高考数学 考点15 简单的线性规划练习
- 格式:doc
- 大小:231.50 KB
- 文档页数:4
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
考点15 简单的线性规划1.(2010·重庆高考理科·T4)设变量x ,y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则2z x y =+的最大值为( )(A)2- (B)4 (C)6 (D)8【命题立意】本题考查线性规划的基本知识及数形结合的思想方法的利用. 【思路点拨】先画出可行域,再移动目标函数y x z +=2, 观察取得最大值的位置,最后代入点的坐标求最大值. 【规范解答】选C. 约束条件确定的区域如图所示, 目标函数2z x y =+在点(3,0)处取得最大值=2306z ⨯+=最大.2.(2010·重庆高考文科·T7)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为( )(A)0 (B)2 (C)4 (D)6【命题立意】本题考查线性规划的基本知识及数形结合的 思想方法的利用.【思路点拨】先画出可行域,再移动目标函数32z x y =-, 观察取得最大值的位置,最后代入点的坐标求最大值. 【规范解答】选C.约束条件确定的区域如图所示, 目标函数32z x y =-平移到点(0,2)-的位置时取得 最大值,所以302(2)4z =⨯-⨯-=最大.3.(2010·四川高考理科·T7)某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( ) (A )甲车间加工原料10箱,乙车间加工原料60箱 (B )甲车间加工原料15箱,乙车间加工原料55箱 (C )甲车间加工原料18箱,乙车间加工原料50箱 (D )甲车间加工原料40箱,乙车间加工原料30箱【命题立意】本题考查简单的性线规划问题及学生利用数形结合的思想解决实际问题的能力.【思路点拨】根据题中所给的数量关系,找出线性约束条件,建立线性目标函数,确定最优解.xy【规范解答】选B.设甲车间加工原料x箱,乙车间加工原料y箱,目标函数280200z x y =+,结合图像可得:当15,55x y==时,z最大.【方法技巧】本题也可以将答案逐项代入检验.如(A)10,60x y==满足约束条件,此时280102006014800z=⨯+⨯=;(B)15,55x y==满足约束条件,此时280152005515200z=⨯+⨯=;(C)18,50x y==满足约束条件,此时280182005015040z=⨯+⨯=;(D)40,30x y==时,不满足约束条件106480x y+≤.经比较(B)中z最大.4.(2010·全国高考卷Ⅱ理科·T3)若变量,x y满足约束条件1,,325xy xx y-⎧⎪⎨⎪+⎩≥≥≤,则2z x y=+的最大值为()(A)1 (B)2 (C)3 (D)4 【命题立意】本题考查线性规划的基本知识及数形结合的思想方法.【思路点拨】作出满足约束条件的可行域,平移直线2x+y=0,求目标函数的最大值.【规范解答】选C.画出可行域如图阴影所示,易知目标函数过A(1,1)点时取最大值,此时最大值为z=2⨯1+1=3.5.(2010·上海高考文科·T15)满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()(A)1 (B)32(C)2 (D)3【命题立意】本题主要考查线性规划的相关知识,体现了数形结合的思想.A (1,1)O-12x+y=0yx【思路点拨】作出满足线性约束条件的可行域,移动目标函数z x y =+,观察取得最大值的位置,最后代入点的坐标求最大值.【规范解答】选C.作出可行域如图,作直线0=+y x , 当直线经过点A 时y x z +=有最大值,由⎩⎨⎧=+=+3232y x y x ,,可得点A 的坐标为A (1,1),此时211=+=z .【方法技巧】解决线性规划问题的步骤: (1)画出可行域.(2)确定目标函数的斜率.(3)画出过原点,斜率与目标函数斜率相同的直线. (4)平移直线,确定满足最优解的点. (5)求满足最优解的点的坐标. (6)代入目标函数求解.6.(2010·全国卷Ⅰ理科·T3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )(A)4 (B)3(C)2 (D)1【命题立意】本小题主要考查线性规划知识、作图、识图能力及计算能力.只有真正的懂得线性规划的意义并恰当的进行转化,才能准确的得到答案.【思路点拨】根据题目中给出的约束条件画出平面区域,根据平面区域确定最优解. 【规范解答】选B.方法一:画出可行域(如右图),联立解得当直线l经过点)1,1(-A 时,z 最大,且最大值为max 12(1)3z =-⨯-=.方法二:11222z x y y x z =-⇒=-,画图知过点()1,1-时最大,max 12(1)3z =-⨯-=.7.(2010·湖北高考理科·T12)已知2z x y =-,式中变量,x y 满足约束条件,1,2,y x x y x ≤⎧⎪+≥⎨⎪≤⎩则z 的最大值为 .[来【命题立意】本题主要考查线性规划的基本知识, 体现了数形结合的思想.【思路点拨】在平面直角坐标系中作出符合条件的 可行域并求出相应的顶点坐标,看直线2y x z =-在向下平移时离开可行域前最后通过的点是哪一个即可.【规范解答】在平面直角坐标系中做出符合条件的可行域如图,直线2y x z =-在向下平移时离开可行域前最后通过的点是C (2,-1),因此z 的最大值为5. 【答案】5【方法技巧】对于直线y ax bz =+,(0)b ≠要注意:当0b >时,往上平移时z 的值变大,往下平移时z 的值变小;当0b <时,往上平移时z 的值变小,往下平移时z 的值变大.OA(12,12)B(2,2)C(2,-1)。
1.二元一次不等式(组)表示的平面区域满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念1.画二元一次不等式表示的平面区域的直线定界,特殊点定域(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.3.平移规律当b >0时,直线z =ax +by 向上平移z 变大,向下平移z 变小;当b <0时,直线z =ax +by 向上平移z 变小,向下平移z 变大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)× 二、易错纠偏常见误区| (1)不会用代点法判断平面区域; (2)不明确目标函数的最值与等值线截距的关系; (3)不理解目标函数的几何意义; (4)对“最优解有无数个”理解有误.1.若点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________. 解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞2.设x ,y 满足约束条件⎩⎨⎧y +2≥0,x -2≤0,2x -y +1≥0.则z =x +y 的最大值与最小值的比值为________.解析:不等式组所表示的平面区域如图中阴影部分所示,z =x +y 可化为y =-x +z ,当直线y =-x +z 经过A 点时,z 最大,联立⎩⎪⎨⎪⎧x -2=0,2x -y +1=0.得⎩⎪⎨⎪⎧x =2,y =5,故A (2,5),此时z =7;当直线y =-x +z 经过B 点时,z 最小,联立⎩⎪⎨⎪⎧y +2=0,2x -y +1=0,得⎩⎨⎧x =-32,y =-2,故B ⎝ ⎛⎭⎪⎫-32,-2,此时z =-72,故最大值与最小值的比值为-2.答案:-23.已知x ,y 满足条件⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,则z =y -1x +3的最大值为________.解析:作出可行域如图中阴影部分所示,问题转化为区域上哪一点与点M (-3,1)连线斜率最大,观察知点A ⎝ ⎛⎭⎪⎫-52,52,使k MA 最大,z max =k MA =52-1-52+3=3.答案:34.已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取得最大值的点(x ,y )有无数个,则a 的值为________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,所以-a =k AB =1,所以a =-1.答案:-1二元一次不等式(组)表示的平面区域(多维探究) 角度一 平面区域的面积不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于()A .32B .23C .43D .34【解析】 由题意得不等式组表示的平面区域如图阴影部分所示,A ⎝ ⎛⎭⎪⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .【答案】 C角度二 平面区域的形状若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是________.【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝ ⎛⎭⎪⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞(1)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(2)根据平面区域确定参数的方法在含有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案.1.已知约束条件⎩⎨⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k的值为( )A .1B .-1C .0D .-2解析:选A .作出约束条件表示的可行域如图中阴影部分所示,要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,所以不成立,所以k >0,则必有BC ⊥AB ,因为x +y -4=0的斜率为-1,所以直线kx -y =0的斜率为1,即k =1,满足题意,故选A .2.设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)解析:选C .作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].求目标函数的最值(多维探究) 角度一 求线性目标函数的最值(2021·郑州第一次质量预测)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则y -2x 的最小值是( ) A .-1 B .-6 C .-10D .-15【解析】不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,3x +y -4≤0表示的平面区域如图中阴影部分所示.令z =y -2x ,作出直线y =2x ,并平移,当直线z =y -2x 过点B (2,-2)时,z 的值最小,最小值为-6,故选B .【答案】 B(1)求目标函数的最值形如z =ax +by (b ≠0)的目标函数,可变形为斜截式y =-a b x +zb (b ≠0). ①若b >0,当直线过可行域且在y 轴上的截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;②若b <0,当直线过可行域且在y 轴上的截距最大时,z 值最小,在y 轴上的截距最小时,z 值最大.(2)求目标函数最优解的常用方法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最优解,到底哪个顶点为最优解,可有两种方法判断:①将可行域各顶点的坐标代入目标函数,通过比较各顶点函数值大小即可求得最优解;②将目标函数的直线平移,最先通过或最后通过的顶点便是最优解. 角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,则z 的取值范围为________;(2)若z =x 2+y 2,则z 的最大值为________,最小值为________.【解析】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率,因此yx 的取值范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5.【答案】 (1)[2,+∞) (2)5 1【迁移探究1】 (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].【迁移探究2】 (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max =2+1=3,z min =12+1=32.常见两类非线性目标函数的几何意义(1)x 2+y 2表示点(x ,y )与原点(0,0)间的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.角度三 求参数值或取值范围(2021·贵阳市第一学期监测考试)已知实数x ,y 满足⎩⎨⎧x +2≥y ,x ≤2,y -1≥0,若z=x +ay (a >0)的最大值为10,则a = ( )A .1B .2C .3D .4【解析】 不等式组表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =2,x -y +2=0, 解得⎩⎪⎨⎪⎧x =2,y =4,所以A (2,4),由⎩⎪⎨⎪⎧x =2,y -1=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),由⎩⎪⎨⎪⎧y -1=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以C (-1,1).若(2,4)是最优解,则2+4a =10,a =2,经检验符合题意;若(2,1)是最优解,则2+a =10,a =8,经检验不符合题意;若(-1,1)是最优解,则-1+a =10,a =11,经检验不符合题意.综上所述,a =2,故选B .【答案】 B求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.1.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________.解析:作出不等式组⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a 表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,平移直线2x +3y =0,显然过A (a ,1-a )时,z =2x +3y 取得最小值,则2a +3(1-a )=2,解得a =1.答案:12.(2021·开封市第一次模拟考试)已知点A (0,2),动点P (x ,y )的坐标满足条件⎩⎨⎧x ≥0,y ≤x ,则|P A |的最小值是________.解析:依题意,画出不等式组⎩⎨⎧x ≥0,y ≤x 表示的平面区域,如图中阴影部分所示,结合图形可知,|P A |的最小值等于点A (0,2)到直线x -y =0的距离,即|0-2|2= 2.答案: 23.(2021·湖北八校第一次联考)已知实数x ,y 满足⎩⎨⎧2x -y +3≥0,2x +y -5≤0,y ≥1,则z =|x-y |的取值范围为________.解析:画出可行域如图中阴影部分所示,z =|x -y |=|x -y |2·2表示可行域内的点(x ,y )到直线x -y =0的距离的2倍.作出直线x -y =0,由图可得可行域内的点(x ,y )到直线x -y =0的距离的最小值为0,最大值为直线2x -y +3=0与2x +y -5=0的交点C ⎝ ⎛⎭⎪⎫12,4到直线x -y =0的距离,即724,所以z 的取值范围为⎣⎢⎡⎦⎥⎤0,72.答案:⎣⎢⎡⎦⎥⎤0,72线性规划的实际应用(师生共研)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元 C .18万元D .19万元【解析】 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点(2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .【答案】 C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:36 800[A 级 基础练]1.不等式组⎩⎨⎧x -3y +6≤0,x -y +2>0表示的平面区域是( )解析:选C .用特殊点代入,比如(0,0),容易判断为C . 2.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D .若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D .3.(2020·高考浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0,则z =x +2y的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)解析:选B .画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).故选B .4.若M 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2 连续变化到1时,动直线x +y =a 扫过M 中的那部分区域的面积为( )A .1B .32C .34D .74解析:选D .在平面直角坐标系中作出区域M 如图中阴影部分所示,当a 从-2连续变化到1时,动直线x +y =a 扫过M 中的那部分区域为图中的四边形AODE ,所以其面积S =S △AOC -S △DEC =12×2×2-12×1×12=74,故选D .5.若x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -m ≥0,x -3≤0,若z =2x -3y 的最大值为9,则正实数m 的值为( )A .2B .3C .4D .8解析:选A .作出x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -m ≥0,x -3≤0表示的可行域如图中阴影部分所示,由图可知z =2x -3y 在点A 处取得最大值, 由⎩⎪⎨⎪⎧x +y -m =0,x =3解得A (3,m -3), 由z max =2×3-3(m -3)=9,解得m =2. 故选A .6.(2021·广州市阶段训练)设x ,y 满足约束条件⎩⎨⎧1≤x ≤3,0≤x +y ≤2,则z =x -2y的最小值为________.解析:依题意,在平面直角坐标系内作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0,并平移,当平移到经过该平面区域内的点(1,1)时,相应直线在x 轴上的截距最小,此时z =x -2y 取得最小值,最小值为-1.答案:-17.(2021·合肥第一次教学检测)已知实数x ,y 满足⎩⎨⎧x ≥y ,x ≤2y ,x +y -6≤0,则z =2x+y 取得最大值时的最优解为________.解析:方法一:作不等式组⎩⎪⎨⎪⎧x ≥y ,x ≤2y ,x +y -6≤0表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,并平移,根据z 的几何意义,很容易看出当直线平移到点B 处时z 取得最大值,联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,得B (4,2).方法二:易知目标函数z =2x +y 的最大值在交点处取得,只需求出两两相交的三个交点的坐标,代入z =2x +y ,即可求得最大值.联立⎩⎪⎨⎪⎧x =y ,x -2y =0,解得⎩⎪⎨⎪⎧x =0,y =0为原点,代入可得z =0;联立得⎩⎪⎨⎪⎧x =y ,x +y -6=0,解得⎩⎪⎨⎪⎧x =3,y =3,将(3,3)代入可得z =9;联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =4,y =2,将(4,2)代入可得z =10.通过比较可知,z 的最大值为10,故最优解为(4,2).答案:(4,2)8.(2021·四省八校第二次质量检测)已知变量x ,y 满足约束条件⎩⎨⎧x -2≤0,x -2y +2≥0,x +y +1≥0,若-x +y ≥-m 2+4m 恒成立,则实数m 的取值范围为________. 解析:设z =-x +y ,作出可行域如图中阴影部分所示,作出直线-x +y =0,并平移可知当直线过点B (2,-3)时z 取得最小值,所以z min =-5,所以-m 2+4m ≤-5,m 2-4m -5≥0⇒m ≤-1或m ≥5,所以m 的取值范围为(-∞,-1]∪[5,+∞).答案:(-∞,-1]∪[5,+∞)9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.已知x ,y 满足⎩⎨⎧y >0,x +y +1<0,3x +y +9>0,记点(x ,y )对应的平面区域为P .(1)设z =y +1x +3,求z 的取值范围; (2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域P ,当反射光线所在直线l 经过区域P 内的整点(即横纵坐标均是整数的点)时,求直线l 的方程.解:平面区域如图所示(阴影部分),易得A ,B ,C 三点坐标分别为A (-4,3),B (-3,0),C (-1,0).(1)由z =y +1x +3知z 的值即是定点M (-3,-1)与区域内的点Q (x ,y )连接的直线的斜率,当直线过A (-4,3)时,z =-4; 当直线过C (-1,0)时,z =12.故z 的取值范围是(-∞,-4)∪⎝ ⎛⎭⎪⎫12,+∞.(2)过点(-5,1)的光线被x 轴反射后的光线所在直线必经过点(-5,-1),由题设可得区域内坐标为整数点仅有点(-3,1),故直线l 的方程是y -1(-1)-1=x +3(-5)+3,即x -y +4=0.[B 级 综合练]11.已知点(x ,y )满足⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +y 仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(-1,2)B .(-2,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫-∞,-12解析:选B .作出不等式组对应的平面区域,如图中阴影部分所示,由z =ax +y 可得y =-ax +z ,直线的斜率k =-a , 因为k AC =2,k AB =-1,目标函数z =ax +y 仅在点A (1,0)处取得最小值,则有k AB <k <k AC , 即-1<-a <2,所以-2<a <1,即实数a 的取值范围是(-2,1).故选B .12.若点M (x ,y )满足⎩⎨⎧x 2+y 2-2x -2y +1=0,1≤x ≤2,0≤y ≤2,则x +y 的取值集合是( )A .[1,2+2]B .[1,3]C .[2+2,4]D .[1,4]解析:选A .x 2+y 2-2x -2y +1=(x -1)2+(y -1)2=1,根据约束条件画出可行域,如图中阴影部分所示,令z =x +y ,则y =-x +z ,根据图象得到当直线过点(1,0)时目标函数取得最小值,为1,当直线和半圆相切时,取得最大值,根据点到直线的距离等于半径得到|2-z |2=1⇒z =2±2,易知2-2不符合题意,故z =2+2,所以x +y 的取值范围为[1,2+2].故选A .13.已知点A (2,1),O 是坐标原点,P (x ,y )的坐标满足⎩⎨⎧2x -y ≤0x -2y +3≥0y ≥0,设z =OP →·OA→,则z 的最大值是________. 解析:方法一:由题意,作出可行域,如图中阴影部分所示.z =OP →·OA →=2x +y ,作出直线2x +y =0并平移,可知当直线过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,即C (1,2),则z 的最大值是4.方法二:由题意,作出可行域,如图中阴影部分所示,可知可行域是三角形封闭区域.z =OP →·OA →=2x +y ,易知目标函数z =2x +y 的最大值在顶点处取得,求出三个顶点的坐标分别为(0,0),(1,2),(-3,0),分别将(0,0),(1,2),(-3,0)代入z =2x +y ,对应z 的值为0,4,-6,故z 的最大值是4.答案:414.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料ABC甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域; (2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.[C 级 提升练]15.已知实数x ,y 满足⎩⎨⎧6x +y -1≥0,x -y -3≤0,y ≤0,则z =y -ln x 的取值范围为________.解析:作出可行域如图(阴影部分),其中A (16,0),B (3,0),C (47,-177).由图可知,当y =ln x +z 过点A (16,0)时z 取得最大值,z max =0-ln 16=ln 6.设y =ln x +z 的图象与直线y =x -3相切于点M (x 0,y 0),由y =ln x +z 得y ′=1x ,令1x 0=1得x 0=1∈⎝ ⎛⎭⎪⎫47,3,故y =ln x +z 与y =x -3切于点M (1,-2)时,z 取得最小值,z min =-2-ln 1=-2.所以z =y -ln x 的取值范围为[-2,ln 6]. 答案:[-2,ln 6]16.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎨⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则n =________.解析:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0表示的可行域,如图中阴影部分所示.设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =- 3. 又直线l 过点A (53,5), 所以53=-3×5+n , 解得n =10 3.当α=π6时,同理可得m =3,n =0(舍去). 综上,n =10 3. 答案:10 3。
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
1.目标函数z =4x +y ,将其看成直线方程时,z 的几何意义是( ) A .该直线的截距 B .该直线的纵截距 C .该直线的横截距D .该直线的纵截距的相反数解析:选B.把z =4x +y 变形为y =-4x +z ,则此方程为直线方程的斜截式,所以z 为该直线的纵截距.2.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值为( ) A .-1 B .1 C .2 D .-2 答案:B3.若实数x 、y 满足⎩⎪⎨⎪⎧x +y -2≥0,x ≤4,y ≤5,则s =x +y 的最大值为________.解析:可行域如图所示,作直线y =-x ,当平移直线y =-x至点A 处时,s =x +y 取得最大值,即s max =4+5=9.答案:94.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2x y ≥-2x .x ≤3(1)求不等式组表示的平面区域的面积;(2)若目标函数为z =x -2y ,求z 的最小值. 解:画出满足不等式组的可行域如图所示: (1)易求点A 、B 的坐标为:A (3,6),B (3,-6),所以三角形OAB 的面积为:S △OAB =12×12×3=18.(2)目标函数化为:y =12x -z 2,画直线y =12x 及其平行线,当此直线经过A 时,-z2的值最大,z 的值最小,易求A 点坐标为(3,6),所以,z 的最小值为3-2×6=-9. 一、选择题1.z =x -y 在⎩⎪⎨⎪⎧2x -y +1≥0x -2y -1≤0x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D .(12,12)解析:选C.可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y =-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除A ,B ,D.2.(2010年高考浙江卷)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1D.715 解析:选A.画出可行域如图: 令z =x +y ,可变为y =-x +z ,作出目标函数线,平移目标函数线,显然过点A 时z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9.3.在△ABC 中,三顶点分别为A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及其边界上运动,则m =y -x 的取值范围为( )A .[1,3]B .[-3,1]C .[-1,3]D .[-3,-1]解析:选C.直线m =y -x 的斜率k 1=1≥k AB =23,且k 1=1<k AC =4,∴直线经过C 时m 最小,为-1, 经过B 时m 最大,为3. 4.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0y -1≤0x +2y -2≥0表示的平面区域内运动,则z =x-y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]解析:选C.先画出满足约束条件的可行域,如图阴影部分, ∵z =x -y ,∴y =x -z .由图知截距-z 的范围为[-2,1],∴z 的范围为[-1,2].5.设动点坐标(x ,y )满足⎩⎨⎧?x -y +1??x +y -4?≥0,x ≥3,y ≥1.则x 2+y 2的最小值为( )A. 5B.10C.172 D .10解析:选D.画出不等式组所对应的平面区域,由图可知当x =3,y =1时,x 2+y 2的最小值为10.6.(2009年高考四川卷)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是( )A .12万元B .20万元C .25万元D .27万元解析:选D.设生产甲产品x 吨、乙产品y 吨,则获得的利润为z =5x +3y . 由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).二、填空题7.点P (x ,y )满足条件⎩⎨⎧0≤x ≤10≤y ≤1,y -x ≥12则P 点坐标为________时,z =4-2x +y取最大值________.解析:可行域如图所示,当y -2x 最大时,z 最大,此时直线y -2x =z 1,过点A (0,1),(z 1)max =1,故当点P 的坐标为(0,1)时z =4-2x +y 取得最大值5.答案:(0,1) 58.已知点P (x ,y )满足条件⎩⎪⎨⎪⎧x ≥0y ≤x2x +y +k ≤0(k 为常数),若x +3y 的最大值为8,则k =________.解析:作出可行域如图所示:作直线l 0∶x +3y =0,平移l 0知当l 0过点A 时,x +3y 最大,由于A 点坐标为(-k3,-k 3).∴-k3-k =8,从而k =-6. 答案:-69.(2010年高考陕西卷)铁矿石A 和B 的含铁率a ,,冶炼每万吨铁矿石的CO 2的排放量b某冶炼厂至少要生产22(万吨),则购买铁矿石的最少费用为________(百万元).解析:设购买A 、B 两种铁矿石分别为x 万吨、y 万吨,购买铁矿石的费用为z 百万元,则z =3x +6y .由题意可得约束条件为⎩⎪⎨⎪⎧12x +710y ≥1.9,x +12y ≤2,x ≥0,y ≥0.作出可行域如图所示:由图可知,目标函数z =3x +6y 在点A (1,2)处取得最小值,z min =3×1+6×2=15 答案:15 三、解答题10.设z =2y -2x +4,式中x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤10≤y ≤22y -x ≥1,求z 的最大值和最小值.解:作出不等式组⎩⎪⎨⎪⎧0≤x ≤10≤y ≤22y -x ≥1的可行域(如图所示).令t =2y -2x 则z =t +4.将t =2y -2x 变形得直线l ∶y =x +t2.则其与y =x 平行,平移直线l 时t 的值随直线l 的上移而增大,故当直线l 经过可行域上的点A 时,t 最大,z 最大;当直线l 经过可行域上的点B 时,t 最小,z 最小.∴z max =2×2-2×0+4=8, z min =2×1-2×1+4=4.11.已知实数x 、y 满足约束条件⎩⎪⎨⎪⎧x -ay -1≥02x +y ≥0x ≤1(a ∈R ),目标函数z =x +3y 只有当⎩⎨⎧x =1y =0时取得最大值,求a 的取值范围.解:直线x -ay -1=0过定点(1,0),画出区域⎩⎪⎨⎪⎧2x +y ≥0,x ≤1,让直线x -ay -1=0绕着(1, 0)旋转得到不等式所表示的平面区域.平移直线x +3y =0,观察图象知必须使直线x -ay -1=0的斜率1a >0才满足要求,故a >0.12.某家具厂有方木料90 m 3 ,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2;生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元;出售一个书橱可获利润120元.(1)如果只安排生产方桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所获利润最大?解:由题意可画表格如下:(1)设只生产书桌x 张,可获利润z 元, 则⎩⎪⎨⎪⎧ 0.1x ≤902x ≤600x ∈N *?⎩⎪⎨⎪⎧x ≤900x ≤300x ∈N *?x ≤300,x ∈N *.目标函数为z =80x .所以当x =300时,z max =80×300=24000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元. (2)设只生产书橱y 个,可获利润z 元,则⎩⎪⎨⎪⎧ 0.2y ≤901·y ≤600y ∈N *?⎩⎪⎨⎪⎧y ≤450y ≤600y ∈N *?y ≤450,y ∈N *.目标函数为z =120y .所以当y =450时,z max =120×450=54000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤902x +y ≤600x ≥0,x ∈N y ≥0,x ∈N ?⎩⎨⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0,且x ∈N ,y ∈N .目标函数为z = 80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域 ,即可行域(图略). 作直线l ∶80x +120y =0,即直线l ∶2x +3y =0(图略).把直线l 向右上方平移,当直线经过可行域上的直线x +2y =900,2x +y =600的交点时,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =9002x +y =600解得交点的坐标为(100,400).所以当x =100,y =400时,z max =80×100+120×400=56000(元).因此,生产书桌100张,书橱400个,可使所获利润最大.。
2008-2010年高考线性规划1.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-2.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .x -y +1≥0,3. 若实数x ,y 满足 x +y ≥0, 则z =x +2y 的最小值是x ≤0,(A)0 (B) 21 (C) 1 (D)24.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( )A .4 B.3 C.2 D.15.已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( )A .4B .2C .1D .4-6. 若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 7.不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域的面积等于A. 32B. 23C.43D. 348.若实数,x y 满足20,4,5,x y x x +-≥⎧⎪≤⎨⎪≤⎩则s x y =+的最大值为 .9. 在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为A. -5B. 1C. 2D. 310. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆车至多只运一次,则该厂所花的最少运输费用为A.2000元B.2200元C.2400元D.2800元11. 设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+(A )有最小值2,最大值3 (B )有最小值2,无最大值(C )有最大值3,无最小值 (D )既无最小值,也无最大值12.某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.13.设x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z x y =+的最小值是 1 ,最大值是14 . 已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩则目标函数z=x-2y 的最小值是___________.15. 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数y x z +=2的最小值为A 6B 7C 8D 2316.若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是 .17.设x,y 满足约束条件260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y 的最大值是(A )3 (B ) 4 (C ) 6 (D )818. 若x ,y ∈R,且,则z=x+2y 的最小值等于A.2B.3C.5D.919.已知:2,x y-式中变量,x y满足的束条件,1,2y xx yx≤⎧⎪+≥⎨⎪≤⎩则z的最大值为______。
高中数学高考总复习简单的线性规划习题及详解一、选择题1. (文)(2010北京东城区)在平面直角坐标系中,若点(—2, t)在直线x—2y + 4= 0的上方,贝y t的取值范围是(A.(―汽1)B. (1 ,+s )C. ( —1 ,+s )D. (0,1)[答案]B[解析]•••点0(0,0)使x—2y+ 4>0成立,且点O在直线下方,故点(—2, t)在直线x —2y+ 4= 0 的上方? —2—2t+ 4<0,••• t>1.[点评]可用B值判断法来求解,令 d = B(Ax0+ By°+ C),贝U d>0?点P(x0, y°)在直线Ax+ By+ C = 0的上方;d<0?点P在直线下方.由题意一2(— 2 —2t+ 4)>0 ,• t>1.(理)(2010惠州市模拟)若2m+ 2n<4,则点(m, n)必在()A .直线x+ y—2= 0的左下方B .直线x+ y—2 = 0的右上方C.直线x+ 2y—2 = 0的右上方D .直线x+ 2y —2 = 0的左下方[答案]A[解析]•/ 2m+ 2n> 2 2m+n,由条件2m+ 2n<4 知,2 .2m+ n<4,「. m+ n<2,即m+ n —2<0,故选A.x> 02. (文)(09安徽)不等式组x+ 3y>4 所表示的平面区域的面积等于()3x+ y w 4A.3B.f43C. D. -34[答C案]x+ 3y= 4[解平面区域如图•解3x + y=44B(0,4), C 0, 3,4 8|BC=4— 3 = 3. -4•••S AABC=卜3x 1= 4.x+ y> 2(理)(2010重庆市南开中学)不等式组2x—y w 4 所围成的平面区域的面积为()x—y> 0A . 3 ,'2 B. 6 ,'2C. 6D. 3[答案]D[解析]不等式组表示的平面区域为图中Rt△ ABC,易求B(4,4), A(1,1), C(2,0)二S A ABC= S\ OBC—S A AOC=2X 4 —1X 2X 1 = 3.2 2y< x3. (文)(2010西安中学)设变量x, y满足约束条件x+ y> 2 ,则目标函数z= 2x+ y的最小值为()y > 3x—6A. 2B.3C. 5D. 7[答案]By< x[解析]在坐标系中画出约束条件x+ y> 2所表示的可行域为图中厶ABC,其中y> 3x—6A(2,0), B(1,1), C(3,3),则目标函数z= 2x+ y在点B(1,1)处取得最小值,最小值为3.(理)(2010哈师大附中模考)已知A(2,4) , B( —1,2), C(1,0),点P(x, 丫)在厶ABC内部及边界运动,则z= x—y的最大值及最小值分别是()A . —1,—3 B. 1,—3C. 3, —1D. 3,1[答案]B[解析]当直线y= x —z经过点C(1,0)时,Z max= 1,当直线y= x—z经过点B(- 1,2)时, Z min = — 3.4.(2010四川广元市质检)在直角坐标系xOy 中,已知△ AOB 的三边所在直线的方程分别为x = 0 ,y = 0,2x + 3y = 30,则厶AOB 内部和边上整点(即坐标均为整数的点)的总数为()B . 91D . 75[答案]By = 7 时, y = 9 时, •••共有 16+ 14+ 13+ 11+ 10+ 8+ 7 + 5 + 4+ 2+ 1 = 91 个.5. (2010山师大附中模考)某企业生产甲、乙两种产品,已知生产每吨甲产品要用 料3吨,B 原料2吨;生产每吨乙产品要用 A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )[答案]D3x + y W 13 2x + 3y W 18由题意得,x > 0获利润3= 5x + 3y , 画出可行域如图,C . 88 y = 1 时, y = 3 时,y = 5 时, 0W x W 7; y = 6 时,0W x W 6;0W x W 4; y = 8 时,0W x W 3; 0W x W 1, y = 10 时,x = 0.A . 12万元B .20万元C . 25万元D . 27万元 A 原料不超[解析]设生产甲、乙两种产品分别为x 吨,y 吨,[解0< x W 10; y = 4 时,O W x W 9;3x+ y = 13由,解得A(3,4).2x+ 3y= 185 2T—3<—-< —3,.•当直线5x+ 3y = 3 经过A 点时,3max= 27.3 3x—y+ 6 > 06.(文)(2010山东省实验中学)已知实数x, y满足x+ y> 0 ,若z= ax+ y的最大x w 3值为3a + 9,最小值为3a —3,则实数a的取值范围为()B. a w —1[答案]C[解析]作出可行域如图中阴影部分所示,则z在点A处取得最大值,在点C处取得最小值.又k Bc=—1, k AB = 1,.••一1 w —a w 1,即一1 w a w 1.1a ° 3 ;(理)(2010寿光现代中学)已知变量x, y满足约束条件x+ 4y—13> 02y —x+ 1> 0 ,且有无穷多个x+ y—4 w 0点(x, y)使目标函数z= x+ my取得最小值,则m=(B.—1C. 1D. 4[答案]C[解析]由题意可知,不等式组表示的可行域是由及其内部部分.当z= x + my与x+ y— 4 = 0重合时满足题意,故m= 1.A(1,3), B(3,1), C(5,2)组成的三角形7. (2010 •东五校)当点M (x , y )在如图所示的三角形[解析]由目标函数z = kx + y 得y =— kx + z ,结合图形,要使直线的截距 z 最大的一个最优解为(1,2),贝V 0< — k w k Ac w 1 或 0> — k > k Bc = — 1, A k € [ — 1,1].y > x& (文)(2010厦门一中)已知x 、y 满足不等式组 x + y w 2 ,且z = 2x + y 的最大值是最x > a小值的3倍,则a =()1 A. 0 B.32 C.2 D . 1[答案]B[解析]依题意可知a<1.作出可行域如图所示,z = 2x + y 在A 点和B 点处分别取得最小 值和最大值.x a由 得 A(a , a), y = x x + y = 2 由 得 B(1,1), x = y标函数z = kx + y 取得最大值的一个最优解为 (1,2),则实数k 的取值范围是(A . ( — g,— -1] U [1, + g )B . [ — 1,1]C . (—g,— -1)U (1, + g ) D . (— 1,1)[答案]B)ABC 区域内(含边界)运动时,目1--z max = 3, Z min = 3a.二 a = 3.y > 0(理)已知实数x , y 满足y w 2x — 1x + y w m等于(B .C . [答案]B[解析]画出x , y 满足条件的可行域如图所示,可知在直线y = 2x — 1与直线x + y = m的交点A 处,目标函数z = x — y 取得最小值.y = 2x — 1 由,x + y = mm + 1 x= 3解得, 2m — 1y=^二、填空题x — y > 09. 设变量x, y 满足约束条件 x + y w 1 ,则目标函数z = 2x + y 的最大值为 __________ . x + 2y > 1[答案]2[解析]可行域为图中阴影部分厶 ABC ,显然当直线2x + y = z 经过可行域内的点 A(1,0) 时,z 取最大值,Z max = 2.,如果目标函数z = x — y 的最小值为—1,贝U 实数mD .即点A 的坐标为卬于2m — 1 3将点A 的坐标代入x — y =— 1,得中2 rm 1—3— =— 1,即卩 m = 5•故选 B. 310. (2010四川广元市质检)毕业庆典活动中,某班团支部决定组织班里48名同学去水上公园坐船观赏风景,支部先派一人去了解船只的租金情况,看到的租金价格如下表,那么他们合理设计租船方案后,所付租金最少为___________ 元•x> 1, y> 111. (文)(2010淮南一中)已知M、N是不等式组x —y+ 1>0 所表示的平面区域内的x + y w 6不同两点,贝U |MN|的最大值是 _______ .[答案].17[解析]不等式组所表示的平面区域如图中阴影部分(包括边界)所示,由图形易知,点D(5,1)与点B(1,2)的距离最大,所以|MN|的最大值为.17.y \x=\x-y+l=O眄/Z A ・ -厶1K*萝=6(理)如果直线y= kx+ 1与圆x2+ y2+ kx+ my —4= 0相交于M、N两点,且M、N关于kx -y + 1 > 0 b + 1直线x + y = 0对称,点P(a , b)为平面区域 kx -my < 0 内任意一点,贝U 的取值范围a — 1y > 0是 ________ .1[答案]—1,— 2[解析]T 直线y = kx + 1与圆x 2 + y 2 + kx + my — 4= 0相交于M 、N 两点,且 M 、N 关 k于x + y = 0对称,二y = kx + 1与x + y = 0垂直,二k = 1,而圆心在直线 x + y = 0上,••• — 2+斜率,1•••所求取值范围为—1, — 2 .x < my + n12. 若由不等式组 x — .;3y > 0 (n >0)确定的平面区域的边界为三角形,且它的外接圆y > 0的圆心在x 轴上,则实数m =[答案]—宁[解析]根据题意,三角形的外接圆圆心在 x 轴上, • OA 为外接圆的直径,•直线 x = my + n 与x — . 3y = 0垂直,—m = 0, •m =—1,•作出可行域如图所示,而岂表示点P(a , b)与点(1,-"连线的0 + 1 —1— 1;=1,即m= —三、解答题2x+ y—12W 013. (2010 •宁锦州)若x、y满足条件3x—2y+ 10> 0,求z= x+ 2y的最小值,并求x—4y+ 10< 0出相应的x、y值.[解析]根据条件作出可行域如图所示,x+ 4y—10 = 0解方程组,得A(—2,2).3x —2y+ 10= 0再作直线I: x+ 2y= 0,把直线I向上平移至过点A(—2, 2)时,z取得最小值2,此时x =—2, y= 2.14. (2010茂名模考)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1) 分别求甲、乙产品为一等品的概率P甲,P乙;(2) 已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x, y分别表示生产甲、乙产品的数量,在⑴的条件下,求x, y为何值时,z=xP甲+ yP乙最大,最大值是多少?\jsill工人(名)资金(万兀)甲420乙85P甲一卩乙=0.25[解析]⑴依题意得1 —卩甲=卩乙—0.05P 甲=0.65解得P 乙=0.4故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=04(2)依题意得x、y应满足的约束条件为j+2y=K 4x+ 8y W 3220x+ 5y W 55 ,且z= 0.65x+ 0.4y.x> 0y> 0作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线b: 0.65x+ 0.4y= 0即13x+ 8y= 0,把直线I向上方平移到l i的位置时,直线经过可行域内的点M,且l i与原点的距离最大,此时z取最大值.x+ 2y= 8解方程组,得x= 2, y= 3.4x + y= 11故M的坐标为(2,3),所以z的最大值为Z max= 0.65 X 2+ 0.4 X 3= 2.5。
南通中学数学高考小题专题复习练习简单的线性规划一、填空题(共12题,每题5分)1、点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是 .2、不等式组⎪⎩⎪⎨⎧<+>>1234,0,0y x y x 表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有 个.3、若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩,则s y x =-的最小值为__________.4、若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是 .5、已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥≤≤,,.如果目标函数z x y =-的最小值为1-,则实数m 等于 .6、若实数x 、y 满足错误!,则yx的取值范围是 . 7、已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成,若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m . 8、若点P (m ,3)到直线4310x y -+=的距离为4,且点P 在不等式 2x y +<3表示的平面区域内,则m = .9、若为不等式组002x y y x ⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 .10、若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是 .11、若a ≥0,b ≥0,且当0,0,1x y x y ⎧⎪⎨⎪+⎩≥≥≤时,恒有ax +by ≤1,则以a 、b 为坐标的点P (a,b )所形成的平面区域的面积等于 .12、设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z =ax +by (a 〉0,b 〉0)的最大值为12,则23a b +的最小值是 .南通中学数学高考小题专题复习练习答题纸班级姓名分数一、填空题(共12题,每题5分)1、 2、 3、 4、5、 6、 7、 8、9、 10、 11、 12、二、解答题(共20分,要求写出主要的证明、解答过程)13、某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
考点15 简单的线性规划
1.(2010·重庆高考理科·T4)设变量x ,y 满足约束条件01030y x y x y ≥⎧⎪
-+≥⎨⎪+-≤⎩
,则2z x y =+的最大值
为( )
(A)2- (B)4 (C)6 (D)8
【命题立意】本题考查线性规划的基本知识及数形结合的思想方法的利用. 【思路点拨】先画出可行域,再移动目标函数y x z +=2, 观察取得最大值的位置,最后代入点的坐标求最大值. 【规范解答】选C. 约束条件确定的区域如图所示, 目标函数2z x y =+在点(3,0)处取得最大值
=2306
z ⨯+=最大.
2.(2010·重庆高考文科·T7)设变量
,x y 满足约束条件
0,0,220,x x y x y ≥⎧⎪
-≥⎨⎪--≤⎩
则32z x y =-的最大值为( )
(A)0 (B)2 (C)4 (D)6
【命题立意】本题考查线性规划的基本知识及数形结合的 思想方法的利用.
【思路点拨】先画出可行域,再移动目标函数32z x y =-, 观察取得最大值的位置,最后代入点的坐标求最大值. 【规范解答】选C.约束条件确定的区域如图所示, 目标函数32z x y =-平移到点(0,2)-的位置时取得 最大值,所以
302(2)4
z =⨯-⨯-=最大.
3.(2010·四川高考理科·T7)某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( ) (A )甲车间加工原料10箱,乙车间加工原料60箱 (B )甲车间加工原料15箱,乙车间加工原料55箱 (C )甲车间加工原料18箱,乙车间加工原料50箱 (D )甲车间加工原料40箱,乙车间加工原料30箱
【命题立意】本题考查简单的性线规划问题及学生利用数形结合的思想解决实际问题的能力.
【思路点拨】根据题中所给的数量关系,找出线性约束条件,建立线性目标函数,确定最优解
.
x
y
【规范解答】 选B.设甲车间加工原料x 箱,乙车间加工原料y 箱
,
目标函数280200z x y =+,
结合图像可得:当15,55x y ==时,z 最大. 【方法技巧】本题也可以将答案逐项代入检验.
如(A )10,60x y ==满足约束条件,此时280102006014800z =⨯+⨯=; (B )15,55x y ==满足约束条件,此时280152005515200z =⨯+⨯=; (C )18,50x y ==满足约束条件,此时280182005015040z =⨯+⨯=; (D )40,30x y ==时,不满足约束条件106480x y +≤.经比较(B )中z 最大.
4.(2010·全国高考卷Ⅱ理科·T3)若变量,x y 满足约束条件1,,
325x y x x y -⎧⎪
⎨⎪+⎩≥≥≤,
则2z x y =+的最大值
为( )
(A )1 (B )2 (C )3 (D )4 【命题立意】本题考查线性规划的基本知识及数形结合的思想方法. 【思路点拨】作出满足约束条件的可行域, 平移直线2x+y=0,求目标函数的最大值.
【规范解答】 选C.画出可行域如图阴影 所示,易知目标函数过A (1,1)点 时取最大值,此时最大值为z=2⨯1+1=3.
5.(2010·上海高考文科·T15)满足线性约束条件2
2x x x y +⎧⎪+⎪⎨
≥⎪⎪≥⎩的目标函数的最大值是( )
(A )1 (B )3
2 (C )2 (D )3
【命题立意】本题主要考查线性规划的相关知识, 体现了数形结合的思想.
【思路点拨】作出满足线性约束条件的可行域,移动目标函数z x y =+,观察取得最大值的位置,最后代入点的坐标求最大值.
【规范解答】选C.作出可行域如图,作直线0=+y x , 当直线经过点A 时y x z +=有最大值,
由⎩⎨
⎧=+=+3232y x y x ,,可得点A 的坐标为A (1,1),
此时211=+=z .
【方法技巧】解决线性规划问题的步骤: (1)画出可行域.
(2)确定目标函数的斜率.
(3)画出过原点,斜率与目标函数斜率相同的直线. (4)平移直线,确定满足最优解的点. (5)求满足最优解的点的坐标. (6)代入目标函数求解.
6.(2010·全国卷Ⅰ理科·T3)若变量
,x y 满足约束条件
1,
0,20,y x y x y ≤⎧⎪
+≥⎨⎪--≤⎩
则2z x y =-的最大值为( )
(A)4 (B)3
(C)2 (D)1
【命题立意】本小题主要考查线性规划知识、作图、识图能力及计算能力.只有真正的懂得线性规划的意义并恰当的进行转化,才能准确的得到答案.
【思路点拨】根据题目中给出的约束条件画出平面区域,根据平面区域确定最优解. 【规范解答】选B.
方法一:画出可行域(如右图),
联立
解得当直线l
经过点)1,1(-A 时,z 最大,且最大值为
max 12(1)3z =-⨯-=.
方法二:
11
222z x y y x z =-⇒=
-,画图知过点()1,1-时最大,max 12(1)3z =-⨯-=.
7.(2010·湖北高考理科·T12)已知2z x y =-,式中变量,x y 满足约束条件,
1,2,y x x y x ≤⎧⎪
+≥⎨⎪≤⎩
则z 的最大值
为 .[来
【命题立意】本题主要考查线性规划的基本知识, 体现了数形结合的思想.
【思路点拨】在平面直角坐标系中作出符合条件的 可行域并求出相应的顶点坐标,看直线2y x z =-
在向下平移时离开可行域前最后通过的点是哪一个即可.
【规范解答】在平面直角坐标系中做出符合条件的可行域如图,
直线2y x z =-在向下平移时离开可行域前最后通过的点是C (2,-1),因此z 的最大值为5. 【答案】5
【方法技巧】对于直线y ax bz =+,(0)b ≠要注意:当0b >时,往上平移时z 的值变大,往下平移时z 的值变小;当0b <时,往上平移时z 的值变小,往下平移时z 的值变大.。