《火焰检测技术》word版
- 格式:docx
- 大小:1.00 MB
- 文档页数:5
火检讲义一、火焰检测器的类型火焰检测器通常按照所采用的光电元件而进行分类。
常用的火焰检测器有三种:紫外线型、可见光型、以及红外线型。
1、紫外线型检测器采用紫外线光敏管作为传感元件,这种检测器的优点是报警灵敏度高,对于燃用天然气和重油的锅炉,由于火焰中的紫外线特别的丰富,采用这一类型的检测器比较合适。
对于燃烧煤粉的锅炉,由于在火焰燃烧的时候,相当一部分的紫外线被煤粉所吸收,特别当锅炉燃烧不稳定或锅炉低负荷运行时,检测器所能吸收到的紫外线较弱,这样容易造成检测器误动作。
因此,从70年代后期开始,这种检测器在煤粉锅炉上的应用日趋减少。
红外线型检测器采用光敏电阻(如硫化铅)作为传感元件,其光谱响应范围在0.7-0.32μm之间。
这种检测器的特点是呈现与紫外线型检测器相反的性能,如在火焰瞬时不稳定或低负荷运行的时候仍能稳定工作,对探头的安装位置和方向的要求也不象其他类型那样苛刻。
具有代表性的产品是美国FORNEY公司的DPD型检测器。
可见光型检测器采用光电二极管作为传感元件。
这种检测器的特点是极其类似人眼的光谱响应。
二、火焰检测器的一般工作原理1)、探头部分的原理如图 2所示,炉膛火焰中的相关波长的光线穿过探头端部的透镜,并经由光导纤维而到达探头小室,照到光敏元件上。
由光敏元件将光信号转化为电信号,并经由对数放大器转换为电压信号。
采用对数放大器是由于光敏元件输出的电流值是发光强度的指数函数,当发光强度大幅变化时,对数放大器的输出呈小幅度变化,这样可以避免放大器饱和,使得不同负荷下的正常火焰信号都在预定值之内。
对数放大器输出的电压信号,再经过传输放大器转换为电流信号,然后通过屏蔽电缆传输至火焰检测器的机箱部分。
采用电流传输而不采用电压传输,是由于前者抗干扰的能力强,信号衰减小,适合于长距离传输(可长达1500m)。
2)、机箱部分的原理如图3所示,炉膛中的火焰信号经过多次转换,最后在机箱里被转换成电压信号。
由于火焰信号本身是脉动的,其强度和频率随时在变化,且对于不同的燃料,其变化范围也不一样,所以在机箱里设计了频率检测线路,强度检测线路和故障检测线路。
火焰检测火焰有着与众不同的特征,他的颜色、温度、形状以及跳动的形式都可以作为识别的依据。
下面,我们将从火焰的静态特征和动态特征两方面入手进行火焰识别。
静态特征(颜色与形状)首先,火焰有着与众不同的颜色特征。
描述其颜色的模型有很多,图7就是其中一种,它可以由RGB空间经过简单比较计算得到。
图7 火焰颜色分布图由上图,任何RGB图像中只要满足R>=G且G>B的颜色都可以看作是火焰。
图8中显示了由该模型对各种火焰的检测结果。
虽然这种模型的误报会很多,但可以作为最初始的筛选手段排除掉最不可能是火焰的物体。
图8 火焰图片(上行)及相应颜色检测结果(下行)火焰的外形也是用来识别的重要特征。
一种模型是采用嵌套式轮廓模型。
它默认火焰存在一个或几个燃烧点,火焰从这些燃烧点一层层的向外扩散。
越到外层的地方其形状的可边度越大,而且是连续的。
图9展示了一个燃烧点的火焰模型,它由三层火焰轮廓组成,对于其右侧图10中的火焰经过该模型捕捉得到图11结果。
图9 火焰模型图10 火焰图片图11 符合模型的火焰动态特征(频率)火焰是跳跃着的,或者说是移动变化着的。
初看起来没有什么规律,其实,经研究发现,火焰的外焰部分的运动存在一定频率。
从图12中红色标出的火焰外焰部分来看,这些像素点在经历着有火焰和无火焰两种状态的切换,这个切换的频率经过计算是10HZ 。
这样,我们通过捕捉这个10赫兹的特征可以进一步确认是否有火焰的存在。
图12 火焰外焰部分 图13 外焰运动存在一定频率除此之外,火焰的运动是有能量变化的。
燃烧的物理变化和化学变化造成了火焰能量的不均衡分布。
这点可以作为区分火焰与其他颜色相似运动物体的特征。
图14中红色衣服上被黑色边框划出的区域能量变化在其右侧显示,可见衣服的能量分布是均匀的(显示为均一灰色,没有亮暗变化)。
与之对比,火焰的能量变化就显得非常不均匀,在能量分布图上看得到明显的亮暗变化。
图14 与火焰颜色接近图案的能量分布 图15火焰的能量分布烟雾检测烟雾的特征和火焰有着明显的不同,无论是静态的还是动态的。
第四章火焰的检测4.1 概述图4-1 电磁波谱图二、火灾时发出的火焰光谱与燃烧物质有关,见图4.2。
图4-2 各种不同材料的火焰光谱能量分布图由图可见,对烃类物质,产生的火焰光谱能量在红外光谱范围内,辐射强度的最大值位于4.1-4.7nm范围内。
三、火焰探测器火焰探测器是一种响应火灾发出的电磁辐射(红外、可见和紫外)的火灾探测器。
因为电磁辐射的传播速度极快,因此,这种探测器对快速发生的火灾或爆炸能够及时响应,是对这类火灾早期通报火灾的理想探测器。
响应波长高于700nm辐射能通量的探测器称红外火焰探测器。
响应波长低于400nm辐射能通量的探测器称紫外火焰探测器。
极少应用400—700nm之间的可见光辐射谱区探测火灾,这是由于太阳光的干扰太强。
图4-火焰和地面太阳光光谱图4.2 光电效应火灾探测器是一种将光量变化转换为电量变化的传感器。
它的物理基础就是光电效应。
光电效应分为外光电效应和内光电效应两大类。
4.2.1 外光电效应在光线的作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应。
向外发射的电子叫光电子。
基于外光电效应的光电器件有光电管、光电倍增管等。
众所周知,光子是具有能量的粒子,每个光子具有的能量E可由下式确定E=hυ (4-1)式中h一一普朗克常数,6.626*10-34(J·s)υ一一光的频率(s-1)物体中的电子吸收了入射光子的能量,当足以克服逸出功A0时,电子就逸出物体表面,产生光电子发射。
如果一个电子要想逸出,光子能量hυ必须超过逸出功A0,超过部分的能量表现为逸出电子的动能。
根据能量守恒定理则有:hυ=(1/2)mv o2+ A0(4-2)式中A0——金属的逸出功,J;m——电子质量,g;v o—电子逸出速度,cm/s。
该方程称为爱因斯坦光电效应方程。
由式(4-2)可知:1、电子能否产生逸出,取决于光子的能量是否大于该物体的表面电子逸出功A0。
不同的物质具有不同的逸出功,这意味着每一个物体都有一个对应的光频阈值,称为红限频率或波长限。
火焰检测火焰有着与众不同的特征,他的颜色、温度、形状以及跳动的形式都可以作为识别的依据。
下面,我们将从火焰的静态特征和动态特征两方面入手进行火焰识别。
静态特征(颜色与形状)首先,火焰有着与众不同的颜色特征。
描述其颜色的模型有很多,图7就是其中一种,它可以由RGB空间经过简单比较计算得到。
图7 火焰颜色分布图由上图,任何RGB图像中只要满足R>=G且G>B的颜色都可以看作是火焰。
图8中显示了由该模型对各种火焰的检测结果。
虽然这种模型的误报会很多,但可以作为最初始的筛选手段排除掉最不可能是火焰的物体。
图8 火焰图片(上行)及相应颜色检测结果(下行)火焰的外形也是用来识别的重要特征。
一种模型是采用嵌套式轮廓模型。
它默认火焰存在一个或几个燃烧点,火焰从这些燃烧点一层层的向外扩散。
越到外层的地方其形状的可边度越大,而且是连续的。
图9展示了一个燃烧点的火焰模型,它由三层火焰轮廓组成,对于其右侧图10中的火焰经过该模型捕捉得到图11结果。
图9火焰模型 图10 火焰图片 图11 符合模型的火焰动态特征(频率)火焰是跳跃着的,或者说是移动变化着的。
初看起来没有什么规律,其实,经研究发现,火焰的外焰部分的运动存在一定频率。
从图12中红色标出的火焰外焰部分来看,这些像素点在经历着有火焰和无火焰两种状态的切换,这个切换的频率经过计算是10HZ 。
这样,我们通过捕捉这个10赫兹的特征可以进一步确认是否有火焰的存在。
图12 火焰外焰部分 图13 外焰运动存在一定频率除此之外,火焰的运动是有能量变化的。
燃烧的物理变化和化学变化造成了火焰能量的不均衡分布。
这点可以作为区分火焰与其他颜色相似运动物体的特征。
图14中红色衣服上被黑色边框划出的区域能量变化在其右侧显示,可见衣服的能量分布是均匀的(显示为均一灰色,没有亮暗变化)。
与之对比,火焰的能量变化就显得非常不均匀,在能量分布图上看得到明显的亮暗变化。
图14 与火焰颜色接近图案的能量分布图15火焰的能量分布烟雾检测烟雾的特征和火焰有着明显的不同,无论是静态的还是动态的。
目录一、火焰检测原理二、UVISOR火焰检测系统检测原理三、UVISOR针对项目的构成四、UR600系列火焰扫描仪的开孔与安装细则五、火焰检测器的安装六、UVISOR参数管理软件七、故障处理八、设备维护九、调试步骤十、资料组成序大型火电机组中,为了保证锅炉安全、平稳地运行,必须对锅炉的火焰燃烧状况进行实时监视,以便用锅炉的燃料控制装置联锁,保证锅炉灭火时停止燃料供应,防止可燃性物质在炉膛或管道内聚积,发生爆燃甚至引起锅炉爆炸。
一、火焰检测原理燃烧火焰具有各种特性,如发热程度、电离状态、火焰不同部位的辐射、光谱及火焰的脉动或闪烁现象、差压、音响等,均可用来检测火焰的“有”或“无”。
以煤、油作为燃料的锅炉在燃烧过程中会辐射红外线(IR)、可见光和紫外线(UV)。
如图Fig.1b所示为油、煤粉、煤气及1660℃黑体发射的辐射强度光谱分布。
从图中可见,所有的燃料燃烧都辐射一定量的紫外线和大量的红外线,且光谱范围涉及红外线、可见光及紫外线。
因此,整个光谱范围都可以用来检测火焰的“有”或“无”。
由于不同种类的燃料,其燃烧火焰辐射的光线强度不同,相应采用的火焰检测元件也会不一样。
一般说来,煤粉火焰中除了含有不发光的CO2和水蒸气等三原子气体外,还有部分灼热发光的焦炭粒子和炭粒,它们辐射较强的红外线、可见光和一些紫外线,而紫外线往往容易被燃烧产物和灰粒吸收而很快被减弱,因此煤粉燃烧火焰宜采用可见光或红外线火焰检测器。
而在用于暖炉和点火用的油火焰中,除了有一部分CO2和水蒸气外,还有大量的发光碳黑粒子,它也能辐射较强的可见光、红外线和紫外线,因此可采用对这三种火焰较敏感的检测元件进行测量。
而可燃气体作为主燃料燃烧时,在火焰初始燃烧区辐射较强的紫外线,此时可采用紫外线火焰检测器进行检测。
除辐射稳态电磁波外,所有的火焰均呈脉动变化。
因此,单燃烧器工业锅炉的火焰监视可以利用火焰脉动变化特性,采用带低通滤波器(10—20Hz)的红外固体检测器(通常采用硫化铅)。
ISCAN火检产品技术规范1.1.概述Coen公司作为具有90年生产各式燃烧器,火焰监测设备历史的世界知名企业,具有丰富的设计,制造,安装调试及运行管理火焰监测设备的经验。
几十年来,Coen公司生产的各类火检已在世界各地上万个电厂得以应用。
有着与世界著名的DCS制造商如:西屋,贝利,西门子YOKAGAWA,MOORE,利诺,Foxboro 等DCS系统配合的丰富经验;有着在世界著名的锅炉制造商如:B&W,CE,FW,RILEY,WICS,NOOTER,VARIOUS,CERREY,ZURN 等制造的锅炉上配合使用的丰富经验。
在中国,虽然直到1998年才开始进入中国市场,但短短几年已有20多个机组运行着Coen的火焰监测设备。
与上锅,北锅,东锅及哈锅武锅等都建立了良好的合作关系。
值得一提的是Coen的火检设备在各种炉型上如:前后墙燃烧锅炉,同心圆双旋流燃烧锅炉,四角布置切向燃烧锅炉,W型锅炉等各种当今世界上存在的锅炉上均能性能稳定,工作可靠,易于调试,受到用户的一致好评。
请参照本报价附件有关Coen的产品业绩一览表。
Coen 的Iscan智能一体化火检是目前世界上技术最先进的火焰监测器。
随着技术的发展和进步,全世界的火检厂家都在研制智能型火检,分体式火检必将因为技术的落后而退出市场。
Coen公司于1999年率先推出Iscan智能一体化火检,COEN工程师在研究过程中充分考虑了炉前的恶劣环境,使其电子元器件能够长期在90ºC高温下运行,完全能够适应炉前的高温。
Iscan以它的便于安装、调试,性能优越,能够更好的解决偷看问题以及适应现代化电厂的智能化管理等特点和优势,一出现就得到的设计院、电厂工程技术人员以及管理层的广泛欢迎。
1.2. 技术规范1.2.1 火焰检测器一、Iscan 火检的基本特点Coen 公司的Iscan 火焰监测器是专为监测燃烧器火焰而设计的,适用于多燃烧器及单燃烧器锅炉,适用的燃料包括天然气,炼制气,废气,燃油及煤。
火焰检测
火焰有着与众不同的特征,他的颜色、温度、形状以及跳动的形式都可以作为识别的依据。
下面,我们将从火焰的静态特征和动态特征两方面入手进行火焰识别。
静态特征(颜色与形状)
首先,火焰有着与众不同的颜色特征。
描述其颜色的模型有很多,图7就是其中一种,它可以由RGB空间经过简单比较计算得到。
图7 火焰颜色分布图
由上图,任何RGB图像中只要满足R>=G且G>B的颜色都可以看作是火焰。
图8中显示了由该模型对各种火焰的检测结果。
虽然这种模型的误报会很多,但可以作为最初始的筛选手段排除掉最不可能是火焰的物体。
图8 火焰图片(上行)及相应颜色检测结果(下行)
火焰的外形也是用来识别的重要特征。
一种模型是采用嵌套式轮廓模型。
它默认火焰存在一个或几个燃烧点,火焰从这些燃烧点一层层的向外扩散。
越到外层的地方其形状的可边度越大,而且是连续的。
图9展示了一个燃烧点的火焰模型,它由三层火焰轮廓组成,对于其右侧图10中的火焰经过该模型捕捉得到图11结果。
图9 火焰模型图10 火焰图片图11 符合模型的火焰
动态特征(频率)
火焰是跳跃着的,或者说是移动变化着的。
初看起来没有什么规律,其实,经研究发现,火焰的外焰部分的运动存在一定频率。
从图12中红色标出的火焰
外焰部分来看,这些像素点在经历着有火焰和无火焰两种状态的切换,这个切换的频率经过计算是10HZ 。
这样,我们通过捕捉这个10赫兹的特征可以进一步确认是否有火焰的存在。
图12 火焰外焰部分 图13 外焰运动存在一定频率
除此之外,火焰的运动是有能量变化的。
燃烧的物理变化和化学变化造成了火焰能量的不均衡分布。
这点可以作为区分火焰与其他颜色相似运动物体的特征。
图14中红色衣服上被黑色边框划出的区域能量变化在其右侧显示,可见衣服的能量分布是均匀的(显示为均一灰色,没有亮暗变化)。
与之对比,火焰的能量变化就显得非常不均匀,在能量分布图上看得到明显的亮暗变化。
图14 与火焰颜色接近图案的能量分布 图15火焰的能量分布
烟雾检测
烟雾的特征和火焰有着明显的不同,无论是静态的还是动态的。
这样使得我们可以将其与火焰识别分开处理。
静态特征(外形与对比度)
烟雾在颜色上没有像火焰样存在明显的分布,而且颜色与烟雾的浓度有直接关系。
淡淡的烟是半透明的,可以看到其后面的物体,而浓烟是灰黑的,完全挡住了后面的事物。
这样,单独考虑烟雾的颜色便无法描述它的特征。
然而,无论烟雾浓淡,它都会使后面的事物变得模糊,甚至被完全遮挡。
我们可以通过像素的对比度变化判断烟雾的有无。
图16显示了通过对比度变化检测烟雾的结果。
图16 烟雾(上行)及通过对比度变化检测结果(下行)
动态特征(扩散)
烟雾的动态特征是烟雾区别于其他事物的重要特征。
它具备以下特点:首先,烟雾以扩散的形式变化,可以假想存在一个或几个烟雾发生点,烟雾围绕这些点扩散开去(如图17和图18所示)
;其次,与火焰类似,烟雾的边界变化也存在
一个3Hz的频率;再有,烟雾的轮廓是清晰画面与被烟雾模糊画面的交界;最后,烟雾的运动是连续而且是非刚性的。
这些特点决定了烟雾与行人,汽车等等前景运动物体有本质的不同。
图17 烟雾及其轮廓图18 扩散的烟雾及其轮廓。