根据张宇高数视频总结的考研数学知识点PPT课件
- 格式:pptx
- 大小:4.56 MB
- 文档页数:26
张宇高数笔记第一章节极限与连续数列收敛(有极限),则:①任何子列都收敛,反之就不是收敛数列。
②它的极限存在且唯一。
③它是有界的。
(收敛一定有界,但有界不一定收敛,可能振荡)④它有保号性。
数列极限存在的解题手段:①夹逼法。
②定积分定义法。
③对于给定递推式的数列求极限:(1)用单调有界证明极限存在,然后让等式两边极限相等解出A 。
(2)先斩后奏解出A ,然后用压缩映象原理列出|x n ?A |<=""> 根据题设条件得出x n+1和x n 的递推关系,然后用③的方法。
⑤充分运用题目中给出的函数关系式:(1)x n+1=f(x n ),f (ξ)=ξ;则x n+1?x n =f (x n )?f(x n?1),|x n+1?ξ|=|f (x n )?f (ξ)| (2)任何|f ′(x )|≤k 的函数,都可由拉氏定理得|f (x 1)?f (x 2)|≤k|x 1?x 2| (3)若知f(x)的单调性,可把x n+1和x n 的大小判断转化为对f (x n+1)和f(x n )的判断。
(4)若给出x n+1=f(x n ),f ′(x )和x 0的初值,则用拉氏定理:|x n+1?x 0|=|f (x n )?f (x 0)|=|f′(ξ)(x n ?x 0)|≤A|(x n ?x 0)|压缩映象⑥对于累加型数列x n =∑f(n,k)n k=1求极限,常用无穷项相加放缩的方式夹逼出来。
函数极限存在(设为A ),则:①左右极限都为A 。
(证明题证极限存在的思路)②唯一性、有界性、保号性。
③?ε>0,?δ>0,当0<|x ?x 0|<δ时,有|f (x )?A |<ε此定义在广义上,ε可以为任何形式,但必须满足“可以任意小”。
重要结论与具体解题技巧:①闭区间上连续的函数必有界;开区间上连续的函数,两端点极限都存在才有界。
②无穷项相加的放缩:n ×u min ≤∑u i ≤n i=1 n ×u max 有限项相加(且u i ≥0)的放缩:1×u max ≤∑u i ≤n i=1 n ×u max ③诸如1x 2之类的形式难以处理,想到用倒代换。
张宇高数18讲数学二知识点总结笔记●1.函数极限与连续1)函数极限的定义及使用●定义●使用●是常数、唯一性、局部有界性、局部保号性●等式脱帽法2)函数极限的计算●化简先行●等价无穷小替换●恒等变形●及时提出极限存在且不为0的因式●洛必达法则●泰勒公式●熟记常用公式●展开原则●无穷小比阶●函数极限的存在性●具体性●若洛必达失效,用夹逼准则●抽象性●单调有界准则●连续与间断●研究位置●无定义点、分段函数的分段点●连续●内点处、端点处●间断●2.数列极限1)数列极限的定义及使用●定义●使用●是常数、唯一性、有界性、保号性●收敛的充要条件2)数列极限的存在性与计算●海涅定理的使用●直接计算法●定义法(先斩后奏法)●单调有界准则●用已知不等式●题设给出条件来推证●夹逼准则●用基本放缩法●题设给出条件来推证●综合题总结●用导数、积分、中值定理综合●用方程列、区间列综合●用极限综合●3.一元微分的概念1)导数定义(导数在一点的问题)●分段函数(或含绝对值函数)在分段点●抽象函数在一点●特指点x_0●泛指点x●四则运算中的特殊点●太复杂的函数●f=f_1+f_2●f=f_1* f_2* f_3* ...*●求导公式无定义的点2)微分定义●4.一元微分的计算1)复合函数求导2)隐函数求导3)反函数求导4)分段函数求导(含绝对值)●在分段点用导数定义●在非分段点用导数公式●对数求导法●幂指函数求导法●参数方程确定的函数求导●高阶导数●归纳法(记公式)●莱布尼茨公式●展开式(记公式)5)难点●计算量大●含参数的讨论●高阶导数●5.一元微分的几何应用1)研究对象●“祖孙三代”●f(x)●具体●抽象●f_n(x) 函数族●f_1·f_2·...·f_n● f'(x) ; \frac{\mathrm{d}[f(x)]}{\mathrm{d}{(x^2)}} ; {f}^{(n)}(x)●\int_{a}^{x}f(x)dx●分段函数(含绝对值)●参数方程●x=x(t), y=y(t)●x=r(\theta)cos\theta,y=r(\theta)sin\theta●隐函数F(x,y)=02)研究内容●切线、法线、截距●极值、单调性●单调性的判别●一阶可导点是极值点的必要条件●判别极值的第1,2,3充分条件●拐点、凹凸性●凹凸性的定义●拐点定义●凹凸性与拐点的判别●判别凹凸性的充分必要条件●二阶可导点是拐点的必要条件●判别拐点的第1,2,3充分条件●6.中值定理、微分等式与微分不等式1)中值定理●确定区间●确定辅助函数●确定使用的定理●零点定理●介值定理●费马定理●罗尔定理●拉格朗日中值定理●泰勒公式●柯西中值定理2)微分等式问题●理论依据●考法3)微分不等式问题●用单调性●用最值●用凹凸性●用拉格朗日中值定理●用柯西中值定理●用带有拉格朗日余项的泰勒公式●7.一元微分物理应用1)物理应用●以“A对B的变化率”为核心写\frac{\mathrm{d}A}{\mathrm{d}B}●8.一元积分的概念与性质1)祖孙三代●\int_{a}^{x}f(x)dx ,f(x),{ f^{'}(x) } 的奇偶性,周期性2)积分比大小●用几何意义●看面积大小●用保号性●做差●看正负3)定积分定义●基本形(能凑成\frac{i}{n})●\lim_{n \to \infty}\sum_{i=1}^n f(0+\frac{1-0}{n}i)\frac{1-0}{n} =\int_{0}^{1}f(x)dx●\lim_{n \to \infty}\sum_{i=0}^{n-1} f(0+\frac{1-0}{n}i)\frac{1-0}{n} =\int_{0}^{1}f(x)dx●放缩形(凑不成\frac{i}{n})●夹逼准则●放缩后再凑\frac{i}{n}●变量形●\lim_{n \to \infty}\sum_{i=1}^n f(0+\frac{x-0}{n}i)\frac{x-0}{n} =\int_{0}^{x}f(x)dx4)反常积分的判敛●概念●判别●9.一元积分的计算1)基本积分公式2)不定积分的计算●凑微分法●思想●方法●常用的凑微分公式●程序●换元法●思想●方法●三角函数代换●恒等变形后作三角代换●跟式代换●倒代换●复杂函数的直接带换●思想●方法●u,v的选取原则●推广公式(表格法)●有理函数的积分●定义●思想●方法3)定积分的计算●区间再现公式●华里士公式●其他常用含三角函数的积分等式●区间简化公式●对称性下的积分问题●定积分分部积分法中的“升阶”降阶“”公式●分段函数的定积分●10.一元积分几何应用1)研究对象●f(x)●f_n(x)●参数方程●x=x(t)●y=y(t)●\frac{\partial f}{\partial x}●\int_{a}^{x}f(x)dx●微分方程的解函数f(x)2)研究内容●面积、旋转体体积、平均值●平面曲线的弧长、旋转曲面的面积(侧面积)●“平面上的曲边梯形”的形心坐标公式●平行截面面积为已知的立体体积●11.积分等式与积分不等式1)积分等式●通过证明某特殊积分等式求某特殊积分●积分形式的中值定理2)积分不等式●用函数的单调性●处理被积函数●已知f(x) \leq g(x),用积分保号性证得\int_{a}^{b}f(x)dx \leq\int_{a}^{b}g(x)dx,a<b●用拉格朗日中值定理●用泰勒公式●用放缩法●用分部积分法●用换元法●用夹逼准则求解一类积分的极限问题●曲边梯形面积的连续化与离散化问题●12.一元积分的物理应用1)位移大小与总路程●位移大小●\int_{t_1}^{t_2}v(t)dt●总路程●\int_{t_1}^{t_2}|v(t)|dt2)变力沿直线做功●W=\int_{a}^{b}F(x)dx3)提取物体做功●W=\rho g\int_{a}^{b}xA(x)dx4)静水压力●P=\rho g\int_{a}^{b}x[f(x)-h(x)]dx5)细杆质心●\bar x=\frac{\int_{a}^{b}x\rho (x)dx}{\int_{a}^{b}\rho (x)dx}6)其他重要应用(微元法总结)●13.多元函数微分学1)概念●极限、连续、偏导数、可微2)复合函数求导法●链式求导规则●全导数●全微分形式不变3)隐函数求导●隐函数存在定理●一个方程的情形●方程组的情形4)多元函数的极值、最值●无条件极值●取极值的必要条件●取极值的充分条件●条件极值与拉氏乘数法5)偏微分方程●已知偏导数(或偏增量)的表达式,求z=f(x,y)●给出变换,化已知偏微分方程为常微分方程,求f(u)●给出变换,化已知偏微分方程为指定偏微分方程及其反问题●14.二重积分1)概念●和式极限●普通对称性●轮换对称性●二重积分比大小●用对称性●用保号性●二重积分中值定理●周期性2)计算●直角坐标系与换序●极坐标系与换序●直极互化3)应用●面积●\iint_{D}dxdy●15.微分方程1)一阶微分方程的求解●能写成 y'=f(x)·g(x)●能写成 y'=f(ax+by+c)●能写成 y'=f(\frac{y}{x})●能写成 \frac{1}{y'}=f(\frac{x}{y})●能写成 y'+p(x)y=q(x)2)二阶可降阶微分方程的求解●能写成 y''=f(x,y')●能写成 y''=f(y,y')3)高阶常系数线性微分方程的求解●能写成 y''+py'+qy=f(x)●能写成 y''+py'+qy=f_1(x)+f_2(x)4)用换元法求解微分方程●用求导公式逆用来换元●用自变量来换元●用因变量来换元●用x,y地位互换来换元5)应用题●用极限、导数定义或积分等式建方程●用几何应用建方程●用曲线切线斜率●用两曲线f(x)与g(x)的公切线斜率●用截距●用面积●用体积●用平均值●用弧长●用侧面积●用曲率●用形心。
[考研数学]中值定理⽤书:张宇考研数学基础30讲下多为摘录。
条件/表述部分不完全准确(实际上条件归于表述,但为了观察相似的条件所以单独列出了。
)定理的推导(常考证明)和条件细节⾮!常!重!要!可补充内容:证明、⼏何意义、对⽐=总结/不保证对的个⼈理解。
=我先挖个坑在这⾥。
不要让⼏何直观,蒙蔽了我们的双眼。
—柯西有界与最值定理条件:设f(x)在[a,b]上连续,则:表述:m⩽f(x)⩽M。
其中,m,M为f(x)在[a,b]上的最⼩值和最⼤值。
证明:介值定理条件:设f(x)在[a,b]上连续,则:表述:当m⩽µ⩽M时,存在ξ∈[a,b],使得f(ξ)=µ。
证明:(离散)平均值定理条件:设f(x)在[a,b]上连续,则:表述:当a<x1<x2<⋯<x n<b时,在[x1,x n]内⾄少存在⼀个点ξ,使得f(ξ)=f(x1)+f(x2)+⋯+f(x n)n。
证明:借助介值定理证明。
m⩽f(x i)⩽M,(i=1,2,…,n)nm⩽Σf(x i)⩽nMm⩽f(x1)+f(x2)+⋯+f(x n)n⩽M令µ=f(x1)+f(x2)+⋯+f(x n)n,存在ξ∈[x1,x n],使得f(ξ)=µ=f(x1)+f(x2)+⋯+f(x n)n=1n∑ni=1f(x i)平均值定理的ξ常见闭区间。
(函数)零点定理条件:设f(x)在[a,b]上连续,则:表述:当f(a)⋅f(b)<0时,存在ξ∈(a,b),使得f(ξ)=0。
证明:借助介值定理和最值定理推导。
f(a)⋅f(b)<0说明f(a)与f(b)异号故m<0且M>0则m<0<M,存在ξ∈(a,b),使得f(ξ)=0。
前四条有共⽤条件:f(x)在[a,b]上连续。
连续即不间断。
所以端点不是间断点。
出现函数值为零的条件,可以考虑⽤介值定理与零点存在定理做。
延伸:推⼴的零点定理若f(x)在(a,b)上连续,lim,\alpha \cdot \beta< 0 时,则f(x)在(a,b)内⾄少有⼀个根。