(完整word版)微积分(数学分析)练习题及答案doc
- 格式:doc
- 大小:1.30 MB
- 文档页数:22
微积分试题及答案1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。
解析:首先,我们需要求函数f(x)的导数。
对于一个二次函数 f(x) = ax^2 + bx + c,它的导数等于2ax + b。
因此,对于f(x) = 3x^2 - 2x + 1,其导数即为 f'(x) = 6x - 2。
接下来,我们需要求在 x = 2 处的导数。
将 x = 2 代入导数公式,得到 f'(2) = 6(2) - 2 = 10。
答案:函数f(x)在x = 2处的导数为10。
2. 求函数g(x) = sin(x) + cos(x)的定积分∫[0, π] g(x)dx。
解析:我们需要求函数 g(x) = sin(x) + cos(x) 在[0, π] 区间上的定积分。
首先,我们可以分别求 sin(x) 和 cos(x) 在[0, π] 区间上的定积分,然后将结果相加即可。
根据积分的基本性质,∫sin(x)dx = -cos(x) 和∫cos(x)dx = sin(x),所以:∫[0, π]sin(x)dx = [-cos(x)]|[0, π] = -cos(π) - (-cos(0)) = -(-1) - (-1) = 2∫[0, π]cos(x)dx = [sin(x)]|[0, π] = sin(π) - sin(0) = 0 - 0 = 0将上述结果相加,得到定积分的结果:∫[0, π]g(x)dx = ∫[0, π]sin(x)dx + ∫[0, π]cos(x)dx = 2 + 0 = 2答案:函数g(x) = sin(x) + cos(x)在[0, π]区间上的定积分为2。
3. 求曲线y = x^3在点(1, 1)处的切线方程。
解析:要求曲线 y = x^3 在点 (1, 1) 处的切线方程,我们需要确定切线的斜率和过切点的直线方程。
首先,我们求出这个曲线在点(1, 1)处的导数来获得切线的斜率。
微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。
在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。
在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。
1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。
答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。
答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。
答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。
答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。
答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。
答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。
答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。
答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。
答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。
通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。
微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。
统计专业和数学专业数学分练习题 计算题1. 试求极限.42lim)0,0(),(xyxy y x +-→2. 试求极限.)()cos(1lim 222222)0,0(),(y x y x ey x y x ++-→3. 试求极限.1sin 1sin )(lim )0,0(),(yx y x y x +→4. 试讨论.lim 422)0,0(),(y x xy y x +→5. 试求极限.11lim2222)0,0(),(-+++→y x y x y x6. ),(xy y x f u +=,f 有连续的偏导数,求 .,yu x u ∂∂∂∂ 7. ,arctan xy z =,xe y = 求.dxdz 8. 求抛物面 222y x z +=在点 )3,1,1(M 处的切平面方程与法线方程.9. 求5362),(22+----=y x y xy x y x f 在)2,1(-处的泰勒公式.10. 求函数)2(),(22y y x e y x f x++=的极值. 11. 叙述隐函数的定义.12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容.14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线0333=-+axy y x所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程0),,(323=-++=z y x xyz z y x F在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23(,,)f x y z xy z =, 方程2223x y z xyz ++=.(1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组⎩⎨⎧=+-+-==--+=01),,,(,0),,,(222xy v u v u y x G y x v u v u y x F 在点)2,1,1,2(0P 近旁能确定怎样的隐函数组,并求其偏导数。
统计专业和数学专业数学分析练习题1. 证明极限yx yx y x -+→)0,0(),(lim不存在。
2. 用极限定义证明: .0lim 22)0,0(),(=++→yx yx y x3. 证明极限22222)0,0(),()(lim y x y x y x y x -+→不存在.4. 设),(),(x f y x F =)(x f 在 0x 连续,证明:对,0R y ∈∀),(y x F 在),(00y x 连续.5. 证明:如果),(y x f 在 ),(000y x P 连续,且0),(00>y x f ,则对任意),(00y x f r <,),;(0δP ⋃∃对一切),;(),(0δP y x P ⋃∈有.),(r y x f >6. 证明:22),(y x y x f +=在点)0,0(处连续且偏导数不存在.7. 证明;2222221sin 0(,)00y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在)0,0(点连续,且0)0,0(,0)0,0(==y x f f 不存在.8. 证明222222221()sin 0(,)00x y x y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩在 点)0,0(处连续且偏导数存在.9. 设 函数),(y x f 在),(00y x 的某邻域内存在偏导数,若),(y x 属于该邻域,则存在)(010x x x -+=θξ和 )(020y y y -+=θη,,10,1021<<<<θθ 使得00000(,)(,)(,)()(,)()x y f x y f x y f y x x f x y y ξη-=-+-。
10. 证明:2222220(,)00xy x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩,在点)0,0(不可微.11. 证明: 对任意常数,ρϕ, 球面2222x y z ρ++=与锥面2222tan x y z ϕ+=⋅是正交的. 12. 证明: 以λ为参数的曲线族221() x y a b a b λλ+=>-- 是相互正交的(当相交时).13. 证明: 由方程()z y x z ϕ=+所确定的隐函数(,)z z x y =满足222()z z z x y y ϕ⎡⎤∂∂∂=⎢⎥∂∂∂⎣⎦, 其中ϕ二阶可导. 14. 设()20()ln 12cos F a a x a dx π=-+⎰, 证明20,10,()ln , 1. 若且 若a a F a a a π⎧<≠⎪=⎨>⎪⎩15. 证明含参量反常积分⎰+∞sin dy yxy 在[)+∞,δ上一致收敛()0>其中δ,但在()0,+∞内不一致收敛。
微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。
在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。
下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。
一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。
答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。
答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。
答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。
答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。
答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。
答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解微分方程dy/dx = e^x。
答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。
3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。
答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。
微积分试卷一、填空题(每题3分,共30分) 1、函数)1ln(3-+-=x x y 的定义域是____________.2、设xx f -=11)(则=))(1(x f f ________________. 3、已知654lim25=-+-→x kx x x ,则k =________________. 4、=+-∞→xx x x )11(lim ____________. 5、设函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x a x xx x f 为),(+∞-∞上的连续函数,则a =____________ . 6、设)(x f 在0=x 处可导,且0)0(=f ,则=→xx f x )(lim 0. 7、已知xxx f +=1)1(,求)(ln x f '= . 8、曲线)1ln(2x y +=的在区间__________________单调减少。
9、若xe-是)(x f 的原函数,则=⎰dx x f x )(ln 2_____________.10、⎰=xdx x ln _____________. 二、单选题(每题3分,共15分)1、下列极限计算正确的是( )A . 111lim 0=⎪⎭⎫ ⎝⎛++→x x x B. e x xx =⎪⎭⎫⎝⎛++→11lim 0C . 1sin lim=∞→x x x D. 11sin lim 0=→xx x2、函数11arctan )(-=x x f 在x =1处是( ).A. 连续B. 可去间断点C. 跳跃间断点D. 第二类间断点3、函数3)(x x f =在区间]1,0[上满足拉格朗日中值定理,则其ξ=( ).A . 3 B.3- C.33-D. 33 4、当0→x 时,与2x 等价的无穷小是( )。
A. 12-xeB. )21ln(x+ C. )cos 1(2x - D.x arctan5、设)()(x f x F =',则下列正确的表达式是( ) A .⎰+=C x f x dF )()( B. C x F dx x f +=⎰)()(C.⎰+=C x f dx x F dx d)()( D. ⎰+='C x f dx x F )()( 三、计算题(每题8分,共32分)1、求极限xx xx x 3220sin sin lim -→2、求曲线x yy x arctan ln22=+所确定的函数)(x f y =在)0,1(处的切线方程。
第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim 22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→x x k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
微积分考试试题及答案第一题:求函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点和拐点。
解析:首先,我们需要找到函数的极值点。
极值点对应于函数的导数为零的点。
对函数 f(x) 求导得到 f'(x) = 3x^2 - 6x + 2。
令导数等于零,我们得到一个二次方程 3x^2 - 6x + 2 = 0。
使用求根公式,可以解得这个二次方程的解为x = 1 ± √(2/3)。
所以函数的极值点为x = 1 + √(2/3) 和 x = 1 - √(2/3)。
接下来,我们需要找到函数的拐点。
拐点对应于函数的二阶导数为零的点。
对函数 f(x) 求二阶导数得到 f''(x) = 6x - 6。
令二阶导数等于零,我们得到 x = 1,这是函数的一个拐点。
综上所述,函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点为x = 1 + √(2/3)和 x = 1 - √(2/3),拐点为 x = 1。
第二题:已知函数 f(x) = e^x,在点 x = 0 处的切线方程为 y = mx + b,求参数 m 和 b 的值。
解析:切线方程的斜率 m 等于函数在给定点的导数。
对函数 f(x) = e^x 求导得到 f'(x) = e^x。
根据题意,在 x = 0 处求切线,所以我们需要计算函数在 x = 0 处的导数。
将 x = 0 代入函数的导数表达式中,我们得到 f'(0) = e^0 = 1。
所以切线的斜率 m = 1。
切线方程的常数项 b 可以通过将给定点的坐标代入切线方程求解。
由题意知道切线过点 (0, f(0)),即 (0, e^0) = (0, 1)。
将点 (0, 1) 代入切线方程 y = mx + b,我们得到 1 = 0 + b,解得 b = 1。
综上所述,切线方程为 y = x + 1。
第三题:计算函数f(x) = ∫(0 to x) sin(t^2) dt。
一、填空题(每小题3分,共15分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ .答案:)1ln(x - 王丽君解:x e u f u -==1)(2,)1ln(2x u -=,)1ln(x u -=.2、已知a 为常数,1)12(lim 2=+-+∞→ax xx x ,则=a . 答案:1 孙仁斌解:a xba x ax x x x x x x x -=+-+=+-+==∞→∞→∞→1)11(lim )11(1lim 1lim 022.3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 .答案:4 俞诗秋解:4)]1()1([)]1()31([lim0=-+--+→xf x f f x f x4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 答案:2 俞诗秋解:)(x f '有3个零点321,,ξξξ:4321321<<<<<<ξξξ,)(x f ''有2个零点21,ηη:4132211<<<<<<ξηξηξ,))((12)(21ηη--=''x x x f ,显然)(x f ''符号是:+,-,+,故有2个拐点.5、=⎰xx dx22cos sin . 答案:C x x +-cot tan 张军好解:C x x x dxx dx dx xx x x x x dx +-=+=+=⎰⎰⎰⎰cot tan sin cos cos sin sin cos cos sin 22222222.二、选择题(每小题3分,共15分)答案: 1、 2、 3、 4、 5、 。
1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.答案:A 王丽君2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x xx f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点. 答案:D 俞诗秋3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在; (D) )(x f 在0x 处的左导数与右导数必有一个不存在.答案:B 江美英4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<'' (C) )()(Q C Q R ''=''; (D) )()(Q C Q R '='答案:D 俞诗秋5、若函数)(x f '存在原函数,下列错误的等式是:(A))()(x f dx x f dx d⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.答案:B 秋俞诗三、计算题(每小题6分,共60分) 1、设x x f xx-=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx 王丽君,俞诗秋解:令2-=x t ,则2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f tt t tt t , (3分)于是42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f xx x x x . (6分)2、计算)1cos(lim n n n -+∞→.答案:1 俞诗秋解:nn n n n n ++=-+∞→∞→11coslim )1cos(lim (3分)11010cos 1111cos lim =++=++=∞→nn n . (6分)3、求极限)21(lim 222nn nn n n n n ++++++∞→ . 答案:1 俞诗秋解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , (3分)而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→nn n n n , 所以1)21(lim 222=++++++∞→nn nn n n n n . (6分)4、求极限xx x x cos sec )1ln(lim 20-+→.答案:1 俞诗秋解:xx x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ (4分) 1sin lim cos )1(1lim 020=+=→→x xx x x x . (6分)5、求函数xx y 1sin=的导数.答案:)1sin 1ln 1cos 1(21sinxx x x x x y x+-=' 俞诗秋 解:)(ln 1sin'='x xey (2分)]1sin 1ln )1(1[cos 2ln 1sin x x x x x ex x+-=)1sin 1ln 1cos 1(21sin xx x x x x x +-=. (6分)6、求曲线12ln =-+x y y x 在点)1,1(处的法线方程. 答案:02=-+y x 江美英,俞诗秋解: 方程两边对x 求导得:02ln =-'+'+y yy xy , 将)1,1(),(=y x 代入得法线斜率1)1(1-='-=y k , (3分)从而法线方程为:)1(11-⋅-=-x y , 即: 02=-+y x . (6分)7、求曲线12134+-=x x y 的凹凸区间和拐点.答案:曲线在区间]0,(-∞和),1[+∞是凹的,在区间]1,0[是凸的.拐点为)1,0(,)34,1(. 俞诗秋解:(1)),()(+∞-∞∈C x f ,(2)2332)(x x x f -=', )1(666)(2-=-=''x x x x x f , (3)0)(=''x f ,得01=x ,12=x . 1)0(=f ,34)1(=f . (3分) (4) 列表如下:(5) 曲线的拐点为)1,0(、)3,1(.(6) 曲线在区间]0,(-∞和),1[+∞是凹的,在区间]1,0[是凸的. (6分)8、计算⎰+xx dx)1(3. 答案:C x x +-66arctan 66 俞诗秋解:⎰⎰⎰+===+=+==)1(6 ])(1[)()1(2352636366t t dtt x x dx x x dx xt t x (3分) ⎰⎰⎰+=-=+-+=2221 6 611)1( 6t dtdt dt t t . C x x C t t +-=+-=66arctan 66arctan 66. (6分)9、计算⎰xdx e x 2sin .答案:C x x e x +-)2cos 2sin 21(104 俞诗秋 解:⎰⎰⎰+-=-=xdx e x e x d e xdx e x x x x 2cos 212cos 212cos 212sin (3分)⎰⎰-+-=+-=xdx e x e x e x d e x e x x x x x 2sin 412sin 412cos 212sin 412cos 21,∴C x x e xdx e x x +-=⎰)2cos 2sin 21(1042cos . (6分)10、设某商品的需求函数为P Q 5100-=,其中Q P ,分别表示需求量和价格,试求当总收益达到最大时,此时的需求弹性,并解释其经济意义.答案:1)10(=η,当总收益达到最大时,价格上涨%1,需求则相应减少%1.俞诗秋 解:总收益函数为25100)5100()(P P P P PQ P R -=-==,令010100)(=-='P P R ,得3=P ,而05)10(<-=''R ,可见, 当10=P 时, 总收益达到最大. (3分) 此时需求弹性151005)10(1010=-=-===P P P PdP dQ Q P η, (5分)说明,当总收益达到最大时,价格上涨%1,需求则相应减少%1. (6分)四、证明题(每小题5分,共10分)1、证明方程1=x xe 在区间)1,0(内有且只有一个实根. 孙仁斌,俞诗秋 证明:显然]1,0[1)(C xe x f x ∈-=,由于01)0(<-=f ,01)1(>-=e f ,由零点定理知,)1,0(∈ξ..t s 0)(=ξf ,即1=ξξe ; (3分) 又因0)1()(>+='x e x x f ,)1,0(∈x ,知]1,0[)(↑x f ,所以方程1=x xe 在区间)1,0(内有且只有一个实根ξ. (5分)2、设)(x f 在闭区间]2,1[连续,在开区间)2,1(可导,且)1(8)2(f f =,证明在)2,1(内必存在一点ξ,使得)()(3ξξξf f '=. 俞诗秋 证明: 令3)()(xx f x F =,623)(3)()(x x f x x f x x F -'=', 显然]2,1[)(C x F ∈,)2,1()(D x F ∈,且)2(8)2()1()1(F f f F ===, 由罗尔定理知:)2,1(∈∃ξ,..t s 0)(='ξF ,所以)()(3ξξξf f '=.一、填空题(每小题3分,共15分)1、设)(y x f y x z -++=,且当0=y 时,2x z =,则=z 。
统计专业和数学专业数学分析(3)练习题一 填空题1. 函数 xy xyz +=arcsin 的定义域是 . 2. 函数y x z -=的定义域是 .3. 设 )ln(),(22y x x y x f --=,其中 0>>y x ,则),(=-+y x y x f .4. 设 yx xy y x y x f tan ),(22-+=,则 =),(ty tx f .5. 设2R E ⊂为 点集,则E 在2R 中至少有一个聚点.6. 32),,(yz xy z y x f +=,则 =-)1,1,2(gradf 。
7. xyz z xy u -+=32在点)2,1,1(0P 处沿方向→l (其中方向角分别为00060,45,60)的方向导数为=→)(0P u l.8. ,y x z =其中,0>x ,0≠x 则=dz 。
9. 函数),(y x f 在),(00y x 处可微,则 =-∆df f 。
10. 若函数 ),(y x f 在区域D 上存在偏导数,且,0==y x f f ,则),(y x f 在区域上为 函数。
11. 由方程1(,)sin 02F x y y x y =--=确定的隐函数)(x f y =的导数'()f x = . 12. 设243340x y x y +-=, 则dy dx= . 13. 平面上点P 的直角坐标),(y x 与极坐标),(θr 之间的坐标变换公式为 .其雅可比行列式(,)(,)x y r θ∂=∂ .14. 直角坐标),,(z y x 与球坐标),,(θϕr 之间的变换公式为 . 其雅可比行列式(,,)(,,)x y z r ϕθ∂=∂ .15. 设平面曲线由方程0),(=y x F 给出, 它在点),(000y x P 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法线,其方程分别为切线: , 法线: .16. 设空间曲线由参数方程βα≤≤===t t z z t y y t x x L ),(),(),(:给出, 它在点0000000(,,)((),(),())P x y z x t y t z t =处的切线和法平面方程为 切线: ,法平面: . 17. 设空间曲线L 由方程组(,,)0,(,,)0F x y zG x y z =⎧⎨=⎩ 给出, 若它在点0000(,,)P x y z 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法平面,其方程分别为切线: , 法平面: .18. 设曲面由方程0),,(F =z y x 给出,它在点),,(0000z y x P 的某邻域内满足隐函数定理条件,则该曲面在0P 处有切平面与法线,它们的方程分别是切平面: , 法线: . 19. 条件极值问题的一般形式是在条件组)(,,2,1,0),,,(21n m m k x x x n k <== ϕ的限制下,求目标函数 ),,,(21n x x x f y = 的极值.其拉格朗日函数是 , 其中m λλλ,,,21 为拉格朗日乘数.20. 若(,)f x y 在矩形区域R 上连续, 则对任何[]0,x a b ∈, 都有0lim (,)dcx x f x y dy →=⎰.21. (可微性)若函数),(y x f 与其偏导数),(y x f x∂∂都在矩形区域[][]d c b a R ,,⨯=上连续,则⎰=dcdy y x f x I ),()(在[]b a ,上可微,且(,)dcd f x y dy dx =⎰ .22. (可微性) 设),(),,(y x f y x f x 在[][]q p b a R ,,⨯=上连续,()()x d x c ,为定义在[]b a ,上其值含于[]q p ,内的可微函数,则函数⎰=)()(),()(x d x c dy y x f x F 在[]b a ,上可微,且'()F x = .23. (两个累次积分的关系)若),(y x f 在矩形区域[][]d c b a R ,,⨯=上连续,则(,)bdacdx f x y dy =⎰⎰ .24. 含参量反常积分(,)cf x y dy +∞⎰在[]b a ,上一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数 在[]b a ,上一致收敛. 25. 设有函数)(y g ,使得.,),(),(+∞<≤≤≤≤y c b x a y g y x f 若⎰+∞cdy y g )(收敛,则⎰+∞cdy y x f ),(在[]b a ,上 .26. (连续性)设),(y x f 在[][)+∞⨯,,c b a 上连续,若含参量反常积分⎰+∞=cdyy x f x I ),()(在[]b a ,上 ,则)(x I 在[]b a ,上 .27. (可微性)设),(y x f 与),(y x f x 在区域[][)+∞⨯,,c b a 上连续。