第31届全国部分地区大学生物理竞赛试卷
- 格式:docx
- 大小:107.54 KB
- 文档页数:6
第31届全国中学生物理竞赛预赛试卷本卷共16题,总分值2021,.一、选择题.此题共5小题,每题6分.在每题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.〔6分〕一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.αB.α1/3C.α3D.3α2.〔6分〕按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如下图.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,以下说法中错误的选项是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.〔6分〕一列简谐横波在均匀的介质中沿轴正向传播,两质点,当/,那么该波的频率可能为A.50HB.60HC.400HD 410H物理竞赛预赛试卷第1页〔共8页〕4.〔6分〕电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式.电磁驱动的原理如下图,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分别为F1、F2和F3。
假设环的重力可忽略,以下说法正确的选项是A F1 > F2 > F3B F2 > F3 > F1C F3 > F2 > F1D F1 = F2 = F35.〔6分〕质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,那么A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的过程.6.〔10分〕用国家标准一级螺旋测微器〔直标度尺最小分度为0 5mm,丝杆螺距为,套管上分为50格刻度〕测量小球直径.测微器的初读数如图a历示,其值为______mm,测量时如图b所示,其值为_______mm,测得小球直径d=____________________mm物理竞赛预赛试卷第2页〔共8页〕7.〔10分〕为了缓解城市交通拥堵问题,杭州交通部门在禁止行人步行的十字路口增设“直行待行区〞〔行人可从天桥或地下过道过马路〕,如下图,当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区〞;当直行绿灯亮起时,可从“直行待行区〞直行通过十字路口.假设某十字路口限速50m/h,“直行待行区〞的长度为12m,从提示进入“直行待行区〞到直行绿灯亮起的时间为4如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区〞的前端虚线处正好直行绿灯亮起,汽车总质量为1 5t,汽车运动中受到的阻力恒为车重的倍,那么该汽车的行驶加速度为________;在这4内汽车发动机所做的功为___________。
第31届全国中学生物理竞赛复赛理论考试试题2014年9月20日说明:所有答案(包括填空)必须写在答题纸上,写在试题纸上无效。
一、(12分)振动的液滴2013年6月20日,“神舟十号”女航天员王亚平在“天宫一号”目标飞行器里成功进行了我国首次太空授课. 授课中的一个实验展示了失重状态下液滴的表面张力引起的效应. 视频中可发现漂浮的液滴处于周期性的“脉动”中(平时在地球表面附近,重力的存在会导致液滴下降太快,以至于很难观察到液滴的这种“脉动”现象).假设液滴处于完全失重状态,液滴的上述“脉动”可视为液滴形状的周期性的微小变化(振动),如图所示.(1)该液滴处于平衡状态时的形状是__________;(2)决定该液滴振动频率f的主要物理量是____________________________________;(3)按后面括号中提示的方法导出液滴振动频率与上述物理量的关系式.(提示:例如,若认为a, b,c是决定该液滴振动频率的相互独立的主要物理量,可将液滴振动频率f与a,b,c的关系式表示为f∝aαbβcγ,其中指数α、β、γ是相应的待定常数.)二、(16分) 测量理想气体的摩尔热容比γ一种测量理想气体的摩尔热容比γ=Cp/CV的方法(Clement-Desormes方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H,另接出一根U形管作为压强计M.瓶内外的压强差通过U形管右、左两管液面的高度差来确定. 初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U形管液面的高度差h i.然后打开H,放出少量气体,当瓶内外压强相等时,即刻关闭H. 等待瓶内外温度又相等时,记录此时U形管液面的高度差h f.试由这两次记录的实验数据h i和h f,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化)三、(20分)如图所示,一质量为m、底边AB长为b、等腰边长为a、质量均匀分布的等腰三角形平板,可绕过光滑铰链支点A和B的水平轴x自由转动;图中原点O位于AB的中点,y轴垂直于板面斜向上,z 轴在板面上从原点O指向三角形顶点C. 今在平板上任一给定点M0(x0,0,z0)加一垂直于板面的拉力Q.(1)若平衡时平板与竖直方向成的角度为φ,求拉力Q以及铰链支点对三角形板的作用力N A和N B;(2)若在三角形平板上缓慢改变拉力Q的作用点M的位置,使平衡时平板与竖直方向成的角度仍保持为φ,则改变的作用点M形成的轨迹满足什么条件时,可使铰链支点A或B对板作用力的垂直平板的分量在M变动中保持不变?四、(24分)如图所示,半径为R、质量为m0的光滑均匀圆环,套在光滑竖直细轴OO’上,可沿OO’轴滑动或绕OO’轴旋转.圆环上串着两个质量均为m的小球. 开始时让圆环以某一角速度绕OO’轴转动,两小球自圆环顶端同时从静止开始释放.(1)设开始时圆环绕OO’轴转动的角速度为ω0,在两小球从环顶下滑过程中,应满足什么条件,圆环才有可能沿OO’轴上滑?(2)若小球下滑至θ=300(θ是过小球的圆环半径与OO’轴的夹角)时,圆环就开始沿OO’轴上滑,求开始时圆环绕OO?轴转动的角速度ω0、在θ=300时圆环绕OO’轴转动的角速度ω和小球相对于圆环滑动的速率v.五、(20分)透镜成像如图所示,现有一圆盘状发光体,其半径为5cm ,放置在一焦距为10cm 、半径为15cm 的凸透镜前,圆盘与凸透镜的距离为20cm ,透镜后放置一半径大小可调的圆形光阑和一个接收圆盘像的光屏.图中所有光学元件相对于光轴对称放置.请在几何光学近轴范围内考虑下列问题,并忽略像差和衍射效应.(1)未放置圆形光阑时, 给出圆盘像的位置、大小、形状;(2)若将圆形光阑放置于凸透镜后方6cm 处. 当圆形光阑的半径逐渐减小时,圆盘的像会有什么变化?是否存在某一光阑半径r a ,会使得此时圆盘像的半径变为(1)中圆盘像的半径的一半?若存在,请给出r a 的数值.(3)若将圆形光阑移至凸透镜后方18cm 处,回答(2)中的问题;(4)圆形光阑放置在哪些位置时,圆盘像的大小将与圆形光阑的半径有关? (5)若将图中的圆形光阑移至凸透镜前方6cm 处,回答(2)中的问题.六、(22分)如图所示,一电容器由固定在共同导电底座上的N+1片对顶双扇形薄金属板和固定在可旋转的导电对称轴上的N 片对顶双扇形薄金属板组成,所有顶点共轴,轴线与所有板面垂直,两组板面各自在垂直于轴线的平面上的投影重合,板面扇形半径均为R ,圆心角均为θ0(02θπ≤<π);固定金属板 和旋转的金属板相间排列,两相邻金属板之间距离均为s .此电容器的电容C 值与可旋转金属板的转角θ有关.已知静电力常量为k .(1)开始时两组金属板在垂直于轴线的平面上的投影重合,忽略边缘效应,求可旋转金属板的转角为θ(00θθθ≤≤-)时电容器的电容C(θ); (2)当电容器电容接近最大时,与电动势为E 的电源接通充电(充电过程中保持可旋转金属板的转角不变),稳定后断开电源,求此时电容器极板所带电荷量和驱动可旋转金属板的力矩; (3)假设θ0=2π,考虑边缘效应后,第(1)问中的C(θ)可视为在其最大值和最小值之间光滑变化的函数C(θ)= 21(Cmax+Cmin)+ 21(Cmax-Cmin)cos θ,式中,Cmax 可由第(1)问的结果估算,而Cmin 是因边缘效应计入的,它与Cmax 的比值λ是已知的.若转轴以角速度ωm 匀速转动,且θ=ωm t ,在极板间加一交流电压V=V0cos ωt .试计算电容器在交流电压作用下能量在一个变化周期内的平均值,并给出该平均值取最大值时所对应的ωm .七、(26分)Z-箍缩作为惯性约束核聚变的一种可能方式,近年来受到特别重视,其原理如图所示.图中,长20 mm、直径为5μm的钨丝组成的两个共轴的圆柱面阵列,瞬间通以超强电流,钨丝阵列在安培力的作用下以极大的加速度向内运动, 即所谓自箍缩效应;钨丝的巨大动量转移到处于阵列中心的直径为毫米量级的氘氚靶球上,可以使靶球压缩后达到高温高密度状态,实现核聚变.设内圈有N根钨丝(可视为长直导线)均匀地分布在半径为r的圆周上,通有总电流I内=2×107A;外圈有M根钨丝,均匀地分布在半径为R的圆周上,每根钨丝所通过的电流同内圈钨丝.已知通有电流i的长直导线在距其r处产生的磁感应强度大小为kmri,式中比例常量km2×107N/A2.(1)若不考虑外圈钨丝,计算内圈某一根通电钨丝中间长为?L的一小段钨丝所受到的安培力;(2)若不考虑外圈钨丝,内圈钨丝阵列熔化后形成了圆柱面,且箍缩为半径r=0.25cm的圆柱面时,求柱面上单位面积所受到的安培力,这相当于多少个大气压?(3)证明沿柱轴方向通有均匀电流的长圆柱面,圆柱面内磁场为零,即通有均匀电流外圈钨丝的存在不改变前述两小题的结果;(4)当N>>1时, 则通有均匀电流的内圈钨丝在外圈钨丝处的磁感应强度大小为kmrI内内,若R要求外圈钨丝柱面每单位面积所受到的安培力大于内圈钨丝柱面每单位面积所受到的安培力,求外圈钨丝圆柱面的半径R应满足的条件;(5)由安培环路定理可得沿柱轴方向通有均匀电流的长圆柱面外的磁场等于该圆柱面上所有电流移至圆柱轴后产生的磁场,请用其他方法证明此结论.(计算中可不考虑图中支架的影响)八、(20分)天文观测表明,远处的星系均离我们而去.著名的哈勃定律指出,星系离开我们的速度大小v=H D,其中D为星系与我们之间的距离,该距离通常以百万秒差距(Mpc)为单位;H为哈勃常数,最新的测量结果为H=67.80km/(s·Mpc).当星系离开我们远去时,它发出的光谱线的波长会变长(称为红移).红移量z被定义为z=λλλ-',其中λ'是我们观测到的星系中某恒星发出的谱线的波长,而λ是实验室中测得的同种原子发出的相应的谱线的波长,该红移可用多普勒效应解释.绝大部分星系的红移量z远小于1,即星系退行的速度远小于光速.在一次天文观测中发现从天鹰座的一个星系中射来的氢原子光谱中有两条谱线,它们的频率υ'分别为4.549×1014Hz和6.141×1014Hz.由于这两条谱线处于可见光频率区间,可假设它们属于氢原子的巴尔末系,即为由n > 2的能级向k=2的能级跃迁而产生的光谱.(已知氢原子的基态能量E0=13.60 eV,真空中光速c=2.998×108m/s,普朗克常量h=6.626×10-34J/s,电子电荷量e=1.602×10-19 C)(1)该星系发出的光谱线对应于实验室中测出的氢原子的哪两条谱线?它们在实验室中的波长分别是多少?百度传课:物理竞赛&自主招生与奥赛全程对接物理视频教程。
A BDl 0v大学物理竞赛选拔试卷1.(本题6分)一长度为l的轻质细杆,两端各固结一个小球A、B(见图),它们平放在光滑水平面上。
另有一小球D,以垂直于杆身的初速度v0与杆端的Α球作弹性碰撞.设三球质量同为m,求:碰后(球Α和Β)以及D球的运动情况.2.(本题6分)质量m=10kg、长l=40cm的链条,放在光滑的水平桌面上,其一端系一细绳,通过滑轮悬挂着质量为m1=10kg的物体,如图所示.t=0时,系统从静止开始运动,这时l1=l2=20cm<l3.设绳不伸长,轮、绳的质量和轮轴及桌沿的摩擦不计,求当链条刚刚全部滑到桌面上时,物体m1速度和加速度的大小.3.(本题6分)长为l的匀质细杆,可绕过杆的一端O点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O点悬一单摆,轻质摆线的长度也是l,摆球质量为m.若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求:(1)细杆的质量.(2)细杆摆起的最大角度?.4.(本题6分)质量和材料都相同的两个固态物体,其热容量为C.开始时两物体的温度分别为T1和T2(T1>T2).今有一热机以这两个物体为高温和低温热源,经若干次循环后,两个物体达到相同的温度,求热机能输出的最大功A max.5.(本题6分)如图所示,为某种一定量的理想气体进行的一个循环过程,它是由一个卡诺正循环12341和一个卡诺逆循环15641组成.已知等温线温度比T1/T2=4,卡诺正逆循环曲线所包围面积大小之比为S1/S2=2.求循环的效率?.6.(本题6分)将热机与热泵组合在一起的暖气设备称为动力暖气设备,其中带动热泵的动力由热机燃烧燃料对外界做功来提供.热泵从天然蓄水池或从地下水取出热量,向温度较高的暖气系统的水供热.同时,暖气系统的水又作为热机的冷却水.若燃烧1kg燃料,锅炉能获得的热量为H,锅炉、地下水、暖气系统的水的温度分别为210℃,15℃,60℃.设热机及热泵均是可逆卡诺机.试问每燃烧1kg燃料,暖气系统所获得热量的理想数值(不考虑各种实际损失)是多少?7.(本题5分)如图所示,原点O是波源,振动方向垂直于纸面,波长是?.AB为波的反射平面,反射时无相位突变?.O点位于A点的正上方,hAO=.Ox轴平行于AB.求Ox轴上干涉加强点的坐标(限于x≥0).8.(本题6分)一弦线的左端系于音叉的一臂的A点上,右端固定在B点,并用T=7.20N的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图).这样,在弦线上产生了入射波和反射波,并形成了驻波.弦的线密度?=2.0g/m,弦线上的质点离开其平衡位置的最大位移为4cm.在t=0时,O点处的质点经过其平衡位置向下运动,O、B之间的距离为L=2.1m.试求:(1)入射波和反射波的表达式;(2)驻波的表达式.9.(本题6分)用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长?R在0.63─0.76?m范围内,蓝谱线波长?B在0.43─0.49?m范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现.(1)在什么角度下红蓝两谱线还会同时出现?(2)在什么角度下只有红谱线出现?10.(本题6分)如图所示,用波长为?=632.8nm(1nm=10-9m)的单色点光源S照射厚度为e=1.00×10-5m、折射率为n2=1.50、半径为R=10.0cm的圆形薄膜F,点光源S与薄膜F的垂直距离为d=10.0cm,薄膜放在空气(折射率n1=1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).11.(本题6分)507⨯双筒望远镜的放大倍数为7,物镜直径为50mm.据瑞利判据,这种望远镜的角分辨率多大?设入射光波长为nm550.眼睛瞳孔的最大直径为7.0mm.求出眼睛对上述入射光的分辨率.用得数除以7,和望远镜的角分辨率对比,然后判断用这种望远镜观ha察时实际起分辨作用的是眼睛还是望远镜.12.(本题6分)一种利用电容器控制绝缘油液面的装置示意如图.平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连,当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作.已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.13.(本题6分)在平面螺旋线中,流过一强度为I 的电流,求在螺旋线中点的磁感强度的大小.螺旋线被限制在半径为R 1和R 2的两圆之间,共n 圈.[提示:螺旋线的极坐标方程为b a r +=θ,其中a ,b 为待定系数]14.(本题6分)一边长为a 的正方形线圈,在t =0时正好从如图所示的均匀磁场的区域上方由静止开始下落,设磁场的磁感强度为B(如图),线圈的自感为L ,质量为m ,电阻可忽略.求线圈的上边进入磁场前,线圈的速度与时间的关系.15.(本题6分)如图所示,有一圆形平行板空气电容器,板间距为b ,极板间放一与板绝缘的矩形线圈.线圈高为h ,长为l ,线圈平面与极板垂直,一边与极板中心轴重合,另一边沿极板半径放置.若电容器极板电压为U 12=U m cos ?t ,求线圈电压U 的大小.16.(本题6分)在实验室中测得电子的速度是0.8c ,c 为真空中的光速.假设一观察者相对实验室以0.6c 的速率运动,其方向与电子运动方向相同,试求该观察者测出的电子的动能和动量是多少?(电子的静止质量m e =9.11×10?31kg )17.(本题6分)已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103W/m 2. (1)求太阳辐射的总功率.(2)把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108km ,太阳的半径为6.76×105km ,?=5.67×10-8W/(m 2·K 4)) 18.(本题6分))已知氢原子的核外电子在1s 态时其定态波函数为a r a /3100e π1-=ψ,式中220em h a e π=ε.试求沿径向找到电子的概率为最大时的位置坐标值.(?0=8.85×10-12C 2·N -1·m -2,h =6.626×10-34J ·s ,m e =9.11×10-31kg ,e =1.6×10-19C)参考答案1.(本题6分)解:设碰后刚体质心的速度为v C ,刚体绕通过质心的轴的转动的角速度为?,球D 碰后的速度为v ?,设它们的方向如图所示.因水平无外力,系统动量守恒:C m m m v v v )2(0+'=得:(1)20C v v v ='-1分 弹性碰撞,没有能量损耗,系统动能不变;222220])2(2[21)2(212121ωl m m m m C ++'=v v v ,得(2)22222220l C ω+='-v v v 2分 系统对任一定点的角动量守恒,选择与A 球位置重合的定点计算.A 和D 碰撞前后角动量均为零,B 球只有碰后有角动量,有])2([0C B l ml ml v v -==ω,得(3)2lC ω=v 2分(1)、(2)、(3)各式联立解出lC 00;2;0vv v v ==='ω。
第 31 届全国中学生物理竞赛决赛理论考试试题一、(12 分)一转速测量和控制装置的原理如图所示. 在 O 点有电量为 Q 的正电荷,内壁光滑的轻质绝缘细管可绕通过 O 点的竖直轴在水平面内转动,在管内距离 O 为 L 处有一光电触发控制开关 A ,在 O 端固定有一自由长度为 L/4 的轻质绝缘弹簧,弹簧另一端与一质量为m 、带有正电荷q 的小球相连接.开始时,系统处于静态平衡.细管在外力矩作用下,作定轴转动,小球可在细管内运动. 当细管转速ω逐渐变大时,小球到达细管的 A 处刚好相对于细管径向平衡,并触发控制开关,外力矩瞬时变为零,从而限制转速过大;同时 O 点的电荷变为等量负电荷-Q.通过测量此后小球相对于细管径向平衡点的位置 B ,可测定转速.若测得 OB 的距离为 L/2,求 (1)弹簧系数0k 及小球在 B 处时细管的转速;(2)试问小球在平衡点 B 附近是否存在相对于细管的径向微振动?如果存在,求出该微振动的周期.二、(14 分)多弹头攻击系统是破解导弹防御体系的有效手段.如图所示,假设沿某海岸有两个军事目标 W 和 N ,两者相距 L ,一艘潜艇沿平行于该海岸线的航线游弋,并监视这两个目标,其航线离海岸线的距离为d .潜艇接到攻击命令后浮出海面发射一颗可分裂成多弹头的母弹,发射速度为0v (其大小远大于潜艇在海里游弋速度的大小),假设母弹到达最高点时分裂成三个分弹头,每个分弹头的质量相等,分裂时相对原母弹的速度大小均为v ,且分布在同一水平面内,分弹头 1、2 为实弹,分弹头 3 迷惑对方雷达探测的假弹头.如果两个实弹能够分别击中军事目标 W 和 N ,试求潜艇发射母弹时的位置与发射方向,并给出相应的实现条件.三、(14 分)如图所示,某绝热熔器被两块装有阀门 K 1和 K 2的固定绝热隔板分割成相等体积0V 的三室 A 、B 、C ,0A B C V V V V ===.容器左端用绝热活塞 H 封闭,左侧 A 室装有11ν=摩尔单原子分子气体,处在压强为 P 0、温度为 T 0的平衡态;中段 B 室为真空;右侧 C 室装有ν2=2 摩尔双原子分子气体,测得其平衡态温度为Tc=0.50T 0.初始时刻 K 1和 K 2都处在关闭状态.然后系统依次经历如下与外界无热量交换的热力学过程:(1)打开 K 1,让V A 中的气体自由膨胀到中段真空V B 中;等待气体达到平衡态时,缓慢推动活塞 H 压缩气体,使得 A 室体积减小了 30%(AV '=0.70V 0).求压缩过程前后,该部分气体的平衡态温度及压强;(2)保持 K 1开放,打开 K 2,让容器中的两种气体自由混合后共同达到平衡态.求此时混合气体的温度和压强;AV ''=V 0. 求此时混合气体的温度和压强. 提示:上述所有过程中,气体均可视为理想气体,计算结果可含数值的指数式或分式;根据热力学第二定律,当一种理想气体构成的热力学系统从初态(p i ,T i ,V i )经过一个绝热可逆过程(准静态绝热过程)到达终态(p f ,T f ,V f )时,其状态参数满足方程:111()ln()ln()0f f if V iiT T S C R T T νν∆=+= (Ⅰ)其中,ν1为该气体的摩尔数,C V1为它的定容摩尔热容量,R 为普适气体常量.当热力学系统由两种理想气体组成,则方程(I )需修改为12()()0if if S S ∆+∆= (Ⅱ)四、(20 分)光纤光栅是一种介质折射率周期性变化的光学器件.设一光纤光栅的纤芯基体材料折射率为n 1=1.51;在光纤中周期性地改变纤芯材料的折射率,其改变了的部分的材料折射率为n 2=1.55;折射率分别为n 2和n 1、厚度分别为d 2和d 1的介质层相间排布,总层数为 N ,其纵向剖面图如图(a)所示.在该器件设计过程中,一般只考虑每层界面的单次反射,忽略光在介质传播过程中的吸收损耗.假设入射光在真空中的波长为λ=1.06μm ,当反射光相干叠加加强时,则每层的厚度d 1和d 2最小应分别为多少?若要求器件反射率达到 8%,则总层数 N 至少为多少?提示:如图(b)所示,当光从折射率n 1介质垂直入射到n 2介质时,界面上产生反射和透射,有:1212n n n n -=+反射光电场强度入射光电场强度,1122n n n =+透射光电场强度入射光电场强度,2=反射光电场强度反射率入射光电场强度,五、(20 分)中性粒子分析器(Neutral-Particle Analyser )是核聚变研究中测量快离子温度及其能量分布的重要设备.其基本原理如图所示,通过对高能量(200eV~30KeV )中性原子(它们容易穿透探测区中的电磁区域)的能量和动量的测量,可诊断曾与这些中性原子充分碰撞过的粒子的性质.为了测量中性原子的能量分布,首先让中性原子电离然后让离子束以θ角入射到间距为d 、电压为V 的平行板电极组成的区域,经电场偏转后离开电场区域,在保证所测量离子不碰到上极板的前提下,通过测量入射孔 A 和出射孔 B 间平行于极板方向的距离l 来决定离子的能量.设 A 与下极板的距离为h 1,B 与下极板的距离为h 2,已知离子所带电荷为q .(1)推导离子能量E 与l 的关系,并给出离子在极板内垂直于极板方向的最大飞行距离. (2)被测离子束一般具有发散角Δα(Δα<<θ).为了提高测量的精度,要求具有相同能量E , 但入射方向在Δα范围内变化的离子在同一小孔 B 处射出,求h 2的表达式;并给出此时能量E 与l 的关系.(3)为了提高离子能量的分辨率,要求具有量程上限能量的离子刚好落在设备允许的l 的最大值l max 处,同时为了减小设备的体积,在满足测量要求的基础上,要求极板间距d 尽可能小,利用上述第(2)问的结果,求d 的表达式;若θ=30°,结果如何?(4)为了区分这些离子的质量,请设计后续装置,给出相应的原理图和离子质量表达式.六、(20 分)超导体的一个重要应用是绕制强磁场磁体,其使用的超导线材属于第二类超导体.如果将这类超导体置于磁感应强度为a B 的外磁场中,其磁力线将以磁通量子(或称为磁通漩涡线)的形式穿透超导体,从而在超导体中形成正三角形的磁通格子,如图 1 所示. 所谓的磁通量子,如图 2 所示,其中心是半径为ξ的正常态(电阻不为零)区域,而其周围处于超导态(电阻为零),存在超导电流,所携带的磁通量为150 2.07102hWb eφ-==⨯(磁通量的最小单位)(1)若2510T a B -=⨯,求此时磁通涡旋线之间距离a .(2)随着a B 的增大,磁通漩涡线密度不断增加,当a B 达到某一临界值B c2时,整块超导体都变为正常态, 假设磁通漩涡线芯的半径为ξ=5×10-9m ,求所对应的临界磁场B c2;(3)对于理想的第二类超导体,当有电流I 通过超导带材时,在安培力的驱动下,磁通漩涡线将会粘滞流动,在超导带内产生电阻(也称为磁通流阻),从而产生焦耳损耗,不利于超导磁体的运行.磁通漩涡线稳定粘滞流动的速度v 与单位体积磁通漩涡线所受到的驱动力f A 和a B 的关系为0aA B f v ηφ=, 其中η为比例系数.外加磁场、电流方向,以及超导带材的尺寸如图 3 所示, 请指出磁通漩涡线流动的方向,并求出磁通漩涡线流动所产生的电阻率(用a B ,Φ0,η,超导体尺寸b ,c ,d )表示;(4)要使超导材料真正实用化,消除这种磁通流阻成了技术的关键,请给出你的解决方案.七、(20 分)如图,两个质量均为m 的小球 A 和 B (均可视为质点)固定在中心位于C 、长为 2l 的刚性轻质细杆的两端,构成一质点系.在竖直面内建立Oxy 坐标,Ox 方向沿水平向右,Oy 方向竖直向上.初始时质点系中心 C 位于原点 O ,并以初速度v 0竖直上抛,上抛过程中, A 、C 、B 三点连线始终水平.风速大小恒定为u 、方向沿x 轴正向,小球在运动中所受空气阻力f 的大小与相对于空气运动速度v 的大小成正比,方向相反,即f kv =-, k 为正的常量.当C 点升至最高点时,恰好有一沿y 轴正向运动、质量为m 1、速度大小为u 1的小石块(视为质点)与小球 A 发生竖直方向的碰撞,设碰撞是完全弹性的,时间极短.此后 C 点回落到上抛开始时的同一水平高度,此时它在Ox 方向上的位置记为s ,将从上抛到落回的整个过程所用时间记为T ,质点系旋转的圈数记为n .求质点系(1)转动的初始角速度ω0,以及回落到s 点时角速度ωs 与n 的关系;(2)从开始上抛到落回到s 点为止的过程中,空气阻力做的功W f 与n 、s 、T 的关系.八、(20 分)太阳是我们赖以生存的恒星.它的主要成分是氢元素,在自身引力的作用下收缩而导致升温,当温度高到一定程度时,中性原子将电离成质子和电子组成的等离子体,并在其核心区域达到约 1.05×107K 的高温和 1.6×105kg/m 3以上的高密度,产生热核聚变而放出巨大能量,从而抗衡自身的引力收缩达到平衡,而成为恒星.太阳内部主要核反应过程为1H+1H→D+e++νe(I)D+1H→3He+x (II)3He+3He→4He+1H+1H (III)其中第一个反应的概率由弱相互作用主导,概率很低这恰好可以使得能量缓慢释放.反应产物正电子e+会与电子e-湮灭为γ射线,即e++e-→γ+γ(IV)已知:质子(1H)、氘(D)、氦-3(3He)和电子的质量分别为938.27、1875.61、2808.38、3727.36 和0.51(MeV/c2)(误差为0.01MeV/c2),c为真空中的光速,中微子νe的质量小于3eV/c2.普朗克常量h=6.626×10-34J·s,c=3.0×108m/s,玻尔兹曼常量k=1.381×10-23J/K.电子电量e=1.602×10-19C.(1)试用理想气体模型估算处于热平衡状态的各种粒子的平均动能及太阳核心区的压强(请分别用eV和atm为单位);(2)反应式(II)中的x 是什么粒子(α、β、γ、p和n之一)?请计算该粒子的动能和动量的大小,是否可以找到一个参照系,使得x 粒子的动能为零?(3)给出反应式(I)中各反应产物的动能的范围;第31 届全国中学生物理竞赛决赛参考答案第一题第二题第七题第八题。
第31届全国中学生物理竞赛初赛试卷本卷共16题,总分值200分,.一、选择题.此题共5小题,每题6分.在每题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每题后面的方括号内.全数选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.αB.α1/3C.α3D.3α2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和一般的杆秤差不多,装秤钩的地址吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平稳,如下图.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好从头平稳,即可直接在杆秤上读出液体的密度,以下说法中错误的选项是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左侧C.密度秤的刻度都在Q点的右边D.密度秤的刻度都在Q点的左侧3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和p2的平稳位置在x 轴上,它们相距60cm,当P1质点在平稳位置处向上运动时,P2质点处在波谷位置,假设波的传播速度为24m/s,那么该波的频率可能为A.50HzB.60HzC.400HzD. 410Hz物理竞赛初赛试卷第1页(共8页)4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式.电磁驱动的原理如下图,当直流电流突然加到一固定线圈上,能够将置于线圈上的环弹射出去.此刻同一个固定线圈上,前后置有别离用铜、铝和硅制成的形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力别离为F1、F2和F3。
假设环的重力可忽略,以下说法正确的选项是A. F1 > F2 > F3B. F2 > F3 > F1C. F3 > F2 > F1D. F1 = F2 = F35.(6分)质量为m A的A球,以某一速度沿滑腻水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,那么A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在维持m B>m A的条件下,m B越小,碰后B球的速度越大D.在维持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的进程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0. 5mm,丝杆螺距为0.5mm,套管上分为50格刻度)测量小球直径.测微器的初读数如图(a)历示,其值为______mm,测量时如图(b)所示,其值为_______mm,测得小球直径d=____________________mm.物理竞赛初赛试卷第2页(共8页)7.(10分)为了减缓城市交通拥堵问题,杭州交通部门在禁止行人步行的十字路口增设“直行待行区”(行人可从天桥或地下过道过马路),如下图,当其他车道的车辆右拐时,直行道上的车辆能够提早进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时刻为4s.若是某汽车司机看到上述提示时当即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1. 5t,汽车运动中受到的阻力恒为车重的0.1倍,那么该汽车的行驶加速度为________;在这4s内汽车发动机所做的功为___________。
第 31 届全国中学生物理竞赛决赛理论考试试题一、( 12 分)一转速测量和控制装置的原理如图所示 . 在 O 点有电量为 Q 的正电荷,内壁光滑的轻质绝缘细管可绕通过O 点的竖直轴在水平面内转动,在管内距离O 为 L 处有一光电触发控制开关 A ,在 O 端固定有一自由长度为L/4的轻质绝缘弹簧,弹簧另一端与一质量为m、带有正电荷 q 的小球相连接 .开始时,系统处于静态平衡.细管在外力矩作用下,作定轴转动,小球可在细管内运动. 当细管转速ω逐渐变大时,小球到达细管的 A 处刚好相对于细管径向平衡,并触发控制开关,外力矩瞬时变为零,从而限制转速过大;同时O 点的电荷变为等量负电荷-Q.通过测量此后小球相对于细管径向平衡点的位置B,可测定转速 .若测得OB 的距离为L/2 ,求(1)弹簧系数 k0及小球在 B 处时细管的转速;(2)试问小球在平衡点 B 附近是否存在相对于细管的径向微振动?如果存在,求出该微振动的周期 .二、( 14 分)多弹头攻击系统是破解导弹防御体系的有效手段.如图所示,假设沿某海岸有两个军事目标W 和 N,两者相距 L,一艘潜艇沿平行于该海岸线的航线游弋,并监视这两个目标,其航线离海岸线的距离为 d.潜艇接到攻击命令后浮出海面发射一颗可分裂成多弹头的母弹,发射速度为 v0(其大小远大于潜艇在海里游弋速度的大小),假设母弹到达最高点时分裂成三个分弹头,每个分弹头的质量相等,分裂时相对原母弹的速度大小均为v,且分布在同一水平面内,分弹头 1、2 为实弹,分弹头3 迷惑对方雷达探测的假弹头 .如果两个实弹能够分别击中军事目标W 和 N,试求潜艇发射母弹时的位置与发射方向,并给出相应的实现条件.三、( 14 分)如图所示,某绝热熔器被两块装有阀门K1和 K 2的固定绝热隔板分割成相等体积 V0的三室 A 、B、C,V A V B V C V0 .容器左端用绝热活塞H 封闭,左侧 A 室装有1 1摩尔单原子分子气体,处在压强为P0、温度为 T0的平衡态;中段 B 室为真空;右侧 C 室装有νTc=0.50T 0.初始时刻 K 1 2=2 摩尔双原子分子气体,测得其平衡态温度为和 K 2都处在关闭状态 .然后系统依次经历如下与外界无热量交换的热力学过程:(1)打开 K 1,让 V A中的气体自由膨胀到中段真空 V B中;等待气体达到平衡态时,缓慢推动活塞 H 压缩气体,使得 A 室体积减小了 30%( V A =0.70V 0).求压缩过程前后,该部分气体的平衡态温度及压强;(2)保持 K 1 开放,打开 K 2,让容器中的两种气体自由混合后共同达到平衡态 .求此时混合气体的温度和压强;(3)保持 K 1和 K 2同时处在开放状态,缓慢拉动活塞 H,使得 A 室体积恢复到初始体积1V A =V 0. 求此时混合气体的温度和压强 .提示:上述所有过程中,气体均可视为理想气体,计算结果可含数值的指数式或分式;根据热力学第二定律,当一种理想气体构成的热力学系统从初态( p i,T i, V i)经过一个绝热可逆过程(准静态绝热过程)到达终态( pf, Tf, Vf)时,其状态参数满足方程:( S)if1C V1T f) 1 Rln(T f) 0 (Ⅰ) ln(T iT i其中,ν为该气体的摩尔数,C V1为它的定容摩尔热容量,R 为普适气体常量 .当热力学系统1由两种理想气体组成,则方程(I)需修改为( S1 )if( S2 )if0 (Ⅱ )四、( 20 分)光纤光栅是一种介质折射率周期性变化的光学器件 .设一光纤光栅的纤芯基体材料折射率为 n1=1.51;在光纤中周期性地改变纤芯材料的折射率,其改变了的部分的材料折射率为 n2=1.55;折射率分别为n2和 n1、厚度分别为d2和 d1的介质层相间排布,总层数为N,其纵向剖面图如图 (a)所示 .在该器件设计过程中,一般只考虑每层界面的单次反射,忽略光在介质传播过程中的吸收损耗 .假设入射光在真空中的波长为λ=1.06μm,当反射光相干叠加加强时,则每层的厚度d1和 d2最小应分别为多少?若要求器件反射率达到8%,则总层数 N 至少为多少?提示:如图 (b)所示,当光从折射率 n1介质垂直入射到n2介质时,界面上产生反射和透射,有:反射光电场强度n1n2 , 透射光电场强度2n1, 反射率反射光电场强度2,入射光电场强度n1n2入射光电场强度n1 n2入射光电场强度2五、( 20 分)中性粒子分析器( Neutral-Particle Analyser )是核聚变研究中测量快离子温度及其能量分布的重要设备 .其基本原理如图所示,通过对高能量( 200eV~30KeV )中性原子(它们容易穿透探测区中的电磁区域)的能量和动量的测量,可诊断曾与这些中性原子充分碰撞过的粒子的性质 .为了测量中性原子的能量分布,首先让中性原子电离然后让离子束以θ角入射到间距为 d、电压为 V 的平行板电极组成的区域,经电场偏转后离开电场区域,在保证所测量离子不碰到上极板的前提下,通过测量入射孔 A 和出射孔 B 间平行于极板方向的距离 l 来决定离子的能量 .设 A 与下极板的距离为 h1,B 与下极板的距离为 h2,已知离子所带电荷为 q.(1)推导离子能量 E 与 l 的关系,并给出离子在极板内垂直于极板方向的最大飞行距离.(2)被测离子束一般具有发散角Δα(Δα<< θ).为了提高测量的精度,要求具有相同能量E,但入射方向在Δα范围内变化的离子在同一小孔 B 处射出,求 h2的表达式;并给出此时能量 E 与 l 的关系 .(3)为了提高离子能量的分辨率,要求具有量程上限能量的离子刚好落在设备允许的 l 的最大值 l max 处,同时为了减小设备的体积,在满足测量要求的基础上,要求极板间距 d 尽可能小,利用上述第( 2)问的结果,求 d 的表达式;若θ=30°,结果如何?(4)为了区分这些离子的质量,请设计后续装置,给出相应的原理图和离子质量表达式 .六、( 20 分)超导体的一个重要应用是绕制强磁场磁体,其使用的超导线材属于第二类超导体 .如果将这类超导体置于磁感应强度为B a的外磁场中,其磁力线将以磁通量子(或称为磁通漩涡线)的形式穿透超导体,从而在超导体中形成正三角形的磁通格子,如图 1 所示.所谓的磁通量子,如图 2 所示,其中心是半径为ξ的正常态(电阻不为零)区域,而其周围处于超导态(电阻为零),存在超导电流,所携带的磁通量为0h 2.07 10 15Wb(磁2e通量的最小单位)3(1)若 B a 5 10 2 T ,求此时磁通涡旋线之间距离 a.(2)随着 B a的增大,磁通漩涡线密度不断增加,当 B a达到某一临界值 B c2时,整块超导体都变为正常态, 假设磁通漩涡线芯的半径为ξ=5×10-9 m,求所对应的临界磁场Bc2;(3)对于理想的第二类超导体,当有电流 I 通过超导带材时,在安培力的驱动下,磁通漩涡线将会粘滞流动,在超导带内产生电阻(也称为磁通流阻),从而产生焦耳损耗,不利于超导磁体的运行 .磁通漩涡线稳定粘滞流动的速度 v 与单位体积磁通漩涡线所受到的驱动力 fA 和 B a的关系为 f A Ba v , 其中η为比例系数 .外加磁场、电流方向,以及超导带材的0尺寸如图 3 所示 , 请指出磁通漩涡线流动的方向,并求出磁通漩涡线流动所产生的电阻率(用 B a,Φ0,η,超导体尺寸b, c,d)表示;(4)要使超导材料真正实用化,消除这种磁通流阻成了技术的关键,请给出你的解决方案.七、( 20 分)如图,两个质量均为m 的小球 A 和 B(均可视为质点)固定在中心位于 C、长为 2l 的刚性轻质细杆的两端,构成一质点系 .在竖直面内建立 Oxy 坐标, Ox 方向沿水平向右, Oy 方向竖直向上 .初始时质点系中心 C 位于原点 O,并以初速度 v0 竖直上抛,上抛过程中, A 、C、B 三点连线始终水平 .风速大小恒定为 u、方向沿 x 轴正向,小球在运动中所受空气阻力 f 的大小与相对于空气运动速度v 的大小成正比,方向相反,即 fkv ,k 为正的常量 .当 C 点升至最高点时,恰好有一沿y 轴正向运动、质量为 m1、速度大小为u1的小石块(视为质点)与小球 A 发生竖直方向的碰撞,设碰撞是完全弹性的,时间极短.此后 C 点回落到上抛开始时的同一水平高度,此时它在 Ox 方向上的位置记为 s,将从上抛到落回的整个过程所用时间记为T,质点系旋转的圈数记为n.求质点系(1)转动的初始角速度ω0,以及回落到 s 点时角速度ωs 与 n 的关系;(2)从开始上抛到落回到s 点为止的过程中,空气阻力做的功W f与 n、 s、 T 的关系 .八、( 20 分)太阳是我们赖以生存的恒星 .它的主要成分是氢元素,在自身引力的作用下收缩而导致升温,当温度高到一定程度时,中性原子将电离成质子和电子组成的等离子体,并在其核心区域达到约 1.05 ×107K 的高温和1.6 ×105kg/m 3以上的高密度,产生热核聚变而放出巨大能量,从而抗衡自身的引力收缩达到平衡,而成为恒星.太阳内部主要核反应过程为41H+ 1H→ D+e + +ν e (I)D+1H→3He+x (II )3He+3 He→4He+1H+ 1H ( III )其中第一个反应的概率由弱相互作用主导,概率很低这恰好可以使得能量缓慢释放 .反应产物正电子 e+会与电子 e-湮灭为γ射线,即e+ +e-→γ+γ( IV )已知:质子(1H)、氘( D)、氦 -3(3He)和电子的质量分别为938.27、1875.61、2808.38、3727.36 和 0.51( MeV/c 2)(误差为0.01MeV/c 2), c 为真空中的光速,中微子νe的质量小于 3eV/c 2.普朗克常量 h=6.626 ×10-34J·s,c=3.0 ×108m/s,玻尔兹曼常量k=1.381 ×10-23J/K.电子电量 e=1.602 ×10-19C.(1)试用理想气体模型估算处于热平衡状态的各种粒子的平均动能及太阳核心区的压强(请分别用 eV 和 atm 为单位);(2)反应式( II )中的 x 是什么粒子(α、β、γ、 p 和 n 之一)?请计算该粒子的动能和动量的大小,是否可以找到一个参照系,使得x 粒子的动能为零?(3)给出反应式(I)中各反应产物的动能的范围;5第 31 届全国中学生物理竞赛决赛参考答案第一题第二题67第七题第八题。
第31届全国中学生物理竞赛复赛试题及答案31届全国中学生物理竞赛复赛理论考试试题解答一、(12分)题目一:球形液滴的振动频率假设球形液滴振动频率与其半径r、密度ρ和表面张力系数σ之间的关系式为f=kρσr,其中k是常数。
根据单位分析法,可以得到单位等式[f]=[ρ][σ][r]。
力学的基本物理量包括质量m、长度l和时间t,分别对应的单位是千克(kg)、米(m)和秒(s)。
根据单位等式,[f]=[t]^-1,[r]=[l],[ρ]=[m][l]^-3,[σ]=[m][t]^-2.将这些单位代入单位等式,得到[t]^-1=[l]^-3[m]^[ρ][t]^-2[σ],即[t]^-1=[l]^[ρ][m]^[σ][t]^-2.由此可以得到三个未知量的关系式:α-3β=0,β+γ=0,2γ=1.解得α=-1,β=-1,γ=1/2.解法二:假设球形液滴振动频率与其半径r、密度ρ和表面张力系数σ之间的关系式为f=kρσr,其中k是常数。
根据单位分析法,可以得到单位等式[f]=[ρ][σ][r]。
在国际单位制中,振动频率的单位是赫兹(Hz),半径r的单位是米(m),密度ρ的单位是千克每立方米(kg/m^3),表面张力系数σ的单位是牛每米(N/m)=千克每秒平方(m/s^2)。
根据单位等式,[f]=s^-1,[r]=m,[ρ]=kg/m^3,[σ]=kg/s^-2.将这些单位代入单位等式,得到[s]^-1=[m][ρ][σ],即[s]^-1=[m][kg/m^3][kg/s^-2]。
将这个式子代入f=kρσr,得到k=f/ρσr。
1.(V。
T)。
(p。
V。
T)和(pf。
V。
T)分别表示气体在初态、中间态和末态的压强、体积和温度。
留在瓶内的气体先后满足绝热方程和等容过程方程:p1 * V1^γ = p2 * V2^γ (绝热方程)V1 = V2 * (p1/p2) (等容过程方程)联立以上两式可得:p1/T1 = p2/T2 = pf/Tf由此得到以下式子:p1/pf = (p1/pf)^(1/γ)ln(p1/pf) = ln(p1) - ln(pf) = (1/γ) * ln(p1/pf)pf = p1 / (e^(γ * ln(p1/pf)))2.根据力学平衡条件,有:pi = p + ρghipf = p + ρghf其中,p是瓶外大气压强,ρ是U型管中液体的密度,g 是重力加速度大小。
第30届全国中学生物理竞赛复赛考试试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆,1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g . 提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y X t X t =例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)x y z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)x y z E E E ''',而是(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >.一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .第30届全国中学生物理竞赛复赛考试试题评分标准1、参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
第31届全国部分地区大学生物理竞赛试卷
一、 填空或作图题。
1. 将地球半径R 、自转周期T 、地面重力加速度g 取为已知量,则人造同步卫星的轨道半径=R ,轨道速度相对第一宇宙速度的比值=。
2. 如图所示,水平桌面上静放着质量为M ,内半径为R 的半球面形薄瓷碗,碗的底座与桌面间无摩擦。
将质量为m
的小滑块在图示的碗边位置静止释放,随后将
会无摩擦的沿碗的内表面滑下。
小滑块到达最
低位置时,它相对桌面的速度大小为,它对碗
底的正压力大小为。
3. 如图所示,长l 的轻细杆两端连接质量相同的小球A 、B ,开始时细杆处于竖直方位,下端B 球据水平地面高度记为h 。
某时刻让B 球具有水平朝右初速度0(其大小2
0gl v π<),其上方A 球具有水平朝右初速度02v .假设而后A 、B 同时着地,则h 可取的最小值
min h =,取min h 时,B 从开始运动到着地过程中其水平位移s=。
4. 两个测量者A 和B ,各自携带频率同为1000HZ 的声波波源。
设A 静止,B 以10m/s 的速度朝着A 运动,已知声速为340m/s ,不考虑人体的反射,则A 接收到的拍频拍A v =Hz (请保留2位有效数字),
B 接收的拍频拍B v =Hz (请保留2位有效数字)。
解:A 静止,B 以速度10m/s 朝着A 运动。
设B 的速度V=10m/s ,声速U=340m/s ,又频率γ=1000Hz ,所以由多普勒效应可知A 收到的拍频γA 拍=V ×1000 / U - V=30Hz,B 收到的拍频γB 拍频
=V ×1000/U+V=29Hz 。
(保留2位有效数字)
5. 如图1所示,3个相同的匀质球体以相同的
水平初速度0v 平抛出去。
其中球1抛出时无
自转,球2、球3抛出时有自转,自转方向
已在图1中示出,自转角速度值0ω相同且
较大,图1抛出后,落地前球心的一段运动轨道如图2长方形内一段曲线所示,试在该长方形区域内定性画出球2、球3落地前各自球心的一段运动轨道。
(球2、球3球心在图2中的初始位置,可不受图1所示位置限制。
)
6. 如图所示,在一个绝热的竖直气缸里存有一定量的理想气体,开始时绝热的活塞是固定的,现拆去销钉(图中未画出),气体因膨胀而将活塞和重物举高,则此过程中气体的压强,温度。
(空白处可填“增大”、“减小”、“升高”、“降低”。
)
解:(1)由题意可知 12v v >,物块升高了H
)(1-1在绝绝热状况下:2211V P V P -=γ
0m =-gH A 由能量守恒定律得:
212211.0,01-P P V P V P A >>>>可知得因为:γ
212211.,n )2(T T V P V P RT PV >>=所以因为由理想气体方程:
7. 某气体经历的循环过程如图所示,气体分子的热运动平均自由程λ和气体温度T 都会随过程而变。
将的最大值和最小值分别记为和,则。
将T 的最大值和最小值分别记为和,则该气体在热源和热源
之间形成的卡诺循环过程效率。
(空白处只可填数值。
)
p d kT
22: 由平均自由程方程πλ=
2,n P ,n min max min max ====V V V V P
T R V T RT PV λ成正比。
得与即成正比,于可知因为:
%7541-11-14
1.*,)2(max min 21min max max max max ==-=====T T T T T T nR V P T nRT PV η得
8. 在图中用实线代表的3根首尾相接的等长绝缘细棒上的电荷分布,与绝缘棒
都
换成等长细导棒且处于静电平衡时的电荷分布完全相同。
已测得图中A 、B 两点电势分别为UA 、UB ,今将绝缘棒ab 取走,设这不影响绝缘棒ac 、bc 的电荷分布,则此时A 点电势Ua=,B 点的电势Ub=。
9. 双缝干涉装置如图1所示,屏幕中央O 处出现亮条纹。
O 处上下都有亮条纹,设图1标出的参量均为已知量,则相邻两条亮条纹间距可表达为x=。
图2所示也是种杨氏双缝干涉装置,直角挡板的两个侧面分别有对称的透光细缝A 、B 。
屏幕与挡板的一个侧面平行,屏幕O 处可出现亮条纹。
设图2标出的参量均为已知量,则屏幕O 处附近相邻两条亮条纹的间距可表达为x=。
解:由 λd D k x =∆ (1) λλd
D d D x a d ==∆=, (2) 1,,245tan ===︒=k a d b b D λλa
b d D x 2==∆ 10. 铝的逸出功是4.2eV ,铝的红限波长nm m _____=λ。
若用波长为
200nm 的光照射铝表面,则光电效应的遏止电压0U =V 。
(普朗克常
量h=6.63*10-34J.s ,如上结果保留一位有效数字即可) 解:由光电效应方程得:A h mv m -=ν221红限频率为:h
A =0ν nm A h c c 30010*63.6*10*6.1*2.410*3*341980====--νλ
0221eU A hc mv m =-=λ由:
v e A hc U 210*6.1/)10*6.1*2.410*20010*3*10*63.6(/)(191998340=-=-=----λ
二、计算题。
11、净质量的喷0M 水车,存水质量0m ,在平直道路上以匀速度v 行
驶的同时,朝左、右两侧绿化带水平横向喷水,喷出去的水相对车身速度大小为常量u ,单位时间喷水质量为常量k 。
已知车在行驶过程中受正面空气阻力大小为v α,其中α为正的常量;受地面阻力大小为N β,其中β为正的常数,N 为地面所受正压力。
不计其它能耗因素,试求车装满水启动达匀速v 并开始喷水后,直到水喷净为止,车内做功装置的做功量W 。
解:为喷水提供作功总量20121u m W =,0,0==x t 开始计时、计程,t>0时刻v x k m M M vt x -+==00,,牵引力⎪⎭
⎫ ⎝⎛-++=+=v x k m M g v Mg v F 00βαβα, 0=x 到k
m v vt x e e 0==,总功 k v m m M g v dx v kx m M g v Fdx W e e x x 000000022⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++==⎰⎰βαβα 所以k v m m M g v u m W W W 0002021221⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++=+=βα。
12、如图所示,半径为R 的长直圆柱形几何空
间区域内,有轴向的匀强磁场,磁感应强度的垂直于图平面朝里,其大小随t 变化,且有
k dt
dB =,式中k 为正常量。
圆柱形空间区域外没有磁场。
在圆柱形空间区域内的一个正截面
内,有一个用金属丝连接而成的圆内接正三角形ABCA ,其中AB 段、BC 段和CA 段的电阻分别记为21r r 、和3r 。
(1)AB 段从A 到B 方向的电
动势AB ε;(2)设321r r r ==,试求AB 段从A 到B 的电压AB U ;(2)改设
03020132r r r r r r ===、、,再求AB 段从A 到B 的电压AB U '。
解:(1)回路电动势为243332321kR R R B dt d dt d ABCA =⎪⎭⎫ ⎝⎛⋅⋅⋅--=Φ-
=ε 因对称,即得24
331
kR ABCA AB ==εε。
(2)回路电压0=ABCA U ,因对称,有0=⇒==AB CA BC AB U U U U
(3)将03020132r r r r r r ===、、代入电流公式:
023216433r kR r r r I I ABCA ABCA =++==ε得0
283r kR I =, 继而得218
3kR Ir U AB AB -=+-='ε。
13、理想气体多方过程可表述为1k pV n =(常量)或21k TV n =-(常量)
(1)已知1k 和气体的摩尔数v ,求2k ;(2)已知多方指数n 和气体的
等体摩尔热容量为mV C ,式依据过程摩尔热容量定义式vdT
dQ C m =,导出该多方过程的摩尔热容量m C 。
解:(1)R k k R k TV RT
pV k pV n n ννν12111=⇒=⇒⎩⎨⎧==- (2)mV mV m C dT
pdV dT dT C pdV vdT dQ C +=+==ννν① ()222211T dT k dV V n T k V n n -=-⇒=--,()21222111RT dT k T dT k pV dV k n p k V n ν-=-=-⇒⎪⎪⎭⎫ ⎝⎛= ()()11--=⇒-=-=-⇒=n RdT pdV pV RdT T dT V dV n RT pV ννν,代入①式得 11. 1--=n R
C C mV m。