混合阴阳离子表面活性剂体系的物理化学性质
- 格式:pdf
- 大小:1.01 MB
- 文档页数:6
长期以来认为阴一阳离子表面活性剂在水中容易相互作用会产生沉淀或絮状络合物.从而产生负效应甚至使表面活性剂失去表面活性.然而实验表明在一定条件下阴一阳离子表面活性剂复配体系具有很高的表面活性。
显出较大的增效作用。
并且两者复配体系在一起会产生强烈的电性作用。
因而使表面活性大大提高。
增效作用的表现:①降低表面张力的效能②降低表面张力的效率③降低体系的cmc④增加表面吸附。
增效效应的利用:①去污性能②增溶效能③泡沫性能④润湿性能⑤乳化性能现在关键是怎样不让两者相互作用而发生沉淀,经过研究和实验。
主要有以下3种可行的方法:①非等摩尔复配。
以阴离子表面活性剂为主,加少量阳离子表面活性剂。
②在阳离子表面活性剂分子中引入聚氧乙烯基。
这样有利于降低分子的电荷密度从而减弱离子头基间的强静电作用,同时由于聚氧乙烯链的亲水性和位阻效应减弱了阴一阳离子表面活性剂之问的相互作用,从而对沉淀和凝聚起到明显的抑制作用。
③在复配体系中加人溶解度较大的非离子表面活性剂。
阳离子表面活性剂的定义阳离子表面活性剂溶于水发生离解,形成的阳离子具有表面活性,其亲水基可以含氮、磷或硫,但目前工业上具有实际意义的主要是含氮的。
在含氮的阳离子表面活性剂中,按氮原子在分子结构中的位置又可分为胺盐、季铵盐、氮苯(环状的吡啶型)和咪唑啉型等四类,其中以季铵盐类用途最广,其次是胺盐类。
阳离子表面活性剂具有许多优越性能,除可作纤维用柔软剂、抗静电剂、防水剂和染色助剂外,还可用作矿物浮选剂以及杀菌剂、防锈剂和特殊乳化剂等。
阳离子表面活性剂的种类和结构特征1.胺盐型阳离子表面活性剂按氮原子上的有机取代基数,胺盐可分为伯胺盐、仲胺盐和叔胺盐3种,它们在性质上非常接近,且往往混合在一起,所以统称胺盐型阳离子表面活性荆。
这类表面活性剂的憎水基碳数为12-18。
其主要用途是作纤维助剂、矿物浮选剂、分散剂、乳化剂和防锈剂。
胺盐型阳离子表面活性剂按化学结构可分为烷基胺盐型、氨基醇脂肪酸衍生物型、多胺脂肪酸衍生物型和咪唑啉型4种。
阴阳离子混合表面活性剂体系的性质及其应用
刘敏;韩恩山;朱令之
【期刊名称】《河北工业大学学报》
【年(卷),期】2001(030)004
【摘要】综述了阴阳离子混合表面活性剂体系的表面活性、相行为、增溶性及起泡性等一些性质,说明了阴阳离子混合表面活性剂的不同分子比对界面性质的影响以及阴阳离子混合表面活性剂体系的广泛应用前景.
【总页数】7页(P68-74)
【作者】刘敏;韩恩山;朱令之
【作者单位】河北工业大学化工学院;河北工业大学化工学院;河北工业大学化工学院
【正文语种】中文
【中图分类】TQ423.3
【相关文献】
1.阴离子混合表面活性剂体系的胶束性质 [J], 杨普华;翁蕊;罗幼松;孙志斌;张禹负;李彩云
2.碳链长度对阴阳离子表面活性剂体系性质的影响 [J], 刘纲勇;王军
3.阴离子/阳离子混合表面活性剂体系的协同效应及其应用 [J], 崔正刚
4.阴阳离子表面活性剂体系超低油水界面张力的应用 [J], 韩霞;程新皓;王江;黄建滨
5.高灵敏显色体系的研究——镧-偶氮硝羧-阴阳离子混合表面活性剂体系 [J], 周执明;胡杰;王益闻
因版权原因,仅展示原文概要,查看原文内容请购买。
阴-阳离子表面活性剂复配增效效应介绍阴-阳离子表面活性剂复配对表面活性的影响的决定因素有很多,在双方结构合适的情况下有协同作用。
在阴-阳离子表面活性剂混合体系中,由于分子间正/负离子的强静电吸引作用,相互复配后容易形成棒状胶团,浓度超过CMC后会发生聚集,出现浑浊、分相等情况。
控制疏水链的长度,用短链的表面活性剂或增加亲水基团(乙氧基化),则有可能在溶液中不出现沉淀现象,并使表面活性较单一组分有大幅度提高。
阴-阳离子表面活性剂复配的增效效应体现在以下几点:1、去污性能阳离子表面活性剂可少量添加在以阴离子表面活性剂为主的洗涤剂中作为增效剂,提高去污能力。
2、增溶性能在阴-阳离子表面活性剂复配体系中,随着一种表面活性剂加入到另一种带相反电荷的表面活性剂中,混合胶团的聚合数会急剧增加,同时胶团过渡到棒状结构,这种棒状胶团对增溶于胶团内核的被增溶物具有较大的增溶能力。
3、泡沫性能阴-阳离子表面活性剂间存在电性吸引,并且吸附层的等比组成是实现最大电性吸引所必需的。
电荷作用减弱了吸附层和胶团中表面活性离子之间的电性斥力,从而使表面吸附增加。
上述作用使得复配溶液具有很低的表面和界面张力,这样势必引起起泡力增加。
与此同时,由于吸附层中分子排列紧密以及分子之间较强的相互作用还使得表面黏度增大、表面膜机械强度增加,使之受外力作用时不易破裂、泡沫内液体流失速度变慢、气体透过性降低,延长了泡沫的寿命。
4、润湿性能由于阴-阳离子表面活性剂复配体系表面吸附增强,体系表面张力较低,这样复配体系将具有较强的润湿能力。
5、乳化性能表面活性剂的乳化能力取决于本身的亲水亲油平衡、油相的亲水亲油值以及表面活性剂在油、水界面形成膜的牢固程度等。
在阴离子表面活性剂中加入少量阳离子表面活性剂,或反之,由于电荷作用之故,复配表面活性剂的表面活性增加,在油/水界面形成的膜致密性增加,故乳化能力增强。
此外,复配体系还可同时具两组分的优点。
阳离子表活剂是较好的抗静电剂和杀菌防霉剂,但洗涤效果不佳,与阴离子表活剂复配后可得到化纤产品的优良洗涤剂,兼有洗涤、抗静电、柔软、防尘等作用。
表面活性剂的物化特性及应用表面活性剂,也称为表面活性剂剂,是一类具有非常重要的物化特性的化学物质。
它们具有可以在水或油水界面上吸附并降低表面张力的能力,因此广泛应用于许多工业和日常生活中。
一、表面活性剂的化学结构特点表面活性剂的化学结构特点可以分为两个方面。
第一,表面活性剂的分子通常具有小的亲水性和疏水性区域。
也就是说,在表面活性剂的分子中存在着水溶性的羧酸、羟基等亲水性基团和脂肪酸基、芳香环、烷基等疏水性基团。
这样的分子结构可以使表面活性剂吸附于水和油之间的界面,起到悬浮、乳化、抗沉淀等作用。
第二,表面活性剂通常具有离子性质或非离子性质。
离子表面活性剂根据分子的带电性质,可以分为阴离子表面活性剂、阳离子表面活性剂和非离子表面活性剂。
二、表面活性剂的三相界面作用机制表面活性剂吸附于水和油之间的三相界面上,并利用其低表面张力,具有悬浮、乳化、泡沫稳定、渗透、溶解、表面扩张等作用。
悬浮作用是表面活性剂分散固体颗粒在水中的能力。
表面活性剂吸附在固体表面降低表面张力,形成一层带状膜,使颗粒变得比较稳定。
乳化作用是表面活性剂吸附于油和水之间的界面,使油滴和水滴能够成为胶体混合物,从而形成均匀、稳定的乳液。
泡沫稳定作用是表面活性剂吸附于气液界面上形成厚膜,形成一个稳定的泡沫。
渗透性作用是表面活性剂利用其亲水性和疏水性区域与水和油相相互作用,发生膨胀和深入渗透现象。
表面活性剂还可以通过与气体、有机物以及金属离子等相互作用中的其他机制,具有很广泛的应用。
三、表面活性剂的应用表面活性剂在日常生活和工业生产中有很多应用。
1.清洁剂。
例如洗涤剂、清洁剂、肥皂、洗发水等。
2.乳化剂。
例如面包、乳制品、染料、暖湿器等。
3.泡沫剂。
如淋浴泡沫、洗浴泡沫、泡沫消毒剂等。
4.润滑剂。
如油漆、墨水、油墨等。
5.胶粘剂。
如胶水、胶带、玻璃胶、乳胶漆等。
6.生物技术领域。
如脂质体、纳米粒子等。
7.其他领域,如饲料和农药等。
总之,表面活性剂具有广泛的应用价值,对工业生产、日常生活、医药、环境保护等方面都有着重要的作用。
表面活性剂物理化学教案中的表面活性剂的溶解度与溶液性质一、引言表面活性剂是一类在溶液中具有特殊表面活性的化合物,广泛应用于日常生活和工业领域。
在教学中,深入了解表面活性剂的溶解度与溶液性质的关系对于学生掌握相关知识至关重要。
本教案旨在介绍表面活性剂的溶解度与溶液性质,并提供一些实验案例和示意图,以帮助学生更好地理解和掌握这一知识。
二、表面活性剂的溶解度1. 溶解度的定义表面活性剂的溶解度指的是单位溶剂中能溶解的表面活性剂的量。
溶解度的大小受多种因素的影响,如温度、溶剂性质以及分子结构等。
2. 影响溶解度的因素(1)温度:一般情况下,温度对表面活性剂的溶解度具有正相关的影响。
温度升高可以提高溶剂的分子活动性,促使更多的表面活性剂分子溶解于溶液中。
(2)溶剂性质:不同的溶剂对表面活性剂的溶解度影响较大。
极性溶剂一般具有较高的溶解度,而非极性溶剂的溶解度较低。
(3)分子结构:表面活性剂的分子结构对其溶解度有一定影响。
通常情况下,分子结构中含有较多亲水基团的表面活性剂溶解度较高。
3. 溶解度与关键参数的关系为了更好地理解表面活性剂的溶解度与溶液性质之间的关系,我们可以考虑一些关键参数的变化对溶解度的影响。
例如,随着表面活性剂的疏水基团链长的增加,溶解度会减小;而随着亲水基团的增加,溶解度则会增加。
三、表面活性剂溶液的性质1. 表面活性剂的胶团形成当表面活性剂溶解于溶液中时,其分子会通过有序排列形成胶团结构。
这种胶团结构可以维持表面活性剂溶液的稳定性并发挥其特殊功能。
2. 表面张力的改变表面活性剂的添加会改变溶液中的表面张力。
表面活性剂会吸附在液体表面,降低表面张力,使液体表面更容易形成薄膜状,增加液体与其他物质的接触面积。
3. 乳化作用表面活性剂在溶液中还可以发生乳化作用。
乳化作用是指表面活性剂能够将两种不相溶的液体混合形成乳状溶液。
这种乳状溶液能够稳定存在并具有较好的流动性。
四、实验案例与示意图为了更好地巩固学生对表面活性剂溶解度与溶液性质的理解,我们可以设计一些实验案例。
两性表面活性剂两性表面活性剂,是指同时具有阴、阳两种离子性质的表面活性剂。
从它的结构来看,与憎水基团相连接的既有阳离子,也有阴离子。
其结构可表示如下:它是一种温和性的表面活性剂。
两性表面活性剂分子与单一的阴离子型、阳离子型不同,在分子的一端同时存在有酸性基和碱性基。
酸性基大都是羧基、磺酸基或磷酸基,碱性基则为胺基或季铵基,能与阴离子、非离子型表面活性剂混配,能耐酸、碱、盐以及碱土金属盐。
蛋黄里的卵磷脂是天然的两性表面活性剂。
现在常用的人工合成两性表面活性剂,其阴离子部分大多是羧酸基,也有少数是磺酸基。
其阳离子部分大多是胺盐或季胺盐。
由胺盐构成阳离子部分的叫氨基酸型;由季胺盐构成阳离子部分的叫甜菜碱型。
氨基酸型两性表面活性剂的水溶液呈碱性。
如果在搅拌下,慢慢加入盐酸,变为中性时仍无变化。
至微酸性时则生成沉淀。
如果再加入盐酸至强酸性时,沉淀又溶解。
这就说明,呈碱性时表现为阴离子表面活性剂,呈酸性时,表现为阳离子表面活性剂。
但是,当阳离子性和阴离子性正好在平衡的等电点时,亲水性变小,就生成沉淀。
甜菜碱型两性表面活性剂,最大的特点是无论在酸性、中性或碱性的水溶液中都能溶解。
即使在等电点时也无沉淀。
此外,渗透力、去污力及抗静电等性能也较好。
因此,是较好的乳化剂、柔软剂。
等电点是指两性电解质在溶液中电离时,酸和碱的电离度相等时的状态。
其分子溶于水发生电离后,与亲油基相连的亲水基是同时带有阴阳两种电荷的表面活性剂。
亲油基一般是长碳链烃基,亲水基中的阳离子都是由基或季铵基组成的,阴离子可以由羧基、磺酸基或磷酸基组成。
实际应用的品种主要是氨基酸型和甜菜碱型两性表面活性剂,产量是表面活性剂中最小的。
两性表面活性剂通常具有良好的洗涤、分散、乳化、杀菌、柔软纤维和抗静电等性能,可用作织物整理助剂、染色助剂、钙皂分散剂、干洗表面活性剂和金属缓蚀剂等。
但是,这类表面活性剂的价格较贵,实际应用范围较其他类型的表面活性剂小。
分子中的阴离子为羧基,阳离子为铵盐。
物理化学中的表面活性剂表面活性剂是物理化学领域中的一类重要化合物,它们在许多领域中发挥着关键作用。
本文将介绍表面活性剂的定义、分类、性质以及在实际应用中的重要性。
一、表面活性剂的定义和分类表面活性剂是一类具有降低液体表面张力的化合物。
它们通常由两部分组成:亲水基团和疏水基团。
亲水基团能与水分子形成氢键,而疏水基团则对水不具有亲和力。
根据亲水基团的性质,表面活性剂可分为阴离子、阳离子、非离子和两性离子四类。
阴离子表面活性剂是最常见的一类,其亲水基团通常是负离子,如硫酸根、磺酸根等。
阳离子表面活性剂的亲水基团是正离子,如胺基、季铵盐等。
非离子表面活性剂则没有离子基团,通常是由多个氧原子组成的聚氧乙烯链。
两性离子表面活性剂则同时具有正离子和负离子基团。
二、表面活性剂的性质表面活性剂具有许多独特的性质,这使得它们在各种应用中发挥重要作用。
1. 降低表面张力:表面活性剂能够在液体表面形成单分子膜,降低液体的表面张力。
这使得液体能够更容易湿润固体表面,提高液体在固体上的润湿性。
2. 分散和乳化作用:表面活性剂在液体中形成胶束结构,能够有效地分散固体颗粒或液滴。
这使得表面活性剂在洗涤剂、乳化剂等领域有广泛应用。
3. 胶束形成:表面活性剂在适当浓度下能够形成胶束结构。
胶束是由表面活性剂分子组成的微小球形结构,疏水基团朝向内部,亲水基团朝向外部。
胶束的形成使得表面活性剂在溶液中具有良好的分散性和乳化性。
4. 表面吸附:表面活性剂能够在固体表面吸附形成单分子层,这对于改善固体表面性质、调节固体颗粒的分散性和稳定性具有重要作用。
三、表面活性剂的应用表面活性剂在许多领域中都有广泛的应用。
1. 日用化学品:表面活性剂是洗涤剂、肥皂、洗发水等产品的重要成分。
它们能够有效地去除油污和污渍,并提供良好的润湿性。
2. 医药领域:表面活性剂在药物制剂中常用作乳化剂、分散剂和溶剂。
它们能够改善药物的稳定性和生物利用度。
3. 石油工业:表面活性剂在石油开采中被广泛应用。
阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅰ)——表面活性第36卷第3期2OO6年6月日用化学工业ChinaSurfactantDeter~ent&CosmeticsV oI.36No.3June20o6阴离子表面活性剂与阳离子表面活性剂的相互作用(I)表面活性杜志平,王万绪(中国日用化学工业研究院,山西太原030001)摘要:通过临界胶束浓度(cmc),最低表面张力(y一),表面吸附(I1),表面膜强度和表面润湿等,介绍了阴/N离子表面活性剂混合溶液的表面活性.阴/阳离子表面活性剂混合溶液,消除了同电荷之间的斥力,形成了正,负电荷间的引力,十分有利于两种表面活性剂离子间的缔合,同时还增加了疏水性.因此,在适宜条件下,可以使胶团更容易形成,表面(或界面)上吸附量增加,使得复配溶液具有很低的表面和界面张力,提高表面活性.不仅等摩尔比的混合溶液的cmc和y一显着下降,非等摩尔t 昆合也使cmc减小,y一降低.等摩尔混合溶液表面吸附层分子摩尔比近于l:1,其他不同比例时,表(界)面层摩尔比在大多数情形中仍接近1:1.吸咐层呈等比组成时达到最大电性吸引,表(界)面吸附量趋于饱和.与此同时,由于吸附层中分子间静电吸引力的较强相互作用,还使得表面膜机械强度增加,并表现出良好的润湿性能.关键词:阴离子表面活性剂;阳离子表面活性剂;表面活性;表面吸附;表面膜;润湿性中图分类号:TQ432.1文献标识码:A文章编号:1001—1803(2006)03—0187—04 表面活性剂是一类易吸附于界面,从而明显改变界面的物理性质的两亲化合物,在其分子结构中同时含有极性和非极性基团,即头基和尾基.表面活性剂的分类方法很多,一般根据极性基团的类型划分为,阴离子,阳离子,两性离子和非离子四大类.阴离子表面活性剂含有带负电荷的极性头基,如羧酸基(一COO一),硫酸基(一0s0)和磺酸基(一S03-)等;而阳离子表面活性剂则含有带正电荷的头基,如三甲基铵(一N(CH3)3),三乙基锛(一P(C2))等.表面活性剂性能的优劣既取决于其分子结构的特点,即极性基团和非极性基团的组成,又受物理化学环境及分子间相互作用的影响.改进表面活性剂的应用性能的途径一般有两种:一种是根据结构与性能的关系设计合成新型表面活性剂,另一种是通过多种表面活性剂的复配得到具有优越应用性能的产品.开发表面活性剂新品种虽然有意义,但通过分子结构的调整去达到特定的综合性能,往往难度大,且实际应用前的毒性安全性试验又十分费事,费力而昂贵.相比之下通过研究表面活性剂问的相互作用,利用其在一定条件下的协同效应使之达到特定的综合性能往往比前者迅速,经济,有效.因此,几十年来该领域内的研究工作一直十分活跃,已经建立起比较系统的理论体系和实验手段l1J.对于离子电性相反的阴,阳离子表面活性剂混合体系,虽然低浓度时表现出极高的表面活性,但是浓度提高时,极容易形成大的相对分子质量,不易电离,由疏水阴离子与疏水阳离子构成的盐沉淀,失去表面活性_2J.因此,长期以来,涉及此领域的研究不多.随着科学研究的进一步深入,人们发现在适当的条件下,阴/阳离子表面活性剂复配可以不发生沉淀,而且由于强烈的相互作用,可以有明显的协同作用,使表面活性得到极大提高l3.4J,下面进行简单介绍.1临界胶束浓度和最低表面张力疏水基相同,亲水基分别为有机基团(即其中有疏水部分)作为反离子及无机离子作为反离子表面活性剂的对比研究表明,前者的l临界胶束浓度(c啪)小,最低表面张力(ytoo)也低,即表面活性高.对十二烷基烷基硫酸铵表面活性剂同系物表面活性的研究,发现cmc值随季铵离子中烷基链长增加而下降l5J(表1).类比这种表面活性剂的分子结构与阴/阳离子表面活性剂复配体系在水溶液中的缔合情况,可以设想在适宜条件下,后者有可能在溶液中不发生沉淀,并具有比单一表面活性剂更高的表面活性.收稿日期:2006—01—10;修回日期:20O6—02—24作者简介:杜志平(1960一),女(汉),山西人,教授级高工,英国I.KNN2lfl大学博士,联系电话:(0351)4084691,E—mail:**************.l87-嘲日用化学工业第36卷表1十二烷基烷基硫酸铵水溶液的cmc(25℃)[5]Tab.1cmcofalkylammoniumdodecylsulfates(25oC)表面活性剂cmc/mol?LI1[C2H5N(CH3)3]c12sO4一[QN(CH3)3]c12s04一[C6H13N(CH3)3]cnn~s04一[CsU17N(CH3)3]c12SO4一[C10H21N(CH3)3]c12H:sSO4一[C2H5NH3]CniluSO4一[C4H9NH3]C12H25S04[c6HI3NH3]C12H~SO4[H17NH3]C12一c8Hl7N(CH3)3Br/C8Hl7SO4Na等摩尔复配溶液的表面张力及界面张力测定结果表明:混合物的表面活性远较单一表面活性剂为高l6J,其水溶液的cmc约为7.5×l0~mo[/L,是纯C8H】7N(C)3Br的1/35,纯H17S04Na的1/20;空气/水表面的y约为23mN/m (纯C8H17N(CH3)3Br为41mN/m,纯C8H17so4Na为38mN/m).此1:1的混合物可使庚烷/水界面张力降至单一表面活性剂难以达到的0.2mN/m(纯c8H17N (C)3Br为14mN/m,纯C8H17S04Na为11raN/m)L6J. 表2列出一些阴/阳离子表面活性剂混合物和单一表面活性剂的cmc和y,可以看出,不仅等摩尔比的阴/阳离子表面活性剂混合物显示出高表面活性,非等摩尔配比时,阴/阳离子表面活性剂混合也使cmc减小,y一降低,表面活性提高l_5J.少量阳离子表面活性剂与阴离子表面活性剂混合(或少量阴离子表面活性剂混入阳离子表面活性剂),即可使溶液的表面活性明显提高lI.c8Hl7N(Ctt3)3Br/C8H17S04Na混合溶液的表面张力(y)与组成()间的关系曲线(图1),更能形象说明阴/阳离子表面活性剂在表面活性上的相互促进作用l6J.图1表明,少量C8H17SO4Na与c8H17N(CH3)3Br混合(或少量C8H17N(CH3)3Br混入c8H17S04Na),都可使溶液的表面张力迅速降低,在等摩尔比混合时表面张力达到最低值6.这种情况,不但存在于浓度较大时(图1中曲线3),而且在浓度较小时(图1中曲线1和曲线2)也存在.阴/阳离子表面活性剂混合物的增效作用,不仅表现在原来已具有相当大的表面活性的表面活性剂上(如c12以上),而且对于表面活性不大,不易生成胶团的两亲分子(如H1N(cH3)3Br,C8H17SO4Na)和特殊表面活性剂(如含氟表面活性剂)亦有此种特性_5].即使在单纯溶液中表面活性很低,不能形成胶团的短链"表面活性剂",阴/阳离子混合体系也有很高的表面活性,可以在较低浓度188?时即形成胶团【引.C6H13N(c)3Br和Hl3s04Na混合溶液的表面活性就相当高,ClTIC约为1.1×l0~moVL,比c8Hl7SO4Na的cmc还低,y.也比c8Hl7S04Na{l~[.由此可见,阴/阳离子表面活性剂之间强烈的作用,使混合表面活性剂的表面活性大为增加,具有普遍性.表2某些表面活性剂的唧和),一值(25℃)【5JTab.2ticandncofsuffactantmixtures(25oC)注:1)1:1阴/阳离子表面活性剂复配体系的一按单一表面活性剂浓度计算,非等摩尔比复配体系的—c则按总浓度计算.混合溶液总质凰摩尔浓度(m)/rmJ?kg一[6J:l5×l0一21×l032×l0图1H17N(CH3)3Br/CsHl7so4Na混合溶液的y与的关系曲线(25℃)Fig.1Surfacetension(),)ofC8HI7N(CH3)3Br/C~Ht7SO4Na mixtureslt8afunctionofmoleratio()阴/阳离子表面活性剂复配后的沉淀现象是由于强静电作用使两者相结合,形成不溶于水的相对分子质量较大的结合体而造成的,如果能够控制疏水链的长度,用短链表面活性剂或增加亲水基团(乙氧基化),则有可能在溶液中不出现沉淀现象,并使表面活性较单一组分有大幅度提高,达到增效作用.表3为辛基酚聚氧乙烯硫酸钠(c8H】7c6}{4(I)C2H4)9.6OSO3Na)与十二烷基三甲基溴化铵(C12Hz~N(CH3)3Br)以不同摩尔比333333333一一一一一一一一一OOOOOOOOO×××××××××∞勰∞∞g{勰42OO521O箜杜志平等:阴离子表面活性剂与阳离子表面活性剂的相互作用(I)——表面活性复配后的cmc和),一,说明在一种组分中加入很少的另一种组分,即产生很强的相互作用,使混合体系具有高表面活性l8J.由于较大聚氧乙烯基团的引入,在各种配比和浓度(如超过2X10I3mol/L)下,混合溶液都能呈透明均相状态.表3c8H17c6H4(OQIt4)9.6OS03Na与c12H25N(CH3)3Br混台体系的cme和)/eme[8]Tab.3cmcandy—ofQHI7C6H4(0C2H4)9.6OSOzNaandCl2HuN(CH3)sBrmixtures2表面吸附(r)由于阴,阳离子表面活性剂间存在异性离子问强烈的静电吸引作用,复配后会使表面吸附量明显增加,导致高表面活性【.在吸咐层呈等比组成时达到最大电性吸引,表面吸附层分子排列更紧密,吸附量增加达到最大值』.在c8H17N(cHa)3Br/C8H17so4Na等摩尔复配时,饱和吸附量可达5.6X100mol/cm2,相应的每个吸附分子平均所占面积约为0.3砌2,比单一表面活性剂溶液表面吸附层的最小分子面积(均大于0.4nrn2)小得多J.表4列出了C8H】7N(C)3Br/c8H17S04Na混合溶液在空气/水表面和正庚烷/水界面的吸附情况_6J.在所研究浓度下,等摩尔混合溶液的表(界)面吸附层中,c8Hl7N(cH3)3和c8Hl7So4一的摩尔比近于1:1;对于其他不同比例的混合溶液,表(界)面层中C8H】7N(CH3)3和C8H17So4一的摩尔比在大多数情形中仍接近1:l,不过在C(c8Hl7N(CH3)3Br)比例较小时也会出现r(c8H】7N(cH3)3)<PT的情况,因为在溶液浓度相当小时,离子问相互作用的影响减弱J.以上结果说明正,负离子的强烈电性相互作用对表,界面吸附的影响.表面吸附量增加形成排列紧密的碳氢链层,使得原来强极性,表面能较高的水表面,改变为非极性,低表面能的"油"表面,因而在很大程度上改变了表面性质,使之更接近于碳氢化合物表面.等摩尔cH1(cH3)3Br/C8H17S04Na混合溶液的最低表面张力(约23mN/m)与正辛烷的表面张力(约22mN/m)相近,以及溶液/庚烷的界面张力极低(<1mN/m)的现象,就是很好的例子.表4不同比例C8Hl7N(C}王3)3Br/QH17SO4Na混台溶液中表面活性离子的吸附量[6]Tab.4r(C8H17N(CH3)3)andrTofC8H17SO4NdC8H17N(CH3)3Brmixtures'Na):c(b"/,TX.10l,oCn(BH17N(CH3)3BI)/'L~,mdⅢ'an2/lll0I'咖一空气/100:13.00×10_..2.35.4水表面10:14.00×10一2.55.21:14.00×10—2.65.41:102.00×1022.65.4正庚烷/20:12.00×101.83.7水界面10:14.00×10~2.14.25:14.00×10—32.04.21:Q::兰:Q阴/阳离子表面活性剂混合溶液,不但消除了同电荷之问的斥力,而且形成了正,负电荷问的引力,十分有利于两种表面活性剂离子问的缔合,同时也就增加了疏水性.因此,在表面(或界面)上的吸附增加,也使胶团更容易形成,提高表面活性.3表面膜强度阴/阳离子表面活性剂混合体系表面吸附量的增加,使复配溶液具有很低的表面和界面张力.同时,由于吸附层中分子间静电吸引力的较强相互作用,表面膜机械强度增加.表5给出浓度为7.5X10I3mol/L 时气泡和液滴的"寿命"l6],在此浓度时,等摩尔复配溶液的气泡寿命比单一表面活性剂大得多;正庚烷液滴在"油"/水界面上的情况也相似.由于泡沫(或液滴)表(界)面吸附层中分子排列紧密以及分子之间较强的相互作用,使得表(界)面粘度增大,表面膜机械强度增加,使之受外力作用时不易破裂,泡沫(或液滴)内气(液)体流失速度变慢,透过性降低,延长了寿命.表5气泡在空气/水表面及正庚烷液滴在正庚烷/水界面的寿命l(25oC)[]I曲.5Lifetimeofairbubbleatair/watersurfaceandlifetime ofheptanedropatheptanefwaterinterface注:1)单泡法测溶液液面下形成气泡(液滴)后直至因守气(液体)透过液膜而消失的时间,以s为单位(在此浓度气泡或液滴不破裂).l89?斓4表面润湿日用化学工业第36卷与阴/阳离子表面活性剂混合溶液表现出的高表面活性相对应,混合溶液表现出良好的润湿性能.图2为C8Hl7N(CH3)3Br/Hl7s04Na混合溶液在石蜡表面上的润湿情况(图中c为体系总浓度,原文为lgc(CaH17N(CH3)3Br),可能有误,因为(C8H17N(cH3)3Br):(C8H17SO4Na)=0:1的曲线不可能在lgc(CsHl7N(c)3Br)下做出).在同一浓度(1×10I2mol/L)时,单一表面活性剂溶液在石蜡上的润湿角()约为100.,接近纯水在石蜡上的润湿角;而阴/阳离子表面活性剂混合溶液则显着不同,等摩尔混合溶液(1:1)润湿角可以降到l6.,在石蜡上近于铺展;在一种离子表面活性剂中只要加入少量电荷相反的另一种离子表面活性剂(1:10),润湿能力即有很大提高L2j2.对于其它比例(如l:50)的混合溶液,也有类似的情况.一3.5—3—2.5—2—1.5—1一O.50IgTn(c8Hl7N(CH3)3Br):n(c8Hl7SO4Na)[63:10:121:1031:1图2c8Hl7N(cHa)3Br/C8Hl7SO4Na混合溶液在石蜡表面的润湿角Fig.2ContactanglesofmixedC8Hl7N(Clt3)3Br/QH17SO4Na solutionatap日nsurfaceasafunctionoflgCT5小结阴/阳离子表面活性剂混合体系,由于其分子间极性基团的强静电吸引作用,表现出的临界胶束浓度(cmc)和表(界)面张力大大低于单一组分,使得表面吸附量(r)明显增大,润湿性能显着提高等.参考文献[1]HOLLANDPM,RUBINGHDN.Mixedsurfactantsystems[M]. Washington:AnOverview,InMixedSurfactantSystems,HollandPM, Rubin#DN(eds),AmericanChemicalSociety,1992:2—30.[2]赵国玺,朱耻瑶.正一负离子表面活性剂研究的新进展[c]//中国日用化学工业研究院信息中心.92国际表面活性剂,洗涤剂研讨会论文集.太原:中国日用化学工业信息中心.1992:4o5—412.[3]AMANTEJC,SCAMEHORNJF,HARWELLJHH.Precipifionof mixturesofanionicandcationicsurfactants[J].JColloidInterfaceSci, 1991.144(1):243—253.[4]STELLNERK,AMANTEJC,SCAMEHORNJF,eta1.Precipitionphenomenainmixturesofanionicandcationicsurfactantsinaqueoussolutions[J].JColloidInterfaceSci,1988,123(1):186—200.[5]赵国玺,朱砖瑶.表面活性剂作用原理[M].北京:中国轻工业出版社.2003.[6]赵国玺,程玉珍,欧进国.等.正离子表面活性剂与负离子表面活性剂在水溶液中的相互作用[J].化学,1980,38(5):409—420.[7]李学刚,宋丽.阴,阳离子混合表面活性剂的表面活性[J].日用化学工业,1997(3):12—15.[8]李学刚,张光先.阴阳离子表面活性剂混合体系的表面活性[J].西南农业大学,1995,17(4):286—290.[9]SHINODAK.Colloidsurfactants[M].NewY ork:AcadPress,1963.[10]HARMEDHS.Thephysicalchemistryofelectrolyticsolutions[M].2nded.NewY ork:ACSMonographSet,Reinhold,1950.InteractionsbetweenaIli0Ilicsurfactantsandcationicsurfactants(I)——SurflaceactivityDUZhi—ping.WANGWan—xu (ChinaResearchInstituteofDailyChemicalIndustry,Taiyuan030001,China) Abstract:Thesurfaceactivityofmixedanionicsurfactantsandcationicsurfactantshasbeenr eviewedbycriticalmicelleconcentrationcmc),surfacetensionatcmc(),cm),surfaceadsorption,strengthofsurfaceme mbrane(1ifetimeofairbubblesandheptanedroplets),andwettingpower(contactangleatparaffinsurface)andsoon.Duetost rongelectrostaticattraction betweenthemoleculesofanionicandcationicsurfactants.山eaggregationsofmixedsolutionshouldbemucheasier山an山isofsingle—ionicsurfactantsolution.AttheSalTletimehydropobicityisenhanced.Thus,undersuitablec onditions,theformation ofmicellesbecomesmucheasierandthemixturesblendmayhavehighersurfaceactivity.Thevaluesofcmcandomofmixedsystemswel'~obviouslylowerthantheseofsinglesystemsnotonlvat1:1moleratiobutalsoat othermoleratios.Themole ratioofthemoleculesatsurfaceadsorptionlayerisnearlyl:1whetherthemoleratioofbulksolu tionatl:lornot.Therefore.thesurfaceviscosity,thestrengthofthesurfacemembranesandthewettingpowerabilitywel' ~improvedbymixinganionicsurfactantsandcationicsurfactants.Keywords:anionicsurfactant;cationicsurfactant;surfaceactivity;surfaceadsorption;surfa cemembrane;wettability。
正负离子表面活性剂混合体系双水相性质的研究应化105班郁林[摘要] 通过测定一定浓度正负离子表面活性剂混合体系双水相的吸光度, 研究了CTAB、SDS、Na2SO4、H2O混合系统双水相对罗丹明B的萃取作用。
结果表明: 正负离子表面活性剂的配比是能否出现双水相的关键所在,也是影响溶液萃取效果的重要因素。
温度影响混合体系双水相的稳定性和萃取效果。
[关键字]CTAB、SDS、表面活性剂、双水相、罗丹明B、萃取分配系数[正文]一、背景:表面活性剂是一大类有机化合物,它的性质极具特色,应用广泛。
表面活性剂的分子特点是具有不对称。
整个分子可分为两部分,一部分为亲油的非极性集团,叫做亲油基(hydrophobic group);另一部分是亲水的,叫亲水基(hydrophilic group)。
因此,表面活性分子具有两亲性。
表面活性剂溶于水后,当其浓度很小(小于临界胶束浓度CMC)时,其在溶液中主要以单分子状态或少数几个分子聚集在一起的形式存在。
当其浓度超过临界胶束浓度CMC时,表面活性剂自发聚集成胶束。
表面活性剂在形成胶束前后,一系列的性质会发生突变,如表面张力、电导、渗透压等。
表面活性剂按极性基团的解离性质分类:1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠2、阳离子表面活性剂:季铵化物3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型4、非离子表面活性剂:脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温)表面活性剂在工农业中已经得到了广泛的应用,实用中的表面活性剂几乎都是混合物。
两种或两种以上的表面活性剂混合物往往显示出更加优良的表面活性。
同系混合物为表面活性剂产品中常见的混合物;与单一的表面活性剂相比,正负离子表面活性剂混合物系统形成胶束的能力大为增强。
在适当的具体条件下,正负离子表面活性剂与负离子表面活性剂是可以混合使用,并且在混合溶液中存在强烈的相互作用。
这种作用的本质是电性相反的表面活性离子静电作用及其疏水性碳链间的相互作用。