燃煤过程中的氮氧化物介绍及生成机理
- 格式:ppt
- 大小:3.06 MB
- 文档页数:60
燃煤 NOx 产生机理及控制摘要:简要介绍了燃煤电厂NOx产生机理及相应控制措施。
关键词:NOx产生机理1.NOx产生机理NOx 主要指 NO 和 NO2,其次是 N2O3, N2O , N2O4和 N2O5。
发电厂锅炉的煤粉燃烧程中NOx的形成途径主要有两条:一是有机地结合在煤中的氮化物在高温火焰中发生热分解,并进一步氧化而生成 NOx ;二是供燃烧用的空气中的氮在高温状态与燃烧空气中的氧发生化合反应而生成 NOx 。
在煤粉锅炉生成的 NOx 中,主要是NO, 约占95%,而 NO2仅占5%左右, N2O3, N2O3, N2O4和 N2O5的量很少。
NOx 的生成量与锅炉的容量、结构、燃烧设备,煤种、炉内温度水平和氧量、运行方式等有关。
煤燃烧过程中所生成的 NOx 分为三种类型,即热力型 NOx 、燃料型 NOx 和快速型 NOx[1]。
按生成比例为,燃料型NOx是最主要的,占NOx 总量60%~80%,热力型NOx次之,快速型NOx量最少[2]。
1.1热力型NOx热力型NOx,也称温度型NOx,是指在高温环境中,燃烧用空气中的氮被氧化生成的NOx。
热力型NOx的产生机理是由前苏联科学家Zeldovich提出的,按照这一机理,其产生过程可由链锁反应原理来说明,主要的反应方程式如下[1]:O2+M→2O+M (2-1)O+N2→NO+N (2-2)N+O2→NO+O (2-3)N+OH→NO+H (2-4)其总反应式为:N2+O2=2NO (2-5)2NO+O2=2NO2(2-6)燃烧系统中共存着以上两个反应,主要是反应式2-5,所以,烟气中同时存在NO、NO2,主要是NO,大约占总 NOx的95%,其余是NO2[13]。
Arrhenius定律适用于热力型NOx的产生速率,以下速率表达式用于计算其产生速率[1]:(2-7)式中 [NO]、[O2]、[N2]——相应组分NO、O2、N2的摩尔浓度,mol/cm3;t——反应时间,s;T——反应温度,K;根据速率表达式可以看出,温度与热力型NOx产生速率为指数函数关系,温度为影响热力型NOx产生的主要因素。
煤粉燃烧器燃烧过程中的NOx生成机理研究煤粉燃烧是一种常见的能源转化方式,可以为工业生产和居民供暖提供大量的热能。
然而,煤粉燃烧过程中生成的氮氧化物(NOx)是一种重要的大气污染物,对大气环境和人体健康产生负面影响。
因此,研究煤粉燃烧器燃烧过程中NOx生成的机理,对于减少大气污染、改善空气质量具有重要意义。
NOx是指一类氮氧化物,主要包括一氧化氮(NO)和二氧化氮(NO2)。
在煤粉燃烧器燃烧过程中,NOx的生成主要是由两个主要反应路径引起的:热力生成途径和燃料成分生成途径。
首先,热力生成途径是指NOx生成与燃烧温度有关。
这个途径中,NOx的生成主要发生在大气氮气的三体反应中,该反应需要高温才能发生。
在煤粉燃烧中,燃料燃烧的高温区域通常是在燃烧器的燃烧区域。
燃烧室中的高温条件促使氮气分子发生不完全的氧化反应,生成一氧化氮和二氧化氮。
其次,燃料成分生成途径是指NOx生成与燃料中的氮化物有关。
煤粉燃烧过程中,煤中的氮在相对较低的温度下,与燃料中的氢或氧发生反应,生成氨和硝酸盐。
这些氮化物在燃烧气氛中进一步氧化,生成NOx。
此外,煤中的有机氮也会发生同样的氧化反应。
因此,烟气中产生的NOx含量与煤中的氮含量、煤的粒度以及燃烧过程中的温度和氧浓度等因素有关。
针对上述机理,研究人员通过实验和数值模拟等手段进行了深入研究。
实验方面,通过调节燃烧温度、氧浓度等条件,并对生成的燃烧产物进行分析,可以获得在不同条件下NOx生成特点。
数值模拟方面,基于流体力学、化学动力学等原理,建立了煤粉燃烧过程的模型,模拟了燃烧过程中的温度场、浓度场等参数,从而预测和优化煤粉燃烧器的设计。
在实验研究中,一些控制措施和技术被提出,以减少煤粉燃烧过程中NOx的生成。
其中包括燃烧器高效低氮燃烧技术、循环燃烧技术和SNCR(选择性非催化还原)技术等。
这些措施通过改变燃烧室的设计、调整燃烧参数、添加NOx还原剂等方式,有效降低了煤粉燃烧过程中NOx的生成。
煤燃烧中氮氧化物生成机理及控制氮氧化物排放技术下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、煤燃烧中氮氧化物生成机理。
煤粉炉富氧燃烧氮氧化物的产生煤粉炉是一种燃煤设备,用于将煤粉燃烧成热能,产生蒸汽,从而驱动汽轮发电机发电。
然而,在燃煤过程中,一些氮氧化物会同时生成并排放到大气中,对环境和人体健康产生负面影响。
因此,煤粉炉中氮氧化物的产生成为燃煤行业面临的重要问题之一。
本文将介绍煤粉炉富氧燃烧氮氧化物的产生机理并提出相应的控制方法。
一、煤粉炉氮氧化物的产生机理(一)氮氧化物的形成在燃烧过程中,空气中的氮气和氧气会发生反应,生成氮氧化物。
在煤粉炉的燃烧过程中,煤粉和空气经过充分混合后着火点燃,煤粉中的碳、氢、硫等元素与氧气发生燃烧,同时空气中的氮气也会与氧气发生化合反应,生成氮氧化物。
具体反应方程式如下:2N2 + O2 → 2NON2 + 2O2 → 2NO2(二)氮氧化物的生成途径氮氧化物的生成主要有两种途径,一是在高温下,空气中的氮气和氧气直接发生反应生成氮氧化物;二是煤粉中的氮气和氧气发生反应生成氮氧化物。
在煤粉炉的燃烧过程中,由于温度较高,空气中的氮气和氧气在瞬间出现的高温状态下容易发生反应生成氮氧化物。
二、煤粉炉氮氧化物的控制方法为了减少煤粉炉氮氧化物的排放,可以采取以下控制方法:(一)优化燃烧工艺通过优化煤粉炉的燃烧工艺,控制燃烧温度和燃气速度,可以降低氮氧化物的生成。
在煤粉炉燃烧过程中,通过调节燃烧参数,合理分配空气和煤粉的混合比例,并控制燃烧温度和燃气速度,减少煤炭燃烧中产生的氮氧化物。
(二)脱硫脱硝技术脱硫脱硝技术是目前较为成熟的氮氧化物控制方法之一。
通过在煤粉炉燃烧过程中引入脱硫脱硝装置,将燃烧产生的氮氧化物进行脱除,从而减少氮氧化物的排放。
目前,市场上已经有多种脱硫脱硝技术可供选择,可以根据具体情况选择合适的脱硫脱硝技术,进行氮氧化物的控制。
(三)利用富氧燃烧技术富氧燃烧技术是一种高效的氮氧化物控制方法。
通过在煤粉炉燃烧过程中引入富氧气体,可以降低燃烧温度,减少氮氧化物的生成。
富氧燃烧技术可以有效降低煤粉炉燃烧过程中氮氧化物的排放达到减排效果。
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站锅炉是一种常见的能源转换设备,它通过燃烧煤炭释放能量,并将其转化为电力。
锅炉燃烧煤炭过程中会产生大量的氮氧化物(NOx),这对环境和人体健康都带来了严重的影响。
本文将介绍燃煤电站锅炉氮氧化物的形成机理,并提出了一些防治措施。
燃煤电站锅炉氮氧化物主要由两种氮氧化物组成:一氧化氮(NO)和二氧化氮(NO2)。
它们的形成机理如下:1. 燃烧过程中的热力反应:燃煤电站锅炉中的燃烧过程会使空气中的氮气与煤炭中的氮元素发生反应,生成一氧化氮和二氧化氮。
这是氮氧化物形成的主要途径。
2. 脱氮反应:一氧化氮和二氧化氮在高温环境下会与燃烧产物中的还原剂(如CO、H2等)发生反应生成氮气。
这种反应被称为脱氮反应,通过这种反应可以减少一氧化氮和二氧化氮的排放。
为了减少燃煤电站锅炉氮氧化物的排放,可以采取以下防治措施:1. 技术措施:引入新的燃烧技术,如低氮燃烧技术、超临界燃烧技术等,可以降低锅炉燃烧过程中氮氧化物的产生量。
还可以采用烟气脱硝技术对烟气进行处理,将氮氧化物转化为无毒的氮气。
2. 设备改造:对燃煤电站锅炉进行改造,增加脱硝装置,以降低氮氧化物的排放。
目前常用的脱硝设备有选择性催化还原(SCR)和选择性非催化还原(SNCR)等。
3. 燃烧管理:通过优化燃烧工艺、燃烧控制系统和燃烧参数的调整,可以降低锅炉燃烧过程中氮氧化物的生成。
4. 排放控制:对烟气进行净化处理,通过除尘器、脱硫装置等设备去除大部分氮氧化物。
燃煤电站锅炉燃烧过程中产生的氮氧化物对环境和人体健康都具有潜在的危害。
为了减少其排放,需要采取一系列的技术措施、设备改造、燃烧管理、排放控制和燃料处理等防治措施。
这将有助于改善空气质量和保护人体健康。
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站是目前我国主要的电力发电方式之一,它所发出的废气中含有大量的氮氧化物。
氮氧化物是一种对环境和人体健康都有害的污染物,因此如何有效地减少燃煤电站锅炉废气中的氮氧化物排放成为了当前环境保护领域中的一个重要问题。
本文将探讨燃煤电站锅炉氮氧化物的形成机理及防治措施,以期能够为相关领域的研究和应用提供一定的参考。
1. 燃料中的氮氧化合物:燃煤电站使用的煤炭中含有一定量的有机氮化合物,当这些有机氮化合物经过燃烧后会释放出氮氧化物。
燃煤中的灰分中也含有一定量的氮化合物,当这些灰分在燃烧过程中因高温产生重碳氢氮物质,也会导致氮的演化,产生氮氧化物。
2. 高温条件下的氮氧化物生成:在燃煤电站锅炉的燃烧过程中,高温条件下有利于氮氧化物的生成。
在燃料燃烧时,氮气和氧气在高温条件下会发生反应,生成一氧化氮和二氧化氮。
3. 氮氧化物的再循环:在锅炉内,废气中的氮氧化物会被混合气流再循环,使得氮氧化物的生成更加复杂和混乱,增加了排放控制的难度。
1. 燃料优化选择:选择低氮燃烧技术,采用低氮燃料,如低氮煤或添加脱硫脱氮剂等,减少氮氧化物在燃料中的来源,有效降低氮氧化物的排放。
2. 燃烧优化控制:通过优化燃烧参数,如控制氧浓度、延迟燃烧等方式来控制燃烧温度,减少氮氧化物的形成。
3. 烟气脱硝技术:利用烟气脱硝技术,将烟气中的氮氧化物转化为无害物质,如通过选择性催化还原(SCR)、非选择性催化还原(SNCR)等技术来降低氮氧化物的排放。
4. 燃烧过程的设备改进:通过修改锅炉的结构,如安装再循环系统、改善燃烧室结构等方式来减少氮氧化物的生成。
5. 废气处理技术:在燃煤电站锅炉的废气排放口设置脱硫脱硝装置,进一步减少氮氧化物的排放。
总结:燃煤电站锅炉氮氧化物的产生问题是一个全球性的环境保护难题,在我国也备受重视。
在当前环保政策的引导下,各个燃煤电站都要积极采取有效的措施来减少氮氧化物的排放。
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站锅炉是一种常见的发电设备,但使用煤炭燃烧会产生大量的氮氧化物(NOx),它是造成大气环境污染的主要来源之一。
为了降低煤炭燃烧带来的氮氧化物排放,需要了解它们的形成机理,并采取相应的防治措施。
氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO2)。
它们的形成主要是通过两个步骤实现的:氮氧化物的生成和氮氧化物的转化。
氮氧化物的生成是由于燃烧过程中的高温条件下空气中的氮气(N2)与氧气(O2)反应生成一氧化氮(NO)。
然后,一氧化氮进一步氧化生成二氧化氮(NO2)。
而氮氧化物的转化是指NO和NO2之间的相互转化。
在高温条件下,NO和O2可以反应生成NO2,这个过程被称为氧化反应。
而在低温条件下,NO2可以分解生成NO,这个过程被称为还原反应。
为了控制燃煤电站锅炉产生的氮氧化物排放,可以采取以下防治措施:1. 燃烧控制:优化燃烧过程,提高燃烧的充分性和均匀性,降低燃烧温度,减少氮氧化物的生成。
2. 燃烧改进:采用低氮燃烧技术,如燃烧对分布、煤粉喷嘴调整、燃料预处理等措施,可以减少高温燃烧区域的形成,从而降低氮氧化物的生成。
3. 燃烧调整:合理调整供氧量和燃料分配,维持适宜的燃料-氧化剂比,以减少高温区域内氮氧化物的生成。
4. 锅炉改造:安装氮氧化物减排设备,如选择性催化还原(SCR)和选择性非催化还原(SNCR)等技术来降低氮氧化物的排放。
5. 烟气脱硝:采用湿法或干法的烟气脱硝技术,通过在烟气中喷射还原剂或氨水等药剂来减少氮氧化物的排放。
6. 设备运维管理:加强设备的运维管理,定期进行设备的清洗和维护,确保设备的正常运行和效率。
燃煤电站锅炉氮氧化物形成机理复杂,但采取相应的防治措施可以降低氮氧化物的排放。
这对于保护大气环境和改善空气质量至关重要。
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站锅炉是大气污染的重要来源之一,其中氮氧化物(NOx)是主要的污染物之一。
本文将详细介绍燃煤电站锅炉中NOx的形成机理以及防治措施。
燃煤电站锅炉中NOx的形成主要有两个途径:热反应途径和燃料反应途径。
热反应途径:在燃烧过程中,煤炭中的氮在高温下与氧发生反应,生成一氧化氮(NO)。
烟气中的一氧化氮进一步在高温下与大量的氧气反应,生成二氧化氮(NO2),这是最主要的NOx形成途径。
这种热反应途径占据了NOx总排放量的60%至80%。
燃料反应途径:煤炭中的有机氮化合物如胺、腈、蛋白质等在燃烧过程中氧化生成一氧化氮。
煤炭中的含硫化合物如硫酸铵、硫化氢等也会增加NOx的形成。
这种燃料反应途径占据了NOx总排放量的20%至40%。
燃煤电站锅炉中NOx的防治措施主要包括以下几个方面:1. 燃烧调整技术:通过调整燃烧条件,可以减少燃烧温度和氧浓度,从而降低煤炭中氮的氧化率。
采用低氮燃烧技术、燃烧再循环技术、燃烧扩散焚烧技术等可以有效降低NOx的生成。
2. 烟气脱硝技术:烟气脱硝技术是目前最常用的NOx排放控制技术之一。
常见的烟气脱硝技术包括选择性催化还原(SCR)、选择性非催化还原(SNCR)等。
SCR技术通过在烟气中注入还原剂,利用催化剂促进NOx的还原反应,将NOx转化为无害的氮气和水。
SNCR技术则是在烟气中喷射还原剂,使其与燃烧产物中的一氧化氮发生还原反应。
3. 燃料改进:改变煤炭的燃料成分,减少煤中的氮含量,可以有效减少NOx的生成。
采用低氮煤、低氮煤粉等可以降低NOx的排放。
4. 其他技术措施:燃烧过程中的过量空气的控制、燃烧器的优化设计、断续燃烧技术等也可以减少NOx的生成。
对煤炭冲洗和脱硫也能减少NOx的排放。
燃煤电站锅炉中NOx的形成机理复杂,但通过燃烧调整、烟气脱硝、燃料改进等技术措施可以有效防治NOx的排放,降低燃煤电站对大气环境的污染。
燃烧过程中氮氧化物的形成机理一、引言随着工业化的快速发展,燃烧过程在人类生活中扮演着越来越重要的角色。
燃烧过程中产生的氮氧化物(NOx)对环境和人类健康造成了极大的危害。
因此,研究燃烧过程中氮氧化物的形成机理,对于减少污染物排放、保护环境具有重要意义。
本文将从理论角度出发,详细阐述燃烧过程中氮氧化物的形成机理。
二、燃烧过程中氮氧化物的形成1.1 氮氧化物的形成途径氮氧化物主要由两种形式存在:一氧化氮(NO)和二氧化氮(NO2)。
在燃烧过程中,这两种氮氧化物的形成途径如下:(1)燃料中的氮元素与氧气在高温下反应生成一氧化氮(NO):N2 + O2 → 2NO(2)一氧化氮与空气中的氧气反应生成二氧化氮(NO2):2NO + O2 → 2NO21.2 影响燃烧过程中氮氧化物形成的主要因素燃烧过程中氮氧化物的形成受到多种因素的影响,主要包括以下几个方面:(1)燃料特性:燃料中的氮含量、燃料中的硫含量、燃料中的微粒直径等都会影响燃烧过程中氮氧化物的形成。
一般来说,含氮量较高的燃料在燃烧过程中产生氮氧化物的可能性较大;含硫量较高的燃料在燃烧过程中容易产生硫酸盐型氮氧化物;微粒直径较小的燃料在燃烧过程中更容易形成NOx。
(2)空气特性:空气的温度、湿度、氧气浓度等都会影响燃烧过程中氮氧化物的形成。
一般来说,空气温度较高、湿度较低、氧气浓度较高时,燃烧过程中氮氧化物的形成可能性较大。
(3)燃烧器结构:燃烧器的形状、尺寸、材料等都会影响燃烧过程中氮氧化物的形成。
一般来说,火焰较宽、焰心较高的燃烧器在燃烧过程中产生氮氧化物的可能性较大。
三、燃烧过程中氮氧化物的形成机理分析2.1 燃料中的氮元素与氧气的反应燃料中的氮元素主要来源于化石燃料,如煤、石油、天然气等。
这些燃料在燃烧过程中,氮元素与氧气发生反应生成一氧化氮(NO)。
这一过程是一个经典的化学反应,其反应式为:N2 + O2 → 2NO在这个反应过程中,燃料中的氮元素和氧气的原子数之比决定了一氧化氮(NO)的产率。
低氮燃烧的机理
一、NOx生成机理
在煤炭燃烧过程中产生的氮氧化物NOx 主要包括一氧化氮(NO)、二氧化氮(NO2)以及少量N2O 等。
目前,燃煤电厂按常规燃烧方式所生成的NOx 中,NO 占90 %,NO2 占5 %~10 %,N2O 仅占1 %左右。
因此,NOx 的生成与排放量主要取决于NO。
根据NOx 生成机理,煤炭燃烧过程中所产生的氮氧化物量与煤炭燃烧方式、燃烧温度、过量空气系数和烟气在炉内停留时间等因素密切相关。
煤炭燃烧产生NOx 的机理主要有3 种类型:热力型、快速型和燃料型。
在此3 种类型的NOx 中,燃料型NOx 是最主要的,占总生成量的60 %以上;热力型NOx 生成量与燃料温度的关系很大,在温度足够高时,热力型NOx 生成量可占总量的20 %;快速型NOx 在煤燃烧过程中的生成量很少。
二、低氮燃烧的机理
该系统以再循环烟气与碳颗粒再燃技术为主,以空气
分级燃烧技术调节锅炉主燃区燃烧状态,使主燃区燃烧温
度小于1300℃,热力型氮氧化物的生成量非常微小,达到
一次降氮的目的。
由于主燃区温度降低,在主燃区外部区
域进行在线燃烧气氛调整技术,通过在线燃烧气量的调整,使主燃区贫氧燃烧生成的大量CO与煤中的挥发分在次燃
烧区域内燃尽。
虽然此时的燃烧温度较高,由于还原性气
体的燃烧,氮氧化物的生成量非常低,达到二次降氮的目的。