引导混沌运动到周期运动的自适应控制策略1)
- 格式:pdf
- 大小:943.38 KB
- 文档页数:5
一种有效的船舶混沌运动自适应控制方法船舶是一种广泛应用于海洋运输、海洋工程等领域的交通工具,但是在船舶运动中存在着许多复杂的非线性因素,如海浪、风力等,这些因素对于船舶的控制和操纵提出了更高的要求。
传统的控制方法难以胜任这一任务,因此需要一种有效的船舶混沌运动自适应控制方法,以确保船舶动态稳定性和航行安全。
近年来,船舶混沌运动自适应控制方法得到了快速发展,该方法主要采用了自适应控制、非线性控制等方法,以弥补传统控制方法的不足。
其中,常采用神经网络、模糊控制等方法来建立数学模型,实现对船舶非线性运动的模拟和控制。
自适应神经网络控制是一种适用于复杂非线性控制系统的先进控制方法,可以自适应地学习和适应环境变化,从而实现对船舶的控制。
在船舶混沌运动控制中,使用神经网络来模拟船舶运动的非线性特征,并通过反馈控制方法对船舶进行控制。
通过建立适当的神经网络结构,可以对船舶的各种运动状态进行监测和控制,从而实现对船舶的混沌运动控制。
模糊控制是另一种常用的船舶混沌运动自适应控制方法,该方法主要利用模糊集合和模糊逻辑来处理船舶运动控制中的不确定性和复杂性。
在船舶混沌运动控制中,使用模糊控制来实现船舶姿态控制、船速控制和舵角控制等,以确保船舶的运动稳定和安全。
除了神经网络和模糊控制,还有其他一些有效的船舶混沌运动自适应控制方法,如遗传算法、模型预测控制等。
这些方法各具特点,可以选用适合的方法来实现对船舶混沌运动的控制。
总之,船舶混沌运动自适应控制是一项重要的船舶运动控制技术,其采用了多种复杂非线性控制方法来实现对船舶的控制。
这项技术可有效地提高船舶运动控制的准确性和稳定性,保证船舶的安全运行。
随着技术的不断发展和应用,船舶混沌运动自适应控制将在未来得到更广泛的应用和推广。
近年来,随着全球化进程的加速和海洋经济的飞速发展,船舶运输已经成为世界上最主要的贸易方式之一,其在全球经济和国际贸易中的重要性不断提升。
下面将列举相关数据并进行分析。
混沌系统的自适应控制综述摘要:本文主要介绍了混沌系统的自适应控制方法,并通过对具体系统进行理论分析和数值仿真,验证自适应控制方法对混沌系统的有效性。
最后,对混沌系统的自适应控制方法进行了展望。
关键词:混沌,自适应控制,稳定性1、引言混沌系统的控制问题一直是混沌理论研究中的一个重要课题。
在很多实际问题中,混沌运动是有害的,例如等离子体混沌会导致等离子体失控;强流离子加速器中的束晕——混沌导致严重的放射性剂量超标;半导体激光阵列中混沌运动会减弱输出光的相干性;电路系统中的混沌行为导致高幅度噪声和不稳定行为等。
显然,对于这些有害的混沌运动,对其进行必要的控制是非常重要的。
控制混沌的含义非常广泛。
一般来说,混沌系统的控制是指改变系统的混沌性态使之呈现和接近周期性动力学行为。
具体而言,控制混沌有三方面的含义:其一是混沌的抑制,即消除系统的混沌运动,而无需考虑所产生运动的具体形式;其二是混沌轨道的引导,即在相空间中将混沌轨线引入事先指定的点和周期性轨道的小领域内;其三是跟踪问题,即通过施加控制使混沌系统呈现事先要求的周期性动力学行为。
自从1990年Ott, Grebogi和Yorke提出0GY混沌控制方法以来,混沌控制研究得到了蓬勃发展,大量的混沌控制方法被提出,如时滞反馈控制方法、脉冲控制方法、参数共振微扰法、线性反馈法、神经网络法,以及自适应控制方法等。
在这些控制方法中,自适应控制方法作为一种重要的先进运动控制方法,在有干扰和模型不精确的情况下,仍然能有效的实现控制混沌的目的。
自适应控制混沌运动是由B.A.Huberman 等人提出的,后来S.Sinha等人进一步发展了这种方法。
它是通过参量的调整来控制系统,使其达到所需要的运动状态,而这种调节是依靠目标输出与实际输出之间的差信号来实现,通常是将差信号与系统的某个控制参量联系起来进行调节,逐步使实际输出量与预定的目标输出量的差值趋近于零。
2、混沌系统的自适应控制2.1、混沌系统的参数自适应控制方法混沌系统的参数自适应控制方法是由Huberman 最先提出的,Huberman 设计了一个简单的参数自适应控制算法,并将其应用到具有复杂振荡状态的混沌系统,它是通过目标输出与实际输出之间的关系来控制参数,使系统从混沌运动转变到规则的运动。
实验项目一:电脑控制混沌运动实验引言在非线性科学中,“混沌”这个词的含义和本意相似但又不完全一致,非线性科学中的混沌现象指的是一种确定的但不可预测的运动状态。
它的外在表现和纯粹的随机运动很相似,即都不可预测。
但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是来源于运动的不稳定性。
或者说混沌系统对无限小的初值变动和微扰也具有敏感性,无论多小的扰动在长时间以后,也会使系统彻底偏离原来的演化方向。
混沌现象是自然界中的普遍现象,天气变化就是一个典型的混沌运动。
混沌现象的一个著名表述就是蝴蝶效应:南美洲一只蝴蝶扇一扇翅膀,就会在佛罗里达引起一场飓风。
1 实验原理驱动非线性摆的混沌行为被相空间中它的运动和庞克莱点图所探讨。
这些点与非混沌的单摆的运动是不同的若干量可以被改变用来使正则运动变得混沌,这些可变量为驱动频率驱动振幅和初始条件。
描述振荡有3种方式:(1)角位置vs 时间;(2)相空间:角速度vs 角位置;(3)庞克莱点:在每个推动力的周期下的角速度vs 角位置。
当运动是混沌的,图像是不重复的时候,相空间和庞克莱点在认识混沌振动特别有用。
图1-1 相图2 实验步骤(1)振荡频率扭磁铁到圆盘直到3mm远。
去掉驱动上的供电,允许质点掉入平衡位置在振动器的另一边。
①检查角~时间图,是正弦振荡么?在衰减么?②检查相点(角速度相比于角)。
是什么形状的?阻尼量是怎么影响的?(2)非混沌振荡保持初始条件:在实验的剩余部分,保持质点底在最高点且当驱动臂在它的最低点的时候释放。
设置驱动臂振幅在 3.3cm左右。
确保驱动臂只当每次变化的时候打断光电门光束,掉正磁铁距离大约4mm远离圆盘。
打开供电调整电压到4.5V 因此振动器做简单往复运动。
点击开始并且记录一定时间内的数据。
①检查角度~时间图。
是正弦的?周期?此周期和驱动周期相同么?为什么和2的不同?②检测角速度~角位移图(相图)。
与2的相图有什么区别?增加供电电压来逐渐增加驱动频率。
第三讲 自适应控制自适应控制自适应控制也是一种鲁棒控制方法,前面所讲的所有鲁棒控制(包括变结构控制),它们的基本思想是基于被控对象与内环控制的不匹配及不确定性的最坏情形的估计而展开设计的,它们的内环控制律是固定的,外环控制增益根据不确定性的估计来设定;而自适应控制的基本思想是根据一些在线算法改变控制律中的增益值或其他参数,控制器在操作过程中“学得”一套合适的参数。
自适应控制尤其适合于机器人这种执行重复的作业任务的场合,通过不断的重复,自适应控制可以改善跟踪性能。
根据设计技术不同,机器人自适应控制分为三类,即模型参考自适应控制(MRAC )、自校正自适应控制(STAC)和线性摄动自适应控制。
其控制器结构图如图5-4所示。
图5-4 自适应控制器的基本结构基于逆动力学的自适应控制本节主要讨论自适应控制在机器人控制问题上的应用。
刚性机器人适于自适应控制的一个关键特征是参数线性。
也就是说,虽然运动方程是非线性的,但如果把方程系数中连杆质量,惯性矩等参数分离出来却可以得到线性的关系,n 个连杆的刚性机器人动力学方程可以写成u p q q q Y q g q q q C qq M ==++),,()(),()( (5-1) 式中,),,(q qq Y 是n ×r 维矩阵;p 是r 维参数向量。
机器人界的学者在20世纪80年代中期得到了这一结果,随之第一个全局收敛的自适应控制律也出现了,这些自适应控制律的结果都是基于逆动力学展开的。
首先,系统动力学方程为 u p q q q Y q g q q q C qq M ==++),,()(),()( (5-2) 逆动力学控制律为ˆˆˆ()(,)()qu M q a C q q q g q =++ (5-3) 其中10()()dddq a q K q q K q q =---- (5-4)d q 是理想的轨迹,d q qe -=是位置跟踪误差。
ˆˆˆˆ,,,M C g p 分别为M ,C ,g ,p 的估计值。
1.3混沌控制混沌控制一般分为:消除,抑制混沌现象的发生。
即就是使系统稳定到期望的平衡点或周期轨道;另一个是使原混沌系统产生新的混沌现象或使原本稳定的系统产生混沌现象,这也就是所谓的“混沌反控制”问题,它的目的是诱导出有用的混沌现象。
因为还没有建立系统的混沌理论,对混沌发生的机制理解的不够全面,混沌反控制问题是一个很有挑战的领域,我们在这里所将的混沌控制仅指对混沌的抑制。
因为混沌所呈现的运动是剧烈震荡的,它的出现常使系统处于不稳定的状态,这在工程中往往是有害的,因而快速地抑制混沌就是我们控制的一个目标。
在混沌吸引子上镶嵌着无数的不稳定周期轨道,而这些周期轨道往往和系统的一些良好的性能相关,这也就成为混沌控制的另一目标。
我们将周期1的轨道成为平衡点,对平衡点的镇定我们可以看做是一般非线性系统的的镇定。
大于周期1的轨道我们常常称为不稳定周期轨道UPOs(Unstable Periodic Orbits),对于一个混沌系统,如果我们能知道描述系统的动力学方程,其平衡点往往是能被求解出来的,并进行分析的;但是,我们却无法知道它的无稳定周期轨道的动力学特性,将混沌系统控制到自身所包含的一条不稳定周期轨道上,这也就成了混沌控制于其他控制的一个重要区别。
自从OGY法开辟了混沌控制的先河,已经发展了很多方法来进行混沌控制,如偶然正比反馈技术OPF (Occasional Proportional Feedback)[15],变量反馈控制(Variable Feedback Control)[16-18],周期脉冲控制法,参数周期扰动法等[19-21],但这些方法很多都是在一定条件下才有效的。
现在很多学者开始将控制理论中的一些方法应用到对混沌的控制上面取得了非常好的效果,比如PID控制[22-24],神经网络法[25-28],模糊控制[29-31],各种自适应控制[32-40]等,但是由于混沌系统的复杂性,并没有形成一种统一理论,大多数是对某一确定的混沌系统的控制,在这方面还需要大量深入的研究。