∴当PG ⊥平面MNDB 时,点P 到平面MNDB 的距离的最大值为3,此时四棱锥P -MNDB 体积的最大值为V =13×33×3=3,直线PB 和平面MNDB 所成角的为∠PBG ,连接BG ,在直角三角形△PBG 中,PG =3,BG =7,由勾股定理得:PB =PG 2+BG 2=10.sin ∠PBG =PGPB=310=3010.(3)假设符合题意的点Q 存在.以G 为坐标原点,GA ,GM ,GP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,则A 33,0,0 ,M 0,1,0 ,N 0,-1,0 ,P 0,0,3 ,由(2)知,AG ⊥PG ,又AG ⊥MN ,且MN ∩PG =G ,MN ⊂平面PMN ,PG ⊂平面PMN ,AG ⊥平面PMN ,故平面PMN 的一个法向量为n 1=1,0,0 ,设AQ =λAP(0≤λ≤1),∵AP=-33,0,3 ,AQ=-33λ,0,3λ ,故331-λ ,0,3λ ,∴NM=0,2,0 ,QM =33λ-1 ,1,-3λ ,平面QMN 的一个法向量为n 2=x 2,y 2,z 2 ,则n 2 ⋅NM =0,n 2 ⋅QM=0,即2y 2=0,33λ-1 x 2+y 2-3λz 2=0,令z 2=1,所以y 2=0,x 2=λ3λ-1n 2 =13λ-1 ,0,1=13λ-1λ,0,3λ-1 ,则平面QMN 的一个法向量n=λ,0,3λ-1 ,设二面角Q -MN -P 的平面角为θ,则cos θ =n ⋅n 1 n n 1 =λλ2+9λ-1 2=1010,解得:λ=12,故符合题意的点Q 存在且Q 为线段PA 的中点.例22.如图,在等腰直角三角形PAD 中,∠A =90°,AD =8,AB =3,B 、C 分别是PA 、PD 上的点,且AD ⎳BC ,M 、N 分别为BP 、CD 的中点,现将△BCP 沿BC 折起,得到四棱锥P -ABCD ,连接MN .(1)证明:MN ⎳平面PAD ;(2)在翻折的过程中,当PA =4时,求二面角B -PC -D 的余弦值.【解析】(1)在四棱锥P -ABCD 中,取AB 的中点E ,连接EM ,EN .因为M ,N 分别为BP ,CD 的中点,AD ⎳BC ,所以ME ⎳PA ,EN ⎳AD ,又PA ⊂平面PAD ,ME ⊄平面PAD ,所以ME ⎳平面PAD ,同理可得,EN ⎳平面PAD ,又ME ∩EN =E ,ME ,EN ⊂平面MNE ,所以平面MNE ⎳平面PAD ,因为MN ⊂MNC 平面MNE ,所以MN ⎳平面PAD .(2)因为在等腰直角三角形PAD 中,∠A =90°,AD ⎳BC ,所以BC ⊥PA ,在四棱锥P -ABCD 中,BC ⊥PB ,BC ⊥AB ,因为AD ⎳BC ,则AD ⊥PB ,AD ⊥AB ,又PB ∩AB =B ,PB ,AB ⊂平面PAB ,所以AD ⊥平面PAB ,又PA ⊂平面PAB ,所以PA ⊥AD ,因为AD =8,AB =3,PA =4,AD ⎳BC ,则PB =5,BC =5,所以AB 2+PA 2=PB 2,故PA ⊥AB ,所以以点A 为坐标原点,分别以AB ,AD ,AP 所在方向为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A -xyz ,如图所示,A (0,0,0),B (3,0,0),C (3,5,0),P 0,0,4 ,D 0,8,0 ,所以PB =(3,0,-4),PC =(3,5,-4),PD =(0,8,-4),设m =(x 1,y 1,z 1)为平面PBC 的一个法向量,则m ⋅PB =0m ⋅PC =0,即3x 1-4z 1=03x 1+5y 1-4z 1=0 ,令x 1=4,则y 1=0,z 1=2,m =(4,0,3),设n =(x 2,y 2,z 2)为平面PCD 的一个法向量,则m ⋅PD =0m ⋅PC =0 ,即8y 2-4z 2=03x 2+5y 2-4z 2=0,令y 2=1,则x 2=1,z 2=2,n =(1,1,2),设二面角B -PC -D 所成角为α,则cos α=-cos m ,n =-m ⋅n m ⋅n =-4×1+0×1+2×3 42+02+32×12+12+22=-105×6=-63.因为二面角B -PC -D 的余弦值为-63.例23.如图1,在平面四边形PDCB 中,PD ∥BC ,BA ⊥PD ,PA =AB =BC =2,AD =1.将△PAB 沿BA 翻折到△SAB 的位置,使得平面SAB ⊥平面ABCD ,如图2所示.(1)设平面SDC 与平面SAB 的交线为l ,求证:BC ⊥l ;(2)点Q 在线段SC 上(点Q 不与端点重合),平面QBD 与平面BCD 夹角的余弦值为66,求线段BQ 的长.【解析】(1)依题意,AD ⊥AB ,因为PD ∥BC ,所以BC ⊥AB ,由于平面SAB ⊥平面ABCD ,且交线为AB ,BC ⊂平面ABCD ,所以BC ⊥平面SAB ,因为l 是平面SDC 与平面SAB 的交线,所以l ⊂平面SAB ,故BC ⊥l .(2)由上可知,AD ⊥平面SAB ,所以AD ⊥SA ,由题意可知SA ⊥AB ,AD ⊥AB ,以点A 为坐标原点,分别以AD ,AB ,AS 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,B 0,2,0 ,C 2,2,0 ,D 1,0,0 ,S 0,0,2 ,BD =1,-2,0 ,SC =2,2,-2 ,设SQ =λSC 0<λ<1 ,则Q 2λ,2λ,2-2λ ,BQ =2λ,2λ-2,2-2λ ,设n =x ,y ,z 是平面QBD 的一个法向量,则n ⋅BD =x -2y =0n ⋅BQ =2λx +2λ-1 y +21-λ z =0,令x =2,可得n =2,1,1-3λ1-λ由于m =0,0,1 是平面CBD 的一个法向量,依题意,二面角Q -BD -C 的余弦值为66,所以cos m ,n =m ⋅n m ⋅n =1-3λ1-λ 1×4+1+1-3λ1-λ2=66,解得λ=12∈0,1 ,此时BQ =1,-1,1 ,BQ =3,即线段BQ 的长为3.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.【解析】(1)(1)证明:取DC 的中点M ,连接MF ,MQ .则MQPD ,MFDA .因为MQ ⊄面PAD ,ME ⊄面PAD ,所以,MQ ∥面PAD ,MF ∥面PAD ,因为MQ ∩ME =M ,所以,面MQF 面PAD ,因为FQ ⊂面MQF ,所以FQ ∥面PAD .(2)(2)取AD 的中点O ,连接OP ,OC ,因为△PAD 为正三角形,AD =2,所以OP ⊥AD 且OP =3,在直角梯形ABCD 中,AD ∥BC ,∠DAB =90°,AB =2BC =2,所以,OC ⊥AD 且OC =2,又因为PC =7,所以在△POC 中,OP 2+OC 2=PC 2,即OP ⊥OC ,所以,以O 为坐标原点,分别以OD ,OC ,OP 的方向为x ,y ,z 轴的正向,建立如图所示的空间直角坐标系,则D 1,0,0,C 0,2,0 ,F -1,1,0 ,P 0,0,3 ,DP =-1,0,3 .因为DE PE=12,即DE =13DP =-13,0,33 ,λ>0,所以,E 23,0,33,所以EC =-23,2,-33 ,EF =-53,1,-33.设n =x 1,y 1,z 1 为平面EFC 的一个法向量,则n ⋅EC =0n ⋅EF =0 ,即-23x 1+2y 1-33z 1=0-53x 1+y 1-33z 1=0,取n =3,-3,-83 .又平面PAD 的一个法向量m =0,1,0 ,设平面EFC 与平面PAD 夹角为α,cos α=n ⋅m n ⋅m =39+9+192=21070.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.【解析】(1)在A 1E 上取一点M ,使A 1M =3ME ,连接DM ,MG ,因为A 1G =3GB ,EB =2AE ,所以MG ∥EB ,MG =34EB =34×23AB =12AB ,因为平行四边形ABCD 中,AB =CD ,AB ∥CD ,F 为CD 的中点,所以DF =12CD =12AB ,所以DF =MG ,DF ∥MG ,所以四边形DMGF 为平行四边形,所以FG ∥DM ,因为FG ⊄平面A 1DE ,DM ⊂平面A 1DE ,所以FG ∥平面A 1DE ,(2)当平面A 1DE ⊥平面DEC 时,三棱锥C -A 1DE 的体积最大,△ADE 中,∠A =60°,AD =2,AE =1,则DE 2=AD 2+AE 2-2AD ⋅AE cos A =4+1-2×2×1×12=3,所以DE 2+AE 2=AD 2,所以∠AED =90°,所以A 1E ⊥DE ,因为平面A 1DE ⊥平面DEC ,平面A 1DE ∩平面DEC =DE ,所以A 1E ⊥平面DEC ,因为BE ⊂平面DEC ,所以A 1E ⊥BE ,所以A 1E ,BE ,DE 两两垂直,所以以E 为原点,EB ,ED ,EA 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则D (0,3,0),A 1(0,0,1),B (2,0,0),C (3,3,0),所以DC =(3,0,0),DA 1 =(0,-3,1),BC =(1,3,0),CA 1 =(-3,-3,1),设平面A 1CD 的法向量为n =(x ,y ,z ),则n ⋅DA 1 =-3y +z =0n ⋅CA 1 =-3x -3y +z =0,令y =1,则n =(0,1,3),设平面A 1BC 的法向量为m =(a ,b ,c ),则m ⋅BC =a +3b =0m ⋅CA 1 =-3a -3b +c =0,令b =1,则m =(-3,1,-23),所以cos m ,n =m ⋅n m n=1-62×4=-58,所以二面角B -A 1C -D 的正弦值为1--58 2=398例26.如图1,四边形ABCD 是边长为2的正方形,四边形ABEF 是等腰梯形,AB =BE =12EF ,现将正方形ABCD 沿AB 翻折,使CD 与C D 重合,得到如图2所示的几何体,其中D E =4.(1)证明:AF ⊥平面AD E ;(2)求二面角D -AE -C 的余弦值.【解析】(1)证明:易得AD =AF =2,EF =D E =4,所以AE =23,则AD 2+AE 2=D E 2=EF 2,∴AD ⊥AE ,AE ⊥AF .又AD ⊥AB ,且AB ∩AE =A ,AB ,AE ⊂平面ABEF ,∴AD ⊥平面ABEF .∵AF ⊂平面ABEF ,∴AF ⊥AD .∵AE ∩AD =A ,AE ⊂平面AD E ,AD ⊂平面AD E ,∴AF ⊥平面AD E .(2)由(1)知AD ⊥平面ABEF ,则以A 为坐标原点,AB ,AD 所在直线分别为y ,z 轴,平面ABEF 内过点A 且垂直于AB 的直线为x 轴,建立如图所示的空间直角坐标系,则A 0,0,0 ,E 3,3,0 ,F 3,-1,0 ,C 0,2,2 ,∴AF =3,-1,0 ,AE =3,3,0 ,AC =00,2,2 .设平面AEC 的一个法向量为m =x ,y ,z ,则m ⋅AE =0m ⋅AC =0 ,得3x +3y =0,2y +2z =0,令x =3,则m =3,-1,1 .由(1)知,平面AED 的一个法向量为AF =3,-1,0 .∴cos AF ,m =AF ⋅m AF m=255.易知二面角D -AE -C 为锐二面角,∴二面角D -AE -C 的余弦值为255.例27.如图,在梯形ABCD 中,AD ∥BC ,AB =BC =2,AD =4,现将△ABC 所在平面沿对角线AC 翻折,使点B 翻折至点E ,且成直二面角E -AC -D .(1)证明:平面EDC ⊥平面EAC ;(2)若直线DE 与平面EAC 所成角的余弦值为12,求二面角D -EA -C 的余弦值.【解析】(1)证明:取AD 中点M ,连接CM ,由题意可得AM =2,AM 平行且等于BC ,∴四边形ABCM 为平行四边形,∵AM =MD =CM =2,∴△ACD 为直角三角形,即AC ⊥CD ,∵直二面角E -AC -D ,CD ⊂平面ACD ,∴平面EAC ⊥平面ACD ,平面EAC ∩平面ACD =AC ,∴CD ⊥平面EAC ,CD ⊂平面ECD ,∴平面ECD ⊥平面EAC .(2)由(1)可得DC ⊥平面EAC ,∴∠DEC 为直线DE 与平面EAC 所成角,∴cos ∠DEC =12,∴∠DEC =60°.在Rt △ECD 中,∵CE =2,∴CD =23,ED =4,在Rt △ACD 中,AC =2,∴△ABC 、△AEC 为等边三角形,以AC 中点O 为坐标原点,以OC ,OM ,OE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,A (-1,0,0),C (1,0,0),E (0,0,3),D (1,23,0),平面EAC 为xOz 平面,则其法向量为v =(0,1,0),在平面AED 内,设其法向量为u =(x ,y ,z ),AD =(2,23,0),AE =(1,0,3),则AD ⋅u =0AE ⋅u =0 ,即2x +23y =0x +3z =0,令x =3,则y =-1,z =-1,∴u =(3,-1,-1),设二面角D -EA -C 的平面角为θ,∴cos ‹u ,v ›=u ⋅v |u ||v |=-55,由图可知二面角D -EA -C 为锐角,∴cos θ=55.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.【解析】(1)如图,取AC 中点G ,连接FG 和EG ,由已知得DE ∥BC ,且DE =12BC .因为F ,G 分别为AB ,AC 的中点,所以FG ∥BC ,且FG =12BC 所以DE ∥FG ,且DE =FG .所以四边形DEGF 是平行四边形.所以EG ∥DF .因为翻折的BC ⊥AC ,易知DE ⊥AC .所以翻折后DE ⊥EA ,DE ⊥EC .又因为EA ∩EC =E ,EA ,EC ⊂平面AEC ,所以DE ⊥平面AEC .因为DE ∥BC ,所以BC ⊥平面AEC .因为EG ⊂平面AEC ,所以EG ⊥BC .因为△ACE 是等边三角形,点G 是AC 中点,所以EG ⊥AC又因为AC ∩BC =C ,AC ,BC ⊂平面ABC .所以EG ⊥平面ABC .。
立体几何:1,三面角公式:立体几何中有一个常用的公式:。
即如图在面面垂直的背景下,从棱上一点出发在两个互相垂直的平面里各做一条射线,并与棱组成两个所谓立角和卧角,两射线又组成所谓斜角,则斜角的余弦等于立角和卧角之积。
我们也因此想到如果二面角不是直二面角是否会有相应的结论呢?实际上==。
有趣的是:当时变为为:;当时为:当时为:。
尤其要强调的是由于边角转化关系的内化,使得此公式在解决包括二面角在内的角的问题时显示出突出的简便性,并且具有使用方面的普遍性,为解决角的问题开创了崭新的领域,例:四棱锥P—ABCD中,底面为矩形,AB=3,AD=1,又,求二面角P—BC—D的大小。
2,投影公式求二面角的大小.其中S′、S分别表示投影图形和被投影图形的面积,而θ则是这两个图形所在平面的夹角.如图,二面角为锐二面角, △ABC在半平面内, △ABC在平面内的射影为△A1B1C1,那么二面角的大小.例:如图,矩形ABCD中,AB=6,BC=,沿对角线BD将折起,使点A移至点P,且P 在平面BCD内的射影为O,且O在DC上.(1)求证:PD⊥PC;(2)求二面角P-DB-C的平面角的余弦值;(3)求CD与平面PBD所成的角的正弦值.真题演练:1,(08,复旦)在如图所示的三棱柱中,点A,的中点以及的中点N所决定的平面把三棱柱切割成体积不相同的两部分,问小部分的体积和大部分的体积比为_________.2,(09,清华)四面体ABCD中,AB=CD,AC=BD,AD=BC.(1)求证:这个四面体的四个面都是锐角三角形;(2)设底面为BCD,另外三个面与面BCD所成的二面角为.求证:.3,(09,复旦)半径为R的球的内部装有4个有相同半径r的小球,则小球半径r可能的最大值是___________.思考:若棱长为的正四面体内部装有4个有相同半径r的小球,则小球半径r可能的最大值是___________.4,(10,五校)如图,正四棱锥P-ABCD中,B1为PB中点,D1为PD中点,求两个棱锥AB1CD1、P-ABCD体积之比.5,(09,南大)如图,四面体ABCD中平面π截四面体所得截面EFGH,且AB∥平面π,CD∥平面π,AB、CD到平面π的距离分别为d1、d2,且,求立体图形ABEFGH与四面体ABCD体积之比(用k表示).6,(01,复旦)全面积为定值的圆锥中,体积最大值为___________.7,(06,复旦)若四面体的一条棱长为x,其余棱长均为1,体积是,则在其定义域上为().A.增函数但无最大值B.增函数且有最大值C.不是增函数且无最大值D.不是增函数但有最大值8,(07,复旦)已知四棱锥P-ABCD,底面ABCD是菱形,,PD⊥平面ABCD,线段PD=AD,点E、F分别是AB、PD中点,则二面角P-AB-F的平面角的余弦值为___________.9,(08,复旦)棱长为1的正四面体ABCD中,点M和N分别是边AB和CD的中点.则线段MN的长度为_________.10.(08,复旦)若空间三条直线两两成异面直线,则与这三条直线都相交的直线有___条.11,(10,复旦)设一个多面体从前面、后面、左面、右面、上面看到的图形分别为:则该多面体的体积为()A. 2/3B. 3/4C. 4/5D. 5/612.(10,复旦)在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是()A. 32个;B. 30个;C.28个;D.26个13,(10,复旦)设ABC-A’B’C’是正三棱柱,底面边长和高都为1,P是侧面ABB’A’的中心,则P到侧面ACC’A’的对角线的距离是()A. B. C. D.14,(09,复旦)三棱柱ABC-A'B'C'的底是边长为1的正三角形,高AA'=1,在AB上取一点P,设三角形PA'C'与底的二面角为,三角形PB'C'与底的二面角为,则的最小值为_______.15,(07,复旦)棱长为的正方体内有两球互相外切,且两球各与正方体的三个面相切,则两球半径之和为_________.16,(06,武大)已知一个简单多面体的每一个面均为五边形且它共有30条棱,则多面体的面数F和顶点数V分别等于________________.17,(00,复旦)正六棱锥的高等于h,相邻侧面的二面角等于,求该棱锥的体积.18,(01,复旦)已知棱柱ABC-A1B2C3的底面是等腰三角形,AB=AC,上底的顶点A1在下底面的射影是△ABC的外心,设,棱柱的侧面积为.证明:侧面A1ABB1和A1ACC1都是菱形,B1BCC1是矩形;(1求棱柱的侧面所成的三个二面角的大小;(2求棱柱的体积.19,(04,复旦)已知E为棱长为a的正方体ABCD-A1B1C1D1的棱AB的中点,求点B到面A1EC的距离.20,(04,同济)设四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥BD.(1求证:直线PC⊥BD;(2过直线BD且垂直于PC的平面交PC于点E,如果三棱锥E-BCD的体积取到最大值,求此时四棱锥P-ABCD的高.21. (05,复旦)在棱长为1的正方体ABCD-A1B1C1D1中,E、F、G分别为AD、AA1、A1B1中点,求:(1B到面EFG的距离;的平面角.(2二面角G-EF-D122,(10,五校)如果平面,直线,点,满足:,且与所成的角为,与所成的角为,那么与所成的角大小为()(A)(B)(C)(D)23.(08,浙大)有一个圆锥正放,它的高为h,圆锥内水面高为,现将圆锥倒置,求倒置的水面高度.24.(10,同济)四面体ABCD中,,AB与CD的距离为d,夹角为,求四面体ABCD的体积.25.(09,南大)有一个圆柱形杯子,底面周长为12cm,高为8cm,A点在内壁距离杯口2cm处,A对面外壁距杯底2cm处有一只小虫.问:小虫至少走多长的路才能到A处?26.(10,五校)(Ⅰ)正四棱锥的体积,求正四棱锥的表面积的最小值;(Ⅱ)一般地,设正棱锥的体积为定值,试给出不依赖于的一个充分必要条件,使得正棱锥的表面积取得最小值.二、数论1,高斯函数:设是实数,表示不超过的最大整数,称为的整数部分,则称为的小数部分,记作。