2019年浙江省绍兴市中考数学试卷及答案解析
- 格式:docx
- 大小:1.04 MB
- 文档页数:10
浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是A.5B.-5C.51D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 A.π B.π2 C.π2 D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为A.524B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
{来源}2019年绍兴中考数学试卷{适用范围:3.九年级}{标题}2019年浙江省绍兴市中考数学试卷考试时间:120分钟满分:150分{题型:1-选择题}一、选择题:本大题共10小题,每小题4分,合计40分.{题目}1.(2019•绍兴T1)-5的绝对值是A.5B.-5C.15D.-15{答案}A{解析}本题考查了绝对值的意义,根据负数的绝对值等于它的相反数,得|-5|=5.因此本题选A.{分值}4{章节:[1-1-2-4]绝对值}{考点:绝对值的意义}{类别:常考题}{难度:1-最简单}{题目}2.(2019•绍兴T2)某市决定为全市中小学教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000元用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×1010{答案} B{解析}本题考查了科学记数法的表示方法,126000000=1.26×100000000=1.26×108,因此本题选B.{分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}3.(2019•绍兴T3)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.{答案}A{解析}本题考查了简单组合体的三视图,从正面看得到的视图是主视图.从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,因此本题选A.{分值}4{章节:[1-29-2]三视图}{考点:简单组合体的三视图} {类别:常考题} {难度:1-最简单}{题目}4.(2019•绍兴T4)为了解某地区九年级男生的身体情况,随机抽取了该地区100名九) A .0.85 B .0.57 C .0.42 D .0.15 {答案}D{解析}本题考查了利用频率估计概率,先计算出样本中身高不低于180cm 的频率,然后根据利用频率估计概率求解.样本中身高不低于180cm 的频率=15100=0.15,所以估计他的身高不低于180cm 的概率是0.15.因此本题选D . {分值}4{章节:[1-25-3]用频率估计概率} {考点:利用频率估计概率} {类别:常考题} {难度:2-简单}{题目}5.(2019•绍兴T5)如图,墙上钉着三根木条a ,b ,c ,量得∠1=70°,∠2=100°,那么木条a ,b 所在直线所夹的锐角是( )A .5°B .10°C .30°D .70° {答案} B{解析}本题考查了三角形内角和定理和对顶角的性质,设a ,b 所在直线所夹的锐角是∠α,由对顶角相等,得到∠3=∠2=100°,再根据∠α+∠1+∠3=180°,求得∠α=180°-70°-100°=10°,因此本题选B .{分值}4{章节:[1-11-2]与三角形有关的角} {考点:三角形内角和定理} {类别:常考题} {难度:2-简单}{题目}6.(2019•绍兴T6)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( )α3A . -1B . 0C . 3D . 4{答案}C{解析}本题考查了用待定系数法求一次函数解析式;设经过(1,4),(2,7)两点的直线解析式为y =kx +b ,∴⎩⎨⎧4=k +b ,7=2k +b .∴⎩⎨⎧k =3,b =1,∴y =3x +1,将点(a ,10)代入解析式,则a =3;因此本题选C . {分值}4{章节:[1-19-2-2]一次函数}{考点:待定系数法求一次函数的解析式} {类别:常考题} {难度:2-简单}{题目}7.(2019•绍兴T7)在平面直角坐标系中,抛物线y =(x +5)(x -3)经过变换后得到抛物线y =(x +3)(x -5),则这个变换可以是( ) A .向左平移2个单位 B .向右平移2个单位 C .向左平移8个单位 D .向右平移8个单位{答案}4{解析}本题考查了二次函数图象与几何变换,y =(x +5)(x -3)=(x +1)2-16,顶点坐标是(-1,-16);y =(x +3)(x -5)=(x -1)2-16,顶点坐标是(1,-16).所以将抛物线y =(x +5)(x -3)向右平移2个单位长度得到抛物线y =(x +3)(x -5),因此本题选B . {分值}4{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:二次函数图象的平移} {类别:思想方法}{类别:常考题} {难度:2-简单}{题目}8.(2019•绍兴T8)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°,若BC =22,则⌒BC 的长为( )A .πB . 2πC .2πD . 22π{答案}A{解析}本题考查了弧长的计算和圆周角定理,如图,连接OB 、OC ,由三角形内角和定理,求得∠A =180°-∠B -∠C =180°-65°-70°=45°,∴∠BOC =2∠BAC =2×45°=90°,∴OB =BC2=222=2,∴⌒BC 的长90×π×2180=π,因此本题选A .{分值}4{章节:[1-24-4]弧长和扇形面积} {考点:圆周角定理} {考点:弧长的计算}{章节:[1-24-4]弧长和扇形面积} {类别:常考题} {难度:3-中等难度}{题目}9.(2019•绍兴T9)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积( ) A .先变大后变小 B .先变小后变大 C .一直变大 D .保持不变{答案} D{解析}本题考查了相似三角形的性质,由题意,得∠BCD =∠ECF =90°,∴∠BCE =∠DCF ,又∵∠CBE =∠CFD =90°,∴△CBE ∽△CFD ,∴CE CD =CBCF ,∴CE ⋅CF =CB ⋅CD ,即矩形ECFG 的面积=正方形ABCD 的面积,因此本题选D . {分值}4{章节:[1-27-1-1]相似三角形的判定} {考点:相似三角形的判定(两角相等)} {类别:常考题} {难度:3-中等难度}{题目}10.(2019•绍兴T10)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( ) A .245B .325C .123417D .203417{答案} A{解析}本题考查了勾股定理的应用,解决此题的突破点在于根据题意得到关系式:长方体中水的容积=倾斜后底面积为ADCB 的四棱柱的体积,列方程,得到DE 的长,如图,设DE =x ,则AD =8-x ,12(8-x +8)×3×3=3×3×6,解得x =4.∴DE =4.在Rt △DEC 中,CD =DE 2+EC 2=42+32=5,过点C 作CH ⊥BF 于点H ,则由△CBH ∽△CDE ,得到CH CE =CB CD ,即CH 3=85,∴CH =245,因此本题选A . {分值}4{章节:[1-27-1-3]相似三角形应用举例} {考点:勾股定理的应用} {考点:相似三角形的应用} {考点:几何选择压轴}{类别:思想方法}{类别:高度原创} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题5分,合计30分.{题目}11.(2019•绍兴T11)因式分解:x 2-1= .{答案}(x +1)(x -1){解析}本题考查了用平方差公式分解因式,根据平方差公式,有x 2-1=x 2-12=(x +1)(x -1). {分值}5{章节:[1-14-3]因式分解} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}12.(2019•绍兴T12)不等式3x -2≥4的解为 . {答案} x ≥2.{解析}本题考查了解一元一次不等式,先移项得,3x ≥4+2,再合并同类项得,3x ≥6,把x 的系数化为1得,x ≥2. {分值}5{章节:[1-9-2]一元一次不等式} {考点:解一元一次不等式}ED BAHF{类别:常考题} {难度:1-最简单}{题目}13.(2019•绍兴T13)我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 .{答案}4{解析}本题考查了幻方的特点,数的对称性是解题的关键.根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15-2-5=8,∴m =15-8-3=4. {分值}5{章节:[1-1-3-1]有理数的加法} {考点:有理数加法的实际应用} {类别:数学文化} {难度:2-简单}{题目}14.(2019•绍兴T14)如图,在直线AP 上方有一个正方形ABCD ,∠PAD =30°,以点B为圆心,AB 为半径作弧,与AP 交于点A ,M ,分别以点A ,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 .{答案}45°或15°.{解析}本题考查了以正方形为背景的角度计算,正确画出图形是解题的关键.如图,∵四边形ABCD 是正方形,∴∠BAD =90°,∵∠PAD =30°,∴∠BAM =60°,又∵BA =BM ,∴△ABM 是等边三角形.当点E 在直线PA 的上方时,点E 与点B 重合,显然∠ADE =∠ADB =45°;当点E 在直线PA 的下方时,∠BDE =180°-∠BME =180°-2×60°=60°,∴∠ADE =∠BDE -∠ADB =60°-45°=15°,因此答案为45°或15°.{分值}5{章节:[1-18-2-3] 正方形} {考点:等边三角形的判定} {考点:正方形的性质} {考点:几何综合} {类别:发现探究} {类别:易错题} {难度:3-中等难度}{题目}15.(2019•绍兴T15)如图,矩形ABCD 的顶点A ,C 都在曲线y =kx (常数k >0,x >0)上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 .{答案}y =35x .{解析}本题考查了反比例函数中几何图形问题,设C (5,k 5),A (k 3,3),则A (k 3,k5);设直线BD 的函数表达式为y =ax +b ,则⎩⎪⎨⎪⎧k 3a +b =k 5,5a +b =3,解得⎩⎪⎨⎪⎧a =35,b =0, 因此直线BD 的函数表达式是y =35x .{分值}5{章节:[1-26-1]反比例函数的图像和性质} {考点:矩形的性质}{考点:待定系数法求一次函数的解析式} {考点:双曲线与几何图形的综合} {类别:常考题} {难度:3-中等难度}{题目}16.(2019•绍兴T16)把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E ,F 分别是AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 .{答案}10或6+22或8+22.{解析}本题考查了图形的剪拼,抓住图形的特征是解题的关键,如下图,共有3种周长不同的拼法,拼成的四边形的周长分别为10或6+22或8+22.E{分值}5{章节:[1-18-2-3] 正方形} {考点:勾股定理的应用} {考点:图形的剪拼} {考点:几何填空压轴} {类别:发现探究} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共8小题,合计80分.{题目}17.(2019•绍兴T17(1))(1)计算:4sin 60°+(π-2)0-(-12)-2-12.{解析}本题考查了实数的运算,根据实数运算法则直接解答.{答案}解:原式=4×32+1-4-23=-3.{分值}4{章节:[1-28-3]锐角三角函数} {难度:2-简单} {类别:常考题} {考点:正弦}{考点:简单的实数运算}{题目}17.(2019•绍兴T17(2))(2)x 为何值时,两个代数式x 2+1,4x +1的值相等? {解析}本题考查了一元二次方程的解法,由题意得到x 2+1=4x +1,利用因式分解法解方程即可.{答案}解:由题意,得x 2+1=4x +1,x 2-4x =0,x (x -4)=0,x 1=0,x 2=4. {分值}4{章节:[1-21-2-3] 因式分解法} {难度:2-简单} {类别:常考题}{考点:解一元二次方程-因式分解法}{题目}18.(2019•绍兴T18)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.{解析}本题考查了一次函数的应用,解题的关键:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x =180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量. {答案}解: (1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15060-35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入, 得⎩⎨⎧150k +b =35,200k +b =10,∴⎩⎨⎧k =-0.5,b =100,∴y =-0.5x +110. 当x =180时,y =-0.5×180+110=20.答:当150≤x ≤200时,函数表达式为y =-0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时. {分值}8{章节:[1-19-4]课题学习 选择方案} {难度:2-简单} {类别:常考题}{考点:待定系数法求一次函数的解析式} {考点:分段函数的应用}{题目}19.(2019•绍兴T19)小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法. {解析}本题考查了条形统计图、折线统计图、算术平均数,抓住图中信息是解题的关键.(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信息和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.{答案}解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪这5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)一类:结合已知的两个统计图的信息及体育运动实际,如:集训时间不是越多越好,集训时间过长,可能会造成劳累,导致成绩下滑.二类:结合已知的两个统计图的信息,如:集训时间为10天或14天时,成绩最好.三类:根据已知的两个统计图中的其中一个统计图的信息,如:集训时间每期都增加.{分值}8{章节:[1-20-1-1]平均数}{难度:2-简单}{类别:常考题}{考点:条形统计图}{考点:折线统计图}{考点:算术平均数}{题目}20.(2019•绍兴T20)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:2≈1.41,3≈1.73){解析}本题考查了解直角三角形的应用,解题的关键是添加常用辅助线,构造直角三角形解决问题.(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H,则四边形PCHG是矩形,求出DF,再求出DF-DE即可解决问题.{答案}解:(1)如图2中,作BO⊥DE,垂足为O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°-90°=60°,∴OD=BD•sin60°=40•sin60°=203(cm),∴DF=OD+OE=OD+AB=203+5≈39.6(cm).(2)下降了.如图3,过点D作DF⊥l于F,过点C作CP⊥DF于P,过点B作BG⊥DF于G,过点C作CH⊥BG 于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,又∵∠BCD=165°,∴∠DCP=45°,∴CH=BC sin60°=103(cm),DP=CD sin45°=102(cm),∴DF=DP+PG+GF=DP+CH+AB=102+10+5(cm),∴下降高度:DE-DF=203+5-102-103-5=103-102≈3.2(cm).{分值}8{章节:[1-28-2-1]特殊角}{难度:3-中等难度}{类别:高度原创}{类别:常考题}{考点:解直角三角形的应用—测高测距离}{题目}21.(2019•绍兴T21)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.{解析}本题考查了切线的性质及应用,添加过切点的半径是常用辅助线.(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30°的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30°的直角三角形三边的关系求AC的长;本题答案不唯一.{答案}解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D =30°,∴OD =2OC =2,∴AD =AO +OD =1+2=3;(2)本题答案不唯一,如:添加∠DCB =30°,求AC 的长.解:∵AB 为直径,∴∠ACB =90°,∵∠ACO +∠OCB =90°,∠OCB +∠DCB =90°,∴∠ACO =∠DCB ,∵∠ACO =∠A ,∴∠A =∠DCB =30°,在Rt △ACB 中,BC =12AB =1,∴AC =3BC =3.{分值}10{章节:[1-24-2-2]直线和圆的位置关系}{难度:3-中等难度}{类别:常考题}{考点:圆周角定理}{考点:切线的性质}{题目}22.(2019•绍兴T22)有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.{解析}本题考查了矩形的性质、等腰直角三角形的判定与性质、矩形面积公式以及二次函数的应用等知识;(1)①若所截矩形材料的一条边是BC ,过点C 作CF ⊥AE 于F ,得出S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE ,过点E 作EF ∥AB 交CD 于F ,FG ⊥AB 于G ,过点C 作CH ⊥FG 于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,证出△CHF 为等腰三角形,得出AE =FG =6,HG =BC =5,BG =CH =FH ,求出BG =CH =FH =FG -HG =1,AG =AB -BG =5,得出S 2=AE •AG =6×5=30;(2)在CD 上取点F ,过点F 作FM ⊥AB 于M ,FN ⊥AE 于N ,过点C 作CG ⊥FM 于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,证出△CGF 为等腰三角形,得出MG =BC =5,BM =CG ,FG =DG ,设AM =x ,则BM =6-x ,FM =GM +FG =GM +CG =BC +BM =11-x ,得出S =AM ×FM =x (1-x )-x 2+11x ,由二次函数的性质即可得出结果.{答案}解:(1)①若所截矩形材料的一条边是BC ,如图1所示:过点C 作CF ⊥AE 于F ,S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于点F,FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG-HG=6-5=1,∴AG=AB-BG=6-1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6-x,∴FM=GM+FG=GM+CG=BC+BM=11-x,∴S=AM×FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.{分值}12{章节:[1-22-3]实际问题与二次函数}{难度:3-中等难度}{类别:高度原创}{考点:矩形的性质}{考点:与平行四边形有关的面积问题}{考点:二次函数与平行四边形综合}{题目}23.(2019•绍兴T23)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.{解析}本题是四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识.(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2-DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.{答案}解:(1)①AM=AD+DM=40,或AM=AD-DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2-DM2=302-102=800,∴AM=202或(AM=-202舍去).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=1010或(AM=-1010舍去).综上所述,满足条件的AM的值为202或1010.(2)如图2中,连接CD1.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=302,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1=CD22+D1D22=306,∵∠BAC=∠D2AD1=90°,∴∠BAC-∠CAD2=∠D2AD1-∠CAD2,∴∠BAD2=∠CAD1,又∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=306.{分值}12{章节:[1-17-1]勾股定理}{难度:4-较高难度}{类别:发现探究}{考点:勾股定理}{考点:全等三角形的判定SAS}{考点:几何综合}{题目}24.(2019•绍兴T24)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E ,F 分别在边BC ,AD 上,MN ,EF 交于点P ,记k =MN ∶EF .(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值.(2)若a :b 的值为12,求k 的最大值和最小值. (3)若k 的值为3,当点N 是矩形的顶点,∠MPE =60°,MP =EF =3PE 时,求a ∶b 的值.{解析}本题考查了正方形的性质,全等三角形的判定和性质,矩形的性质,相似三角形的判定和性质等知识,是一道几何综合题.(1)作EH ⊥BC 于H ,MQ ⊥CD 于Q ,设EF 交MN 于点O .证明△FHE ≌△MQN (ASA ),即可解决问题.(2)由题意:2a ≤MN ≤5a ,a ≤EF ≤5a ,当MN 的长取最大时,EF 取最短,此时k 的值最大最大值=5,当MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为255. (3)连接FN ,ME .由k =3,MP =EF =3PE ,推出MN PM =EF PE =3,推出PN PM =PF PE=2,由△PNF ∽△PME ,推出NF ME =PN PM=2,ME ∥NF ,设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,接下来分两种情形①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.②如图3中,当点N 与C 重合,分别求解即可.{答案}解:(1)如图1中,作EH ⊥BC 于H ,MQ ⊥CD 于Q ,设EF 交MN 于点O .∵四边形ABCD 是正方形,∴FH =AB ,MQ =BC ,∵AB =CB ,∴EH =MQ ,∵EF ⊥MN ,∴∠EON =90°,∵∠ECN =90°,∴∠MNQ +∠CEO =180°,∠FEH +∠CEO =180°,∴∠FEH =∠MNQ ,∵∠EHF =∠MQN =90°,∴△FHE ≌△MQN (ASA ),∴MN =EF ,∴k =MN ∶EF =1.(2)∵a ∶b =1∶2,∴b =2a ,由题意:2a ≤MN ≤5a ,a ≤EF ≤5a ,∴当MN 的长取最大时,EF 取最短,此时k 的值最大最大值=5,当MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为255. (3)连接FN ,ME . ∵k =3,MP =EF =3PE ,∴MN PM =EF PE =3,∴PN PM =PF PE=2, ∵∠FPN =∠EPM ,∴△PNF ∽△PME ,∴NF ME =PN PM=2,ME ∥NF , 设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.作FH ⊥BD 于H .∵∠MPE =∠FPH =60°,∴PH =2m ,FH =23m ,DH =10m ,∴a b =AB AD =FH HD =35. ②如图3中,当点N 与C 重合,作EH ⊥MN 于H .则PH =m ,HE =3m ,∴HC =PH +PC =13m ,∴tan ∠HCE =MB BC =HE HC =313, ∵ME ∥FC ,∴∠MEB =∠FCB =∠CFD ,∵∠B =∠D ,∴△MEB ∽△CFD ,∴CD MB =FC ME =2,∴a b =CD BD =2MB BC =2313, 综上所述,a ∶b 的值为35或2313. {分值}14{章节:[1-28-1-2]解直角三角形}{难度:5-高难度}{类别:发现探究}{考点:矩形的性质}{考点:相似三角形的性质}{考点:其他二次函数综合题}{考点:几何综合}。
浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是A.5B.-5C.51D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 A.π B.π2 C.π2 D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为A.524B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
2019年浙江省绍兴市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在等腰梯形ABCD中,5AB DC AD BC==∥,,713DC AB==,,点P从点A出发,以3个单位/s的速度沿AD DC→向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.在运动期间,当四边形PQBC为平行四边形时,运动时间为()A.3s B.4s C.5s D.6s2.一个菱形绕它的中心旋转,使它和原来的菱形重合,则旋转的角度至少是()A.90°B.180°C.270°D.360°3.如图所示,六边形ABCDEF中,CD∥AF,AB⊥BC,DE⊥EF,∠D=∠A,∠C=150°.求∠F的度数.()4.一元二次方程2230x x--=的两个根分别为()A.11x=,23x=-B.11x=-,23x=C.11x=,23x=D.11x=-,23x=-5.计算22(22)(22)--+的结果是()A.0 B.82-C.12 D.826.如果(3x2y-2xy2)÷m=-3x+2y,则单项式m为()A.xy B.-xy C.x D.-y7.在下图中,与图形变换相同的是()8.如图所示,已知CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是()A.72°B.54°C. 46°D.20°二、填空题9.在Rt △ABC 中,∠C=90°,已知a 边及∠A ,则斜边c 为 . 10.如图,△ABC 为⊙O 的内接三角形,O 为圆心. OD ⊥AB ,垂足为D ,OE ⊥AC ,垂足为E ,若DE =3,则BC = .11.李明进行跳远练习,将跳远结果统计如下:距离(m) 2 34 5 6 所跳次数(次) 34 5 2 O 则频率最大的跳远距离是 .12.判断题(对的打“√”,错的打“×”)(1)一元二次方程的一次项系数、常数项可以是任意实数,但二次项系数不能是零. ( )(2) 2234x x ++是一元二次方程. ( )(3)方程(1)(3)1x x x --=-的解只有3x =. ( )13.一个口袋中装有 4个白球,2 个红球,6 个黄球,摇匀后随机从中摸出一个球是白球的概率是 .14.如图所示,请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.15.判断下列说法是否正确,正确的打“√”,错误的打“×”.(1)面积相等的两个三角形全等. ( )(2)周长相等的两个三角形全等.’( )(3)三边对应相等的两个三角形全等. ( )(4)全等三角形的面积相等,周长相等. ( )16.已知a 、b 、c 是同一平面内的三条直线.(1)若a ⊥_b ,c ⊥_b ,则a c ;(2)若a ∥b ,a ⊥c ,则b c .17. 已知23100A a a a a =++++,则当a=1时,2A = ,当1a =-时,A = .三、解答题18.如图,在△AABC 中,⊙0截△ABC 的三条边所得的弦长相等,求证:0是△ABC 的内心.19.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB △的面积.20.在正方形网格上有△ABC ,△DEF ,说明这两个三角形相似,并求出它们的相似比.21.如图,在△ABC 中,MN ∥AC ,M 、N 分别在边 AB 、BC 上,AB=6,BC=8,AC=7,且AM = BN ,求 MN 的长. O y x BA FE D C B A22.如图,由 5个大小完全相同的小正方形摆成如图①③的形状,现移动其中的一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形(用阴影表示).(1)使得图形成为轴对称图形,而不是中心对称图形;(2)使得图形成为中心对称图形,而不是轴对称图形;(3)使得图形既是轴对称图形,又是中心对称图形.23.给出下面三种边长相等的正多边形:要求选取其中的至少两种正多边形,使这几种正多边形能围绕一个顶点镶嵌成不留空隙的平面图形,请画出两种不同镶嵌方法的示意图.24.某班 34 个同学去春游,共收款 80 元,由小军去买点心,要求每人1 包.已知有 3元一包和 2 元一包两种点心,试问 3 元一包的点心最多能买几包?25.在一个不透明的口袋中装有除颜色外一模一样的5个红球,3个蓝球和2•个黑球,它们已在口袋中被搅匀了,请判断以下事件是不确定事件、不可能事件、还是必然事件?(1)从口袋中任意取出一个球,是白球;(2)从口袋中一次任取两个球,全是蓝球;(3)从口袋中一次任取5个球,只有蓝球和黑球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、黑三种颜色的球都齐了.26.求各边长互不相等且都是整数、周长为24的三角形共有多少个?27.化简求值:(2a+b )2-(a+1-b )(a+1+ b )+()21a +,其中a =21,b =-2.28.检验括号中的数是否为方程的解?(1)3x-4=8(x=3,x=4) (2)1372y +=(y=8,y=4)29.(1)被除数是334-,除数比被除数大112,商是多少?(2)被除数是113-的倒数,除数是23-,商是多少?30.计算: (1)24(2)(3)79-+- (2)5(51)(27)7++- (3) (-13)+(+5)+(-2)(4)7| 3.125|(5)8--+-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.150°4.B5.B6.B7.B8.C二、填空题9.Ac sin 10. 611.4 m12.(1)√(2)×(3)×13.1314.15.(1)× (2)× (3)√ (4)√16.(1)11 (2)⊥17.10000,0三、解答题18.作OD⊥AB于D,OF⊥BC于E,OF⊥AC于F.∵⊙0截△ABC的三条边所得的弦长相等,∴OD=0E=OF∴点0在△ABC和△ACB的角平分线上,即0是AABC的内心.19.(1)2yx=-,1y x=--;(2)23.20.相似,相似比为1:2.21.∵MN∥AC,∴△BMN∽△BAC,∴BM BN MNAB BC AC==,即6687AM BN MN-==,∵AM=BN,∴247AM BN==,∴MN的长为 3.22.略23.略24.12包25.(1)不可能事件;(2)不确定事件;(3)不确定事件;(4)不确定事件 26.⎪⎩⎪⎨⎧===,7,8,9c b a ⎪⎩⎪⎨⎧===,6,8,10c b a ⎪⎩⎪⎨⎧===,6,7,11c b a ⎪⎩⎪⎨⎧===,5,9,10c b a ⎪⎩⎪⎨⎧===,5,8,11c b a ⎪⎩⎪⎨⎧===,4,9,11c b a ⎪⎩⎪⎨⎧===.3,10,11c b a 由此知符合条件的三角形一共有7个.27.542422=++ab b a .28.(1)x=4 是方程的解,x=3不是 (2)y=8是方程的解,y=4不是29. (1)53 (2)9830. (1)46563- (2)2237 (3)-10 (4)-9。
2019年绍兴中考数学真题(解析版)学校: ________ 班级: ___________________ 姓名: _____________________ 学号: ____________________一、单选题(共10小题)1.- 5的绝对值是()A . 5B .- 5 C. 1 D.- —5 52•某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()7 8 9 10A . 12.6× 10B . 1.26× 10 C. 1.26× 10 D. 0.126× 103. 如图的几何体由六个相同的小正方体搭成,它的主视图是()4. 为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高X (Cm)统计如下:组别(Cm)X V 160160 ≤ X V 170170≤ X V 180x≥ 180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()主视方向A . 0.85B . 0.57C . 0.42D . 0.15A .先变大后变小B .先变小后变大5. 如图,墙上钉着三根木条a, b, C,量得∠ 1 = 70°,∠ 2= 100°,那么木条a, b所在直线所夹的锐角A. 5 ° B.10°C. 30°D. 70°6.若三点(1 , 4),(2, 7), (a,10)在同一直线上,则a的值等于()A . - 1 B.0C. 3D. 4可以是()8.如图,△ ABC 内接于Θ O,∠ B = 65°,∠ C= 70° .若BC= 2 .:, 「的长为( )9.正方形ABCD的边AB上有一动点 E ,以EC为边作矩形ECFG ,且边FG过点D .在点E从点A移动到点B的过程中,矩形ECFG的面积()7.在平面直角坐标系中,抛物线y=(x+5)(X-3)经变换后得到抛物线y =( x+3) (X- 5),则这个变换A .向左平移2个单位B .向右平移2个单位C.向左平移8个单位D.向右平移8个单位是(D •保持不变10•如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为 6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图 2是此时的示意图,则图 2中水面高度为()图1團二A .15B ■2O√34 D.、填空题(共6小题)11. __________________________ 因式分解:X 2 - 1 = —12. __________________________ 不等式3x - 2≥4的解为13. 我国的《洛书》中记载着世界上最古老的一个幻方:将 三列、两对角线上的三个数之和都相等•如图的幻方中,字母E □0 □ M π □ L □14. 如图,在直线 AP 上方有一个正方形 ABCD , ∠ PAD = 30° ,以点B 为圆心,AB 长为半径作弧,与 AP 交于点A , M ,分别以点A , M 为圆心,AM 长为半径作弧,两弧交于点 E ,连结ED ,则∠ ADE 的度数C .一直变大 1〜9这九个数字填入3 × 3的方格内,使三行、m 所表示的数是A .先变大后变小B .先变小后变大三、解答题(共8小题)17. (1)计算:4sin60° + ( ∏- 2) °-( - 1)「2-甘 1】.(2) X 为何值时,两个代数式 x 2+1 , 4x+1的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程 X (千米)的函数图象. (1)根据图象,直接写出蓄电池剩余电量为 35千瓦时时汽车已行驶的路程•当0≤ x ≤ 150时,求1千瓦时的电量汽车能行驶的路程. (2)当150≤ x ≤ 200时,求y 关于X 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余15. 如图,矩形 ABCD 的顶点A , C 都在曲线y = ^ (常数是> 0, x >0)上,若顶点D 的坐标为(5, 3),16. 把边长为2的正方形纸片 ABCD 分割成如图的四块,其中点 AD 的中点•用这四块纸片拼成与此正方形不全等的四边形 则四边形MNPQ 的周长是 _______________________________O 为正方形的中心,点 E , F 分别为AB , MNPQ (要求这四块纸片不重叠无缝隙),电量.19•小明、小聪参加了 IOOm 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘 制成如下两个统计图.根据图中信息,解答下列问题:(1) 这5期的集训共有多少天?小聪 5次测试的平均成绩是多少?(2) 根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20. 如图1为放置在水平桌面I 上的台灯,底座的高 AB 为5cm ,长度均为20cm 的连杆BC , CD 与AB 始终 在同一平面上.(1) 转动连杆 BC , CD ,使∠ BCD 成平角,∠ ABC = 150°,如图2,求连杆端点 D 离桌面I 的高度 DE . (2)将(1)中的连杆CD 再绕点C 逆时针旋转,使∠BCD = 165°,如图3,问此时连杆端点 D 离桌 面I 的高度是增加还是减少?增加或减少了多少?(精确到 0.1cm ,参考数据:√≈ 1.41 ,≈ 1.73)1与期每期的臺训时间统计图"期每期小明'小聪测试成续统计图11.60 1L50IlJO - 圏1 < ------------------ >U 逢Y 賃二嚴星三盖構目期醴三第 朝次g221. 在屏幕上有如下内容:如图,△ ABC内接于O0,直径AB的长为2,过点C的切线交AB的延长线于点 D .张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠ D= 30°,求AD的长•请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD = 1,就可以求出AD的长小聪:你这样太简单了,我加的是∠ A = 30°,连结OC ,就可以证明△ ACB与厶DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母) ,并解答.22•有一块形状如图的五边形余料ABCDE , AB= AE= 6, BC = 5, ∠ A =∠ B= 90°,∠ C= 135°,∠ E> 90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.23•如图1是实验室中的一种摆动装置, BC 在地面上,支架 ABC 是底边为BC 的等腰直角三角形,摆动臂 AD 可绕点A 旋转,摆动臂 DM 可绕点D 旋转,AD = 30, DM = 10. (1) 在旋转过程中,① 当A , D , M 三点在同一直线上时,求 AM 的长. ② 当A , D , M 三点为同一直角三角形的顶点时,求AM 的长.(2) 若摆动臂AD 顺时针旋转90°,点D 的位置由厶ABC 外的点D I 转到其内的点D ?处,连结D 1D 2,SI 團224.如图,矩形 ABCD 中,AB = a , BC = b ,点M , N 分别在边 AB , CD 上,点E , F 分别在边 BC , AD 上, MN , EF 交于点 P ,记 k = MN : EF .(1) 若a : b 的值为1,当MN 丄EF 时,求k 的值. (2) 若a : b 的值为丄,求k 的最大值和最小值.2(3) 若k 的值为3,当点N 是矩形的顶点,∠ MPE = 60°, MP = EF = 3PE 时,求a : b 的值.S C2019年绍兴中考数学真题(解析版)参考答案、单选题(共10小题)1.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得51= 5•故选A.【知识点】绝对值2. 【分析】科学记数法的表示形式为a × 10n的形式,其中1 ≤∣a∣v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值V 1时,n是负数.【解答】解:数字126000000科学记数法可表示为 1.26 × 108元.故选:B.【知识点】科学记数法一表示较大的数3. 【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A.【知识点】简单组合体的三视图4. 【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.15【解答】解:样本中身高不低于180cm的频率=—〒=0.15,所以估计他的身高不低于180cm的概率是0.15.故选:D.【知识点】利用频率估计概率、频数(率)分布表5. 【分析】根据对顶角相等求出∠ 3,根据三角形内角和定理计算,得到答案.【解答】解:∠ 3 =∠ 2= 100°,•••木条a, b所在直线所夹的锐角=180° - 100° - 70°= 10° 故选:B.【知识点】对顶角、邻补角、三角形内角和定理6. 【分析】 利用(1 , 4), (2, 7)两点求出所在的直线解析式,再将点( a , 10)代入解析式即可;【解答】 解:设经过(1,4),(2,7)两点的直线解析式为 y = kx+b ,.4=k+b J=2k+b • *3••片 ,L b=I• y = 3x+1,将点(a , 10)代入解析式,则 a = 3; 故选:C .【知识点】一次函数图象上点的坐标特征7. 【分析】 根据变换前后的两抛物线的顶点坐标找变换规律.【解答】 解:y =( x+5) (X - 3) = ( x+1) 2- 16,顶点坐标是(-1,- 16).y =( x+3) (X - 5) = ( X - 1) 2- 16,顶点坐标是(1,- 16).所以将抛物线y =( x+5) (X - 3)向右平移2个单位长度得到抛物线 y =( x+3) (X - 5), 故选:B .【知识点】二次函数图象与几何变换8. 【分析】 连接OB , 0C .首先证明厶OBC 是等腰直角三角形,求出OB 即可解决问题.【解答】 解:连接OB , OC .τ∠ A = 180°-∠ ABC -∠ ACB = 180°- 65°- 70°= 45 ∙∠ BOC = 90 ° ,∙∙∙ BC = 2 ':, • OB = OC = 2, •:的长为"「’Y = π,180故选:A .【知识点】弧长的计算、三角形的外接圆与外心、圆周角定理9.【分析】 连接DE , △ CDE 的面积是矩形 CFGE 的一半,也是正方形 ABCD 的一半,则矩形与正方形面积相等.【解答】 解:连接DE,5•••矩形ECFG 与正方形ABCD 的面积相等. 故选:D .【知识点】矩形的性质、正方形的性质10. 【分析】设DE = X ,则AD = 8-X ,由长方体容器内水的体积得出方程,解方程求出DE ,再由勾股定理求出CD ,过点C 作CF 丄BG 于F ,由△ CDEBCF 的比例线段求得结果即可.【解答】 解:过点C 作CF 丄BG 于F ,如图所示:7⅛ F G设 DE = X ,贝U AD = 8-X ,根据题意得: (8- x+8)× 3× 3= 3× 3× 6,2解得:X = 4, • DE = 4,τ∠ E = 90°,由勾股定理得:CD =111∙, I ∙∣ I ',τ∠ BCE =∠ DCF = 90°, ∙∠ DCE = ∠ BCF ,τ∠ DEC = ∠ BFC = 90°, •••△ CDE BCF , • — ■:.• ∙ r• CF =—1故选:A .【知识点】认识立体图形、填空题(共6小题)11. 【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1) ( X- 1). 故答案为:(x+1) (X- 1).【知识点】因式分解-运用公式法12•【分析】先移项,再合并同类项,把X的系数化为1即可.【解答】解:移项得,3x≥4+2, 合并同类项得,3x≥6, 把X的系数化为1得,x≥2.故答案为:x≥2.【知识点】解一元一次不等式13. 【分析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【解答】解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,•••第一列第三个数为:15- 2 - 5 = 8,.∙. m= 15 - 8 - 3= 4.故答案为:4【知识点】数学常识、有理数的加法14. 【分析】分点E与正方形ABCD的直线AP的同侧、点E与正方形ABCD的直线AP的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.【解答】解:I四边形ABCD是正方形,• AD = AE,∠ DAE = 90°,∙∠BAM = 180°- 90°- 30°= 60° , AD = AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,∙∠ADE = 45 ° ,当点E与正方形ABCD的直线AP的两侧时,由题意得, E ' A = E' M ,•△ AE' M为等边三角形,∙∠E' AM = 60°,∙∠DAE ' = 360°- 120°- 90°= 150° ,∙∙∙ AD = AE',∙∠ADE ' = 15°,故答案为:15°或45°.【知识点】正方形的性质15∙【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A寺3), C (5,瓠所以B(〔,〔),然后利用待定系数法求直线 BD 的解析式.3 5【解答】 解:∙∙∙ D (5, 3),A (I , 3), C (5,),3 5B C ,),35设直线BD 的解析式为y = mx+n , 把D (5, 3), B (上,上)代入得3 5•••直线BD 的解析式为y = χ. 故答案为y = X .5【知识点】待定系数法求一次函数解析式、反比例函数图象上点的坐标特征、矩形的性质16.【分析】 先根据题意画出图形,再根据周长的定义即可求解.【解答】解:如图所示:(1)根据实数运算法则解答;(2)利用题意得到 x 2+1 = 4x+1,利用因式分解法解方程即可.解:(1)原式=4X ■+1 - 4- 2 ;= - 3;厶2) X 2+1 = 4x+1 ,χ2 - 4x = 0 ,5 ιrrfn=3 k k , 評2巨-J- 解得.IIF T ,L n=O:g⅜⅝⅛. ⅜≡图 图 图 _ _故四边形 MNPQ 的周长是6+2 .或10或8+2 .:. 故答案为:6+2匚或10或8+2匚.【知识点】平面镶嵌(密铺)、整式的加减的周长为 的周长为 的周长为 1+2+3+2 匚=6+2 匚; 1+4+1+4 = 10;3+5+ :+ .:= 8+2 .:.三、解答题 (共8小题)17.【分析】 【解答】DC t …DX (X - 4)= 0,XI = 0, X2= 4.【知识点】特殊角的三角函数值、实数的运算、零指数幕、负整数指数幕、解一元二次方程-因式分解法18. 【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y关于X的函数表达式,再把X = 180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:〔• 千米;60-35 0(2)设y= kX+b ( k≠ 0),把点(150, 35), (200, 10)代入,仲(150k+Z35侍W ,UflOkfb-IO•40.5• y=- 0.5X+110 ,当X= 180 时,y =- 0.5× 180+110= 20 ,答:当150≤X≤200时,函数表达式为y=- 0.5X+110 ,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【知识点】一次函数的应用19. 【分析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【解答】解:(1)这5期的集训共有:5+7+10+14+20 = 56 (天),小聪 5 次测试的平均成绩是:(11.88+11∙76+11∙61 + 11∙53+11∙62 )÷ 5= 11.68 (秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天.【知识点】算术平均数、条形统计图、扇形统计图20. 【分析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF丄I于F , CP丄DF于P, BG丄DF于G , CH丄BG于H .则四边形PCHG 是矩形,求出DF ,再求出DF - DE即可解决问题.【解答】解:(1)如图2中,作BO丄DE于O.02τ∠OEA=∠BOE=∠BAE = 90°,•••四边形ABOE是矩形,:丄 OBA= 90 ° ,∙∠DBO = 150°- 90°= 60°,• OD = BD?Si n60°= 20 7 ( cm),∙DF = OD+OE= OD+AB= 20rj ]+5≈39.6 (Cm).(2)作DF丄I于F, CP丄DF于P, BG⊥ DF于G , CH丄BG于H.则四边形PCHG是矩形,D團3τ∠CBH = 60 °,∠CHB = 90 ° ,∙∠BCH = 30 ° ,τ∠BCD = 165°,° ∠ DCP = 45 ° ,• CH = BCSin60° = 10√5 (cm), DP = CDSin45° = 1晒(Cm),• DF = DP+PG+GF = DP+CH+AB=( 10「+10 ^+5) (Cm),•下降高度:DE - DF = 20 二+5 - 10 匚-10 二-5 = 10 乙-10 匚=3.2 (Cm).【知识点】解直角三角形的应用21. 【分析】(1)连接OC,如图,禾U用切线的性质得∠OCD = 90°,再根据含30度的直角三角形三边的关系得到OD = 2,然后计算OA+OD即可;(2)添加∠ DCB = 30°,求AC的长,利用圆周角定理得到∠ ACB= 90°,再证明∠ A =∠ DCB= 30°,然后根据含30度的直角三角形三边的关系求AC的长.【解答】解:(1)连接OC,如图,∙∙∙ CD为切线,• OC ⊥ CD,∙∠OCD = 90°, τ∠D = 30°,• OD = 2OC = 2,• AD = AO+OD = 1+2= 3;(2)添加∠ DCB = 30 °,求AC的长,解:∙∙∙AB为直径,•/ ACB= 90 ° ,τ∠ACO+ ∠OCB= 90°,∠OCB + ∠DCB = 90°,•/ ACO =∠ DCB ,τ∠ACO =∠A,•/ A=∠ DCB = 30 ° ,在Rt△ ACB 中,BC =AB= 1.∙. AC= IBC =';.【知识点】圆周角定理、切线的性质、全等三角形的判定22. 【分析】 (1)①若所截矩形材料的一条边是BC,过点C作CF丄AE于F ,得出S i= AB?BC = 6 ×5=30;②若所截矩形材料的一条边是AE,过点E作EF // AB交CD于F , FG丄AB于G,过点C作CH丄FG于H ,则四边形AEFG为矩形,四边形BCHG为矩形,证出△ CHF为等腰三角形,得出AE = FG = 6, HG = BC= 5, BG = CH = FH ,求出BG= CH = FH = FG -HG = 1, AG=AB- BG = 5,得出S2= AE?AG = 6× 5= 30;(2)在CD上取点F,过点F作FM丄AB于M , FN丄AE于N,过点C作CG丄FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△ CGF为等腰三角形,得出MG = BC = 5,BM = CG , FG = CG ,设AM = X,贝U BM = 6 - x, FM = GM + FG = GM+CG =BC+BM =11 - x,得出S= AM × FM = X (11 - x)=- x2+ 11χ,由二次函数的性质即可得出结果.【解答】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点 C 作CF 丄AE 于F, S1= AB?BC = 6 × 5= 30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF // AB交CD于F, FG丄AB于G ,过点C作CH丄FG于H ,则四边形AEFG为矩形,四边形BCHG为矩形,τ∠C= 135° ,∙∙∙∠FCH = 45 ° ,•••△ CHF为等腰直角三角形,.∙. AE= FG = 6, HG = BC= 5, BG= CH = FH ,• BG= CH = FH = FG - HG = 6 - 5 = 1,• AG= AB - BG = 6 - 1 = 5,∙S2= AE?AG = 6× 5 = 30;(2)能;理由如下:在CD上取点F,过点F作FM丄AB于M, FN丄AE于N ,过点C作CG丄FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,τ∠C= 135° ,∙∠FCG = 45 ° ,•△ CGF为等腰直角三角形,∙MG = BC= 5, BM = CG , FG = CG ,设AM = X,贝U BM = 6- x,• FM = GM + FG = GM+CG = BC+BM = 11 - x,.∙. S= AM × FM = X (11 - x)=- x2+11x=-( X- 5.5) 2+30.25 ,•当X= 5.5 时,即:AM = 5.5 时,FM = 11 - 5.5 = 5.5, S 的最大值为30.25 .L>【知识点】矩形的性质23. 【分析】 (1)①分两种情形分别求解即可.②显然∠ MAD不能为直角.当∠ AMD为直角时,根据AM2= AD2- DM2,计算即可,当∠ADM = 90°时,根据AM2= AD2+DM2,计算即可.(2)连接CD •首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD 2= CD I即可.【解答】解:(1)① AM = AD+DM = 40,或AM = AD - DM = 20.②显然∠ MAD不能为直角.当∠ AMD 为直角时,AM2= AD2- DM2= 302- 102= 800,∙∙∙ AM = 20 二或(-20 匚舍弃).当∠ ADM = 90° 时,AM2= AD2+DM2= 302+102= 1000,∙AM = 10^1 :或(-10Y〕.!舍弃). _ _综上所述,满足条件的AM的值为20二或10 =.(2)如图2中,连接CD .≡2由题意:∠ D1AD2= 90°, AD1= AD2= 30,∙∙∙∠AD2D1 = 45°, D1D2= 30∙J :,∙∙∙∠AD2C= 135 ° ,∙∠ CD2D1= 90° ,∙CD1=廿- _ ■ =30'■,τ∠BAC =∠A1AD2= 90°,∙∠BAC - ∠ CAD2=∠ D2AD1 - ∠ CAD2,∙∠BAD1 = ∠ CAD2,T AB= AC, AD2= AD1,•••△ BAD2◎△ CAD1( SAS),.∙. BD2= CD1 = 30甘【知识点】几何变换综合题24. 【分析】(1)作EH丄BC于H ,MQ丄CD于Q,设EF交MN于点0.证明△ FHE ◎△ MQN ( ASA),即可解决问题.(2)由题意:2a≤MN≤^a, a≤EF≤=a,当MN的长取最大时,EF取最短,此时k的值最大最大值=EE ,当MN的最短时,EF的值取最大,此时k的值最小,最小值为L^.5(3)连接FN , ME .由k= 3, MP = EF = 3PE,推出亘=二-=3,推出=—-=2,PM PE FK PE由厶PNF PME ,推出’’=* = 2, ME // NF,设PE= 2m,贝U PF = 4m, MP = 6m,ME PHNP = 12m,接下来分两种情形①如图2 中,当点N与点D重合时,点M恰好与B重合.② 如图3中,当点N与C重合,分别求解即可.【解答】解:(1)如图1中,團1作EH丄BC于H , MQ丄CD于Q,设EF交MN于点O.•••四边形ABCD是正方形,• FH = AB, MQ = BC,∙∙∙ AB= CB,• FH = MQ,∙∙ EF 丄MN ,∙∙∠EON= 90 ° ,∙∙∠ECN= 90 ° ,∙∙∠MNQ+∠CEo = 180°,∠FEH + ∠CEo= 180°∙∙∠FEH = ∠MNQ ,τ∠EHF =∠MQN = 90°,• △FHE◎△ MQN (ASA),∙∙ MN = EF ,∙k= MN: EF = 1.(2)τ a:b = 1: 2,.∙. b= 2a,由题意:2a≤MN≤7a, a≤EF≤√.;a,•••当MN的长取最大时,EF取最短,此时k的值最大最大值= ^,当MN的最短时,EF的值取最大,此时k的值最小,最小值为Ai5(3)连接FN , ME.∙.∙ k= 3, MP = EF = 3PE,•型=IL= 3•頁=三=,•••!1=一= 2,τ∠FPN = ∠EPM ,PN PE• △ PNFPME ,∙∙∙∆L=—= 2, ME // NF ,ME PM设PE = 2m,贝U PF = 4m, MP= 6m, NP = 12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH丄BD于H .τ∠MPE = ∠FPH = 60°,• PH = 2m, FH = 2 "m, DH = 10m,.N=AB=FH=√⅞•=「=川」=.②如图3中,当点N与C重合,作EH丄MN于H .贝U PH = m, HE = :m,图3∙HC = PH+PC = 13m,∙∙∙ tan∠ HCE =U:=工= ,BC HC 13∙∙∙ ME // FC ,∙∠MEB = ∠ FCB = ∠ CFD ,∙∙∙∠ B=∠ D,•••△ MEB s∖ CFD ,•…=i = 2IB ME• N= CD =如B=師…=仁「厂* = :, _综上所述,a: b的值为三或二.5 13 【知识点】相似形综合题。
浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是 A.5 B.-5 C.51 D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于 A. -1 B. 0 C. 3 D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为A.πB.π2C.π2D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 A.524 B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是A.5B.-5C.51D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 A.π B.π2 C.π2 D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为A.524B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
2019年浙江省绍兴市初中毕业、升学考试数学(满分150分,考试时间120分钟)(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1.(2019年浙江省绍兴市,第1题,4分)5-的绝对值是 A.5 B.-5 C.51 D.51- 【答案】A【解析】根据绝对值可知,-5的绝对值是5,故选A . 【知识点】绝对值2.(2019年浙江省绍兴市,第2题,4分 )某市决定为全市中小学生教室安装空调,今年预计投入资金126 000000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯ 【答案】B【解析】数字126000000用科学记数法表示,正确的是1.26×108.故选:B . 【知识点】科学记数法3.(2019年浙江省绍兴市,第3题,4分 ) 如图的几何体由6个相同的小正方体搭成,它的主视图是【答案】A【解析】从正面看易得第一层有2个正方形,第二层有3个正方形.故选:A . 【知识点】三视图4.(2019年浙江省绍兴市,第4题,4分 ) 为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是 A.0.85 B. 0.57 C. 0.42 D.0.15【答案】D【解析】结合表格,根据频率=频数÷样本容量,即身高不低于180cm 的频率是15÷100=0.15,再用频率估计概率进行解答。
【知识点】用频率估计概率5.(2019年浙江省绍兴市,第5题,4分 )如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°【答案】B【解析】将木条a 和b 延长交于一点P ,构造一个三角形,由三角形的内角和定理可知∠P =180°-100°-70°=10°。
2019年浙江省绍兴市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( ) A .24B .18C .16D .62.如图,请你在正方形地板上涂上阴影部分,使得小猫在地板上自由地走来走去,它最终停留在地板上的概率是41.( ) 3.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( ) A .x y 5=B .x y 54=C .x y 45= D .x y 209=4.把一个矩形剪去一个正方形,所余的矩形与原矩形相似,那么原矩形中,较长的边与较短的边之比是( ) A .5:2 B .(13):2+C .(15):2+D .(16):2+5.如图,AB 是⊙O 的直径,CD ⊥AB 于E ,则下列结论:①BC= BD ;②AC= AD ;③ CE= DE ;④B = BE ·BA. 其中正确的有( )A .1 个B .2 个C .3个D .4个 6.点(21)P -,关于x 轴的对称点的坐标为( )A .(21),B .(21)--,C .(21)-,D .(12)-,7.“高高兴兴上学来,开开心心回家去.”小王某天放学后,l7时从学校出发,回家途中离家的路程s(km)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()A.17 h15 min B.17 h14 min C.17 h12 min D.17 h11 min8.数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的()A.平均数或中位数B.方差或标准差C.众数或平均数D.众数或中位数9.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5,则另一个三角形的周长是()A.23 B.27 C.29 D.3310.在22231,,,()122x xx yx xπ---+-中,不是分式的有()A.0个B.1个C.2个D.3个11.下列生活现象中,属于相似变换的是()A.抽屉的拉开B.荡秋千C.汽车刮雨器的运动D.投影片的文字经投影变换到屏幕12.图(1)、图(2)分别是2005~2008年我国某省初中在校生人数和初中学校数目统计图,由图可知,2005~2008年,该省初中()A.在校生人数逐年增加,学校数也逐年增加B.在校生人数逐年增加,学校数逐年减少C.在校生人数逐年减少,学校数也逐年减少D.在校生人数逐华减少,学校数逐年增加二、填空题13.已知⊙O的半径为5㎝,弦AB的长为8㎝,则圆心O到AB的距离为㎝.14.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 互相垂直,AC=9,中位线长215,则对角线BD 的长是 .15.写出线段的中点的定义: .16.农科院为了选出适合某地种植的玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到和试验田每公顷产量的数据,通过计算得到数据的平均数为7.54x 甲≈,7.53x 乙≈,数据的方差为20.01S 甲≈,20.002S 乙≈,则这两种玉米的产量比较稳定的是__________.17.若不等式-3x+n>0的解集是x<2,则不等式-3x +n <0的解集是_____________. 18.用x 、y 分别表示 2辆三轮车和3辆卡车一次运货的吨数,那么5辆三轮车和4辆卡车共能运货24吨所表示的数量关系式是 .19.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是 . 20.下列各代数式是整式的是 . ①1;②r ;③343r π ;④11x +;⑤213x +;⑥22x π21.已知0a b <<,且||||a b >,则323||a b a b -++= . 22.当m 取 时,232(3)mm y m x -+=-是二次函数.三、解答题23.如图,在以0为圆心的两个同心圆中,大圆的弦AB = CD ,且 AB 与小圆相切,求证:CD 与小圆也相切.24.阅读理解题:(1)如图,在△ABC 中,AD 是BC 边上的中线,且AD=21BC . 求证:∠BAC=90°. 证明:∵AD=12BC ,BD=CD=12BC ,∴AD=BD=DC , ∴∠B=∠BAD ,∠C=∠CAD ,∵∠B+∠BAD+∠CAD+∠C=180°,AB CD∴∠BAD+∠CAD=90°,即∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直线运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为25.化简:=-2)3(π .26.(1)在平面直角坐标系中,作出下列各点A(0,2)、B(1,O)、C(5,2)、D(2,4); (2)求四边形ABCD 的面积.27.根据下列条件,,写出仍能成立的不等式. (1)72>-,两边都加2; (2)35-<,两边都减1; (3)23<,两边都乘以4; (4)39>-,两边都除以 3; (5)24->-,两边都乘以3-; (6)168-<-,两边都除以一4. 观察以上各题的结果,你有什么发现吗?28.如图,把方格纸上的图形作相似变换,放大到原图形的2倍,并在方格纸上画出经过变换的像.29.把-12 写成两个整数的积的形式(要求写出所有可能)30.从2005年9月起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注。
浙江省绍兴市2019年中考试卷数学答案解析卷Ⅰ(选择题)一、选择题1.【答案】A【解析】根据绝对值的性质求解.解:根据负数的绝对值等于它的相反数,得|5|5-=.故选:A.【考点】绝对值2.【答案】B 【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.解:数字126 000 000科学记数法可表示为81.2610⨯元.故选:B.【考点】科学计数法3.【答案】A【解析】根据从正面看得到的视图是主视图,可得答案.解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选:A.【考点】三视图4.【答案】D【解析】先计算出样本中身高不低于180 cm 的频率,然后根据利用频率估计概率求解.解:样本中身高不低于180 cm 的频率150.15100==, 所以估计他的身高不低于180 cm 的概率是0.15.故选:D.【考点】统计,等可能事件的概率5.【答案】B【解析】根据对顶角相等求出3∠,根据三角形内角和定理计算,得到答案.解:32100∠∠︒==, ∴木条a ,b 所在直线所夹的锐角1801007010︒︒︒︒=--=, 故选:B.【考点】对顶角相等,三角形内角和为180°6.【答案】C【解析】利用()1,4,()2,7两点求出所在的直线解析式,再将点(,10)a 代入解析式即可;解:设经过()1,4,()2,7两点的直线解析式为y kx b +=,∴472k b k b =+⎧⎨=+⎩∴31k b =⎧⎨=⎩, ∴31y x +=,将点(,10)a 代入解析式,则3a =;故选:C.【考点】一次函数及其图象,待定系数法7.【答案】B【解析】根据变换前后的两抛物线的顶点坐标找变换规律.解:2(5)(3)(1)16y x x x =+-=+-,顶点坐标是(1,16)--.2(3)(5)(1)16y x x x =+-=--,顶点坐标是(1,16)-.所以将抛物线(5)(3)y x x =+-向右平移2个单位长度得到抛物线(3)(5)y x x =+-,故选:B.【考点】二次函数及其图象,图形的平移8.【答案】A【解析】连接OB ,OC .首先证明OBC △是等腰直角三角形,求出OB 即可解决问题.解:连接OB ,OC .∵180180657045A ABC ACB ∠=-∠-∠=-︒-︒=︒︒︒,∴90BOC ︒∠=∴BC =∴2OB OC ==∴BC 的长为2902360ππ⋅⋅=, 故选:A.【考点】三角形内角和,圆周角,圆心角,弧长公式9.【答案】D【解析】由BCE FCD △∽△,根据相似三角形的对应边成比例,可得CF CE CD BC ⋅⋅=,即可得矩形ECFG 与正方形ABCD 的面积相等.解:∵正方形ABCD 和矩形ECFG 中,90DCB FCE ︒∠=∠=,90F B ︒∠=∠=,∴DCF ECB ∠=∠,∴BCE FCD △∽△, ∴CF CD CB CE=, ∴CF CE CB CD ⋅⋅=,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D.【考点】正方形,矩形,相似三角形10.【答案】A【解析】设DE x =,则8AD x -=,由长方体容器内水的体积得出方程,解方程求出DE ,再由勾股定理求出CD ,过点C 作CF BG ⊥于F ,由CDE BCF △∽△的比例线段求得结果即可.解:过点C 作CF BG ⊥于F ,如图所示:设DE x =,则8AD x -=,根据题意得:1(88)333362x -+⨯⨯=⨯⨯, 解得:=4x ,∴=4DE ,∵90E ∠=︒,由勾股定理得:5CD ,∵90BCE DCF ∠=∠=︒,∴DCE BCF ∠=∠,∵90DEC BFC ∠=∠=︒,∴CDE BCF △∽△, ∴CE CD CF CB=, 即358CF =, ∴245CF =. 故选:A.【考点】E 角形面积,勾股定理,相似三角形卷Ⅱ(非选择题)二、填空题11.【答案】(1)(1)x x +-【解析】原式利用平方差公式分解即可.解:原式(1)(1)x x =+-.故答案为:(1)(1)x x +-.【考点】因式分解,平方差公式12.【答案】2x ≥【解析】先移项,再合并同类项,把x 的系数化为1即可.解:移项得,342x +≥,合并同类项得,36x ≥,把x 的系数化为1得,2x ≥.故答案为:2x ≥.【考点】一元一次不等式13.【答案】4【解析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15258--=,∴15834m =--=.故答案为:4【考点】一元一次方程14.【答案】15°或45°【解析】分点E 与正方形ABCD 的直线AP 的同侧、点E 与正方形ABCD 的直线AP 的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.解:∵四边形ABCD 是正方形,∴AD AE =,90DAE ∠=︒,∴180903060BAM ∠=︒-︒-︒=︒,AD AB =,当点E 与正方形ABCD 的直线AP 的同侧时,由题意得,点E 与点B 重合,∴45ADE ∠=︒,当点E 与正方形ABCD 的直线AP 的两侧时,由题意得,E A E M '=',∴AE M '△为等边三角形,∴60E AM ∠'=︒,∴36012090150DAE ∠'=︒-︒-︒=︒,∵AD AE =',∴15ADE ∠'=︒,故答案为:15°或45°.【考点】正方形,等腰三角形,等边三角形,圆15.【答案】35y x = 【解析】利用矩形的性质和反比例函数图象上点的坐标特征得到,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭,所以,35k k B ⎛⎫ ⎪⎝⎭,然后利用待定系数法求直线BD 的解析式.解:∵(5,3)D , ∴,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭, ∴,35k k B ⎛⎫ ⎪⎝⎭, 设直线BD 的解析式为y mx n =+,把(5,3)D ,,35k k B ⎛⎫ ⎪⎝⎭代入得5335n k k m n π+=⎧⎪⎨+=⎪⎩,解得350m n ⎧=⎪⎨⎪=⎩, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【考点】反比例函数及其图象,矩形,一次函数及其图象,待定系数法,整体思想16.【答案】6+或10或8+【解析】先根据题意画出图形,再根据周长的定义即可求解.解:如图所示:图1的周长为1236++++图2的周长为141410+++=;图3的周长为358+=+故四边形MNPQ的周长是6+或10或8+故答案为:6+10或8+【考点】等腰直角三角形,平行四边形,矩形,图形的整合三、解答题17.【答案】解:(1)原式4143=---. (2)2141x x +=+, 240x x -=,(4)0x x -=,10x =,24x =.【解析】(1)根据实数运算法则解答;(2)利用题意得到2141x x +=+,利用因式分解法解方程即可.【考点】锐角三角函数,零指数幂,负整数指数幂,二次根式化简,解一元二次方程,因式分解18.【答案】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15066035=-千米; (2)设()0y kx b k =+≠,把点(150,35),(200,10)代入,得1503520010k b k b +=⎧⎨+=⎩, ∴k 0.5b 110=-⎧⎨=⎩, ∴0.5110y x =-+,当180x =时,0.518011020y =-⨯+=,答:当150200x ≤≤时,函数表达式为0.5110y x =-+,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把180x =代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【考点】一次函数及其图象,待定系数法19.【答案】(1)这5期的集训共有:5710142056++++=(天),小聪5次测试的平均成绩是:(11.8811.7611.6111.5311.62)511.68++++÷=(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好成绩是都是在第4期出现,建议集训时间定为14天.【解析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【考点】条形统计图,折线统计图,平均数,数据的分析20.【答案】(1)如图2中,作BO DE ⊥于O .图2∵90OEA BOE BAE ∠=∠=∠=︒,∴四边形ABOE 是矩形,∴90OBA =︒∠,∴1509060DBO ∠=︒-︒=︒,∴sin60OD BD ︒=⋅=,∴539.6(cm)DF OD OE OD AB =+=+=≈.(2)作DF l ⊥于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,图3∵60CBH ∠=︒,90CHB ∠=︒,∴30BCH ∠=︒,∵165BCD ∠=︒,45DCP ∠=︒ ,∴sin60CH BC ︒=⋅=,sin 45DP CD ︒=⋅=,∴5)(cm)DF DP PG GF DP CH AB =++=++=,∴下降高度:55 3.2(cm)DE DF ⋅=-=.【解析】(1)如图2中,作BO DE ⊥于O .解直角三角形求出OD 即可解决问题.(2)作D F l ⊥于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,求出DF ,再求出DF -DE 即可解决问题.【考点】:锐角三角函数,解直角三角形,矩形21.【答案】(1)连接OC ,如图,∵CD 为切线,∴OC CD ⊥,∴90OCD ︒∠=∵30D ︒∠=∴22OD OC ==∴123AD AO OD =+=+=(2)添加30DCB ∠=︒,求AC 的长,解:∵AB 为直径,∴90ACB ∠=︒∵90ACB OCB ∠+∠=︒,90OCB DCB ∠+∠=︒∴ACO DCB ∠=∠∵ACO A ∠=∠∴30A DCB ∠=∠=︒在Rt ACB △中,112BC AB ==,∴AC =【解析】(1)连接OC ,如图,利用切线的性质得90OCD ∠=︒,再根据含30度的直角三角形三边的关系得到2OD =,然后计算OA OD +即可;(2)添加30DCB ∠=︒,求AC 的长,利用圆周角定理得到90ACB ∠=︒,再证明30A DCB ∠=∠=︒,然后根据含30度的直角三角形三边的关系求AC 的长.【考点】直线与圆相切,解直角三角形,线段、角度的和差,相似三角形等22.【答案】(1)①若所截矩形材料的一条边是BC ,如图1所示:过点C 作CF AE ⊥于F ,16530S AB BC =⋅=⨯=;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点C 作CH FG ⊥于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,∵135C ∠=︒,∴45FCH ∠=︒,∴CHF △ 为等腰直角三角形,∴6AE FG ==,5HG BC ==,BG CH FH ==,∴651BG CH FH FG HG ===-=-=,∴615AG AB BG =-=-=,∴*26530S AE AG ==⨯=;(2)能;理由如下:在CD 上取点F ,过点F 作FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM ⊥于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,∵135C ∠=︒,∴45FCG ∠=︒,∴CGF △为等腰直角三角形,∴5MG BC ==,BM CG =,FG DG =,设AM x =,则6BM x =-,∴11FM GM FG GM CG BC BM x =+=+=+=-,∴22(11)11( 5.5)30.25S AM FM x x x x x =⨯=-=-+=-+∴当 5.5x =时,S 的最大值为30.25.图1 图2 图3 【解析】(1)①若所截矩形材料的一条边是BC ,过点C 作CF AE ⊥于F ,得出16530S AB BC =⋅=⨯=; ②若所截矩形材料的一条边是AE ,过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点C 作CH FG ⊥于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,证出CHF △为等腰三角形,得出6AE FG ==,5HG BC ==,BG CH FH ==,求出1B G C H F H F G H G ===-=,5AG AB BG =-=,得出26530S A E A G =⋅=⨯=; (2)在CD 上取点F ,过点F 作FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM ⊥于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,证出CGF △为等腰三角形,得出5MG BC ==,BM CG =,FG DG =,设AM x =,则6B M x =-,11FM GM FG GM CG BC BM x =+=+=+=-,得出21111S AM FM x x x x =⨯=-=-+(),由二次函数的性质即可得出结果.【考点】矩形,等腰直角三角形,二次函数最值问题,构造函数思想23.【答案】解:(1)①40AM AD DM =+=,或20.AM AD DM =-=②显然MAD ∠不能为直角.当AMD ∠为直角时,222223010800AM AD DM =-=-=,∴AM =-.当90ADM ∠=︒时,2222230101000AM AD DM =+=+=,∴AM =-.综上所述,满足条件的AM 的值为(2)如图2中,连接CD .由题意:1290D AD ∠=︒,1230AD AD ==,∴2145AD D ︒∠=,12D D =,∵2135AD C ︒∠=,∴1290CD D ︒∠=,∴1CD == ∵2190BAC A AD ∠=∠=︒,∴2212BAC CAD D AD CAD ∠-∠=∠-∠,∴12BAD CAD ∠=∠,∵AB AC =,21AD AD =,∴21()BAD CAD SAS ≌,∴21BD CD ==【解析】(1)①分两种情形分别求解即可.②显然MAD ∠不能为直角.当AMD ∠为直角时,根据222AM AD DM =-,计算即可,当90ADM ∠=︒时,根据222AM AD DM =+,计算即可.(2)连接CD .首先利用勾股定理求出1CD ,再利用全等三角形的性质证明21BD CD =即可.【考点】线段、角的和差,勾股定理,等腰直角三角形,全等三角24.【答案】(1)如图1中,图1作EH BC ⊥于H ,MQ CD ⊥于Q ,设EF 交MN 于点O .∵四边形ABCD 是正方形,∴FH AB =,MQ BC =,∵AB CB =,∴EH MQ =,∵EF MN ⊥,∴90EON ∠=︒,∵90ECN ∠=︒,∴1+80MNQ CEO ∠∠=︒,1+80FEH CEO ∠∠=︒,∴FEH MNQ ∠=∠,∵90EHF MQN ∠=∠=︒∴()FHE MQN ASA ≌∴MN EF =∴k MN =,1EF =.(2)∵:1:2a b =,∴2b a =, 由题意:25a MN a ,5a EF a ,∴当MN 的长取最大时,EF 取最短,此时k 的值最大,最大值=,当MN 的最短时,EF 的值取最大,此时k . (3)连接FN ,ME .∵3k =,3MP EF PE ==,∴3MN EF PM PE==, ∴2PN PF PM PE ==, ∵FPN EPM ∠=∠,∴PNF PME ∽,∴2NF PN ME PM==,//NF ME 设2PE m =,则4PF m =,6MP m =,12NP m =,①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.作FH BD ⊥于H .图2∵60MPE FPH ∠=∠=︒,∴2PH m =,FH =,10PH m =,∴a AB FH b AD HD ===②如图3中,当点N 与C 重合,作EH MN ⊥于H .则PH m =,HE =,图3∴13HC PH PC m =+=,∴tan MB HE HCE BC HC ∠=-, ∵ME FC ∥, ∴MEB FCB CFD ∠=∠=∠,∵B D ∠=∠,∴MEB CFD ≌, ∴2CD FC MB ME==,∴2a CD MB b BD BC --,综上所述,:a b 【解析】(1)作EH BC ⊥于H ,MQ CD ⊥于Q ,设EF 交MN 于点O .证明FHE MQN ASA △≌△(),即可解决问题.(2)由题意:2a MN ≤,a EF ≤,当MN 的长取最大时,EF 取最短,此时k 的值最大最大值=MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为5. (3)连接FN ,ME .由3k =,3MP EF PE ==,推出=3MN EF PM PE -,推出2PN PF PM PE==,由P N F P M E △∽△ ,推出2NF PN ME PM==,ME NF ∥,设2P E m =,则4P F m =,6MP m =,12NP m =,接下来分两种情形①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.②如图3中,当点N 与C 重合,分别求解即可.【考点】全等三角形,勾股定理,平行线之间距离,锐角三角函数,解直角三角形,相似三角形。
2019年浙江省绍兴市中考数学试卷
考生须知:
1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.
2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.
3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器.
参考公式:抛物线)0(2
≠++=a c bx ax y 的顶点坐标是)44,2(2
a b ac a b --. 卷I (选择题)
一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)
1. 5-的绝对值是 A.5 B.-5 C.51 D.5
1- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为
A.7106.12⨯
B.81026.1⨯
C.91026.1⨯
D.1010126.0⨯
3.如图的几何体由6个相同的小正方体搭成,它的主视图是
4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:
根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是
A.0.85
B. 0.57
C. 0.42
D.0.15
5.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直
线所夹的锐角是
A.5°
B.10°
C.30°
D.70°
6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于
A. -1
B. 0
C. 3
D. 4
7.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是
A.向左平移2个单位
B.向右平移2个单位
C.向左平移8个单位
D.向右平移8个单位
8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为
A.π
B.π2
C.π2
D.π22
9.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积
A.先变大后变小
B.先变小后变大
C.一直变大
D.保持不变
10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为
A.524
B.5
32 C.173412 D.173420 卷II (非选择题)
二、填空题(本大题有6个小题,每小题5分,共30分)
11.因式分解:=-12x ▲ .
12.不等式423≥-x 的解为 ▲ .
13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .
14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .
15.如图,矩形ABCD 的顶点A,C 都在曲线x
k y =
(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ .
16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .
三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)
17.(1)计算:12)2
1()2(60sin 420----+︒-π
(2)x 为何值时,两个代数式14,12++x x 的值相等?
18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.
(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;
(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.
19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:
根据图中信息,解答下列问题:
(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?
(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.
20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.
(1)旋转连杆BC,CD ,使∠BCD 成平角,∠ABC=150°,如图2,求连杆端点D 离桌面l 的高度DE.
(2)将(1)中的连杆CD 绕点C 逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?
(精确到0.1cm ,参考数据:73.13,41.12≈≈)
21.在屏幕上有如下内容:
如图,△ABC内接于圆O,直径AB的长为2,过点C的切线交AB的延长线于点D.
张老师要求添加条件后,编制一道题目,并解答0
(1)在屏幕内容中添加条件∠D=30°,求AD的长,请你解答.
(2)以下是小明,小聪的对话:
小明:我加的条件是BD=1,就可以求出AD的长.
小聪:你这样太简单了,我加的条件是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.
参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.
22.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°.要在这块余料中截取一块矩形材料,其中一边在AE上,并使所截矩形的面积尽可能大.
(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积;
(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.
23.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂长AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,AD=30,DM=10.
(1)在旋转过程中:
①当A,D,M 三点在同一直线上时,求AM 的长;
②当A,D,M 三点在同一直角三角形的顶点时,求AM 的长.
(2)若摆动臂AD 顺时针旋转90°,点D 的位置由△ABC 外的点D 1转到其内的点D 2处,连结D 1D 2,如图2,此时∠AD 2C=135°,CD 2=60,求BD 2的长.
24.如图,矩形ABCD 中,AB=a ,BC=b ,点M,N 分别在边AB,CD 上,点E,F 分别在BC,AD 上,MN,EF 交于点P ,记k =MN ∶EF.
(1)若a ∶b 的值是1,当MN ⊥EF 时,求k 的值.
(2)若a ∶b 的值是2
1,求k 的最大值和最小值. (3)若k 的值是3,当点N 是矩形的顶点,∠MPE=60°,MP=EF=3PE 时,求a ∶b 的值.
2019年浙江省绍兴市中考数学试卷参考答案与试题解析。