射频集成电路设计基础
- 格式:pdf
- 大小:1.76 MB
- 文档页数:43
复 习 提 纲第一章 引言1.通信系统的一般模型。
2.模拟通信系统模型。
3.为什么需要调制?(调制的原因)4.什么是模拟通信和数字通信系统?5.数字通信系统模型。
6.RF IC 所涉及的相关学科和技术有哪些?7.RF IC 设计应具备的知识面有哪些?8.RF IC 的设计流程图。
第二章 射频与微波基础知识1.什么是传输线?2.有关名词解释(见上)3.真空中电磁波速度、波长与频率之间的关系式。
4.典型传输线有哪些?5.无损耗传输线模型。
6.在无反射波情况下,传输线上任一点的输入阻抗。
7.无限长传输线特征阻抗是多少?8.反射系数的定义及表达式。
9.如何灵活地求S Z 、IN Z 、OUT Z 、L Z 以及S Γ、IN Γ、OUT Γ、L Γ。
10.在Smith 圆图上观察,对于串、并联LC 时的Z 沿电阻圆、电导圆的变化规律。
11.二端口网络模型,P122 12.S 参数模型,S 参数物理意义。
13.连接输入输出匹配网络的二端口网络,写出S Γ、IN Γ、OUT Γ、L Γ,用阻抗表示。
14.四种不同功率的定义,P27. 15.三种功率增益的定义。
16.Γ与Z 的关系以及Z 与Γ的关系。
17.Smith 圆图的识别。
18.串并联支路的阻抗匹配,P35.19.波长与传输线阻抗的关系(是否可阻抗变换)。
20.L 形匹配网络(P39-48的例题) 21.习题。
第三章 无源元件1.趋肤效应2.趋肤深度3.趋肤深度与趋肤效应的关系4.电阻分类、等效电路、阻抗绝对值与频率的关系5.电容、等效电路、阻抗绝对值与频率的关系6.电感、等效电路、阻抗绝对值与频率的关系 7、作业题第四章噪声及有源器件1.噪声模型2.噪声分类及定义3.相关名词解释(见上)4.长沟道MOS管噪声模型5.沟道噪声包括哪些?6.噪声带宽定义7.按比例缩小的恒电场规则8.按比例缩小对模拟电路的影响9.晶体管等效输入噪声源10.双极型晶体管的等效噪声模型以及求2v、2n i的方法n11.MOSFET等效输入噪声模型,并用等效电路来解释2v、2n i的n计算方法。
射频电路设计基础1、数字电路模块和模拟电路模块之间的干扰如果模拟电路射频和数字电路单独工作,可能各自工作良好。
但是,一旦将二者放在同一块电路板上,使用同一个电源一起工作,整个系统很可能就不稳定。
这主要是因为数字信号频繁地在地和正电源>3 V之间摆动,而且周期特别短,常常是纳秒级的。
由于较大的振幅和较短的切换时间。
使得这些数字信号包含大量且独立于切换频率的高频成分。
在模拟部分,从无线调谐回路传到无线设备接收部分的信号一般小于lμV。
因此数字信号与射频信号之间的差别会达到120 dB。
显然.如果不能使数字信号与射频信号很好地分离。
微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。
2、供电电源的噪声干扰射频电路对于电源噪声相当敏感,尤其是对毛刺电压和其他高频谐波。
微控制器会在每个内部时钟周期内短时间突然吸人大部分电流,这是由于现代微控制器都采用CMOS工艺制造。
因此。
假设一个微控制器以lMHz的内部时钟频率运行,它将以此频率从电源提取电流。
如果不采取合适的电源去耦.的地方必将引起电源线上的电压毛刺。
如果这些电压毛刺到达电路RF部分的电源引脚,严重时可能导致工作失效。
3、不合理的地线如果RF电路的地线处理不当,可能产生一些奇怪的现象。
对于数字电路设计,即使没有地线层,大多数数字电路功能也表现良好。
而在RF频段,即使一根很短的地线也会如电感器一样作用。
粗略地计算,每毫米长度的电感量约为l nH,433 MHz时10 toni PCB线路的感抗约27Ω。
如果不采用地线层,大多数地线将会较长,电路将无法具有设计的特性。
4、天线对其他模拟电路部分的辐射干扰在PCB电路设计中,板上通常还有其他模拟电路。
例如,许多电路上都有模,数转换ADC或数/模转换器DAC。
射频发送器的天线发出的高频信号可能会到达ADC的模拟淙攵恕R蛭魏蔚缏废呗范伎赡苋缣煜咭谎⒊龌蚪邮誖F信号。
如果ADC输入端的处理不合理,RF 信号可能在ADC输入的ESD二极管内自激。
射频集成电路设计1. 引言射频集成电路(RFIC)是一种专门用于射频信号处理的集成电路。
射频信号在无线通信、雷达和无线电频段的应用中至关重要。
射频集成电路设计是关于将射频电子设备集成到单个芯片上的过程。
它要求设计师具备深入的电子工程知识和专业技能。
本文将重点介绍射频集成电路设计的基本概念、设计流程和常用技术。
通过对每个主题的详细讲解,读者将能够全面地了解射频集成电路设计领域的最新动态和发展趋势。
2. 射频集成电路设计基础2.1 射频电路概述射频电路是指工作频率在几百千赫兹(kHz)到几千兆赫兹(GHz)范围内的电路。
射频电路通常用于无线通信系统、雷达系统和广播系统等领域。
与低频电路相比,射频电路的设计更加复杂,需要考虑很多特殊因素,如频率选择、阻抗匹配和信号传输等。
2.2 射频集成电路分类根据功能和工作频率的不同,射频集成电路可以分为不同的分类。
常见的射频集成电路包括功率放大器、混频器、振荡器和滤波器等。
每个分类都有各自的特点和用途。
2.3 射频集成电路设计流程射频集成电路设计流程是指从需求分析到最终产品实现的一系列环节。
它包括系统规划、电路设计、性能仿真和验证测试等步骤。
设计流程的每个环节都需要设计师仔细分析和设计,以确保最终产品能够满足设计要求和性能指标。
3. 射频集成电路设计常用技术3.1 频谱分析频谱分析是一种用于分析射频信号频率成分和幅度的技术。
通过频谱分析,设计师可以了解信号的频率分布情况,并基于此进行设计优化。
3.2 阻抗匹配技术阻抗匹配是指在输入输出端口之间实现匹配的技术。
阻抗匹配可以提高信号传输效率,减少信号反射和损耗,从而提高系统的性能。
3.3 射频集成电路建模和仿真射频集成电路建模和仿真是用计算机模拟射频电路的工作过程。
通过建模和仿真,设计师可以评估不同的设计方案,并优化设计参数,以满足特定的性能要求。
3.4 射频功率放大器设计射频功率放大器是射频集成电路中最常用的组件之一。