经济数学基础(线性代数)讲义
- 格式:doc
- 大小:947.53 KB
- 文档页数:24
第一单元 线性方程组的表达一、学习目标了解线性方程组的表示方法及线性方程组的基本概念二、内容讲解线性方程组的一般表示 方程数目为m ,未知量个数为n . 下面举一个例子.例: 用矩阵形式表示方程组⎩⎨⎧-=-+=+-165443321321x x x x x x解: 将未知量的系数和常数项按原来的位置写成矩阵⎥⎦⎤⎢⎣⎡---=11654143A ,n =3,m =2系数矩阵⎥⎦⎤⎢⎣⎡--=165143A ,未知数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321x x x X ,常数矩阵⎥⎦⎤⎢⎣⎡-=14b 线性方程组用矩阵表示为b AX =即⎥⎦⎤⎢⎣⎡--165143⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ⎥⎦⎤⎢⎣⎡-=14线性方程组三种表示形式⎥⎦⎤⎢⎣⎡---=11654143A三、例题讲解例1 将线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=++-=--43502515432131321321x x x x x x x x x x x 改写成矩阵的形式.解:增广矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=4315010121511154A 系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=315101151154A 常数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4021b线性方程组的矩阵表示为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----315101151154⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4021 例2若已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500101111231021A 表示一个线性方程组的增广矩阵,讨论这个线性方程组:(1)有几个未知量?(2)有几个方程?(3)最后一行代表的方程是什么?解:(1)根据增广矩阵的概念,可知最后一列是常数项,前4列是未知量的系数,故这个方程组有4个未知量.(2)由增广矩阵的构成可知,增广矩阵的行数就是方程的个数,故有3个方程. (3)最后一行代表的方程是50004321=+++x x x x 即52=x例3,线性方程组b AX =,矩阵A 是4×6矩阵,矩阵b 是4×1矩阵,问这个方程组有几个未知量?有几个方程?解:有6个未知量,有4个方程.四、课堂练习练习写出下列线性方程组的增广矩阵,并写出矩阵表达形式.五、课后作业将下列方程组写成矩阵形式:(1)⎪⎩⎪⎨⎧=--=++-=+2423325232132121xxxxxxxx;(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=++=++-=++=+4652652652651655454343232121xxxxxxxxxxxxx(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛---23542321112321xxx;(2)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛12221656516516516554321xxxxx第二单元消元法一、学习目标熟练掌握求线性方程组一般解的消元法,掌握求线性方程组的特解.二、内容讲解例:若一个线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=222111112A,求方程组的解.解:从最后一行开始,得223-=x,13-=x第二行表示的方程是232=+xx,322xx-=3)1(2=--=第一行表示的方程是12321=-+xxx,23)1(21321-=+-=xxx方程组的解为⎪⎪⎩⎪⎪⎨⎧-==-=1323321xxx归纳:当线性方程组的增广矩阵为阶梯形矩阵时,可以从最后一行开始,用逐步回代的方法求得线性方程组的解.比较增广矩阵与线性方程组作初等行变换的关系结论:对线性方程组的增广矩阵进行初等行变换,不改变线性方程组的解.消元法:用初等行变换把线性方程组的增广矩阵化成阶梯形矩阵;从阶梯形矩阵的最后一行开始,用逐步回代的方法求解.这种解线性方程组的方法就叫消元法。
2015考研数学线性代数基础讲义第一章 行列式一.基本内容1.排列与逆序定义 :由 n 个自然数1, 2,3,..., n 组成的无重复有序实数组 称为一个 n 级排列。
定义 :在一个 n 级排列中,如果一个较大数排在一个较小数前面,我们就称这两个数构成一个逆序。
对于逆序,我们感兴趣的是一个 n 级排列中逆序的总数,称为 n 级排列的逆序数,记作。
2. 行列式的定义个数 ( )排成的行列的方形表称为一个n 阶行列式。
它表示所有取自不同行不同列的个元素乘积的代数和。
3.行列式的性质(1)转置不改变行列式的值(2)行列式某行(列)元素的公因子可以提到行列式之外(3)行列式的分行(列)可加性(4)行列式两行(列)元素成比例,则行列式值为0(5)互换行列式的某两行(列)行列式的值改变符号(6)行列式某行(列)的倍加到另外一行(列),行列式值不变4.行列式的余子式、代数余子式划去元素 所在的行、列,剩下的元素按照原来的顺序排成的n-1阶行列式称为 的余子式,记为 ,称 为 的代数余子式。
5.行列式的展开(1)展开定理(2)行列式某一行(列)每个元素与另一行(列)对应元素的代数余子式乘积的和等于0 。
二.基本结论(1)(2)12,,n i i i 12,,n i i i ()12,,n i i i τ2n ij a ,1,2,,i j n =⋅⋅⋅1212121112121222(,,,)12,,,12(1)n n n n n j j j j j nj j j j n n nn a a a a a a D a a a a a a τ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅⋅⋅⋅∑ij a ij a ij M (1)i j ij ij A M +=-ij a 1122i i i i in in D a A a A a A =++1,2,,i n =1122j j j j nj nj a A a A a A =++1,2,,j n =11220k i k i kn in a A a A a A ++=k i≠11220k i k i nk ni a A a A a A ++=k i ≠1122nn a a a =11112222******nn nn a a a a a a ==1112(1)2(1)2(1)111******n n n n n n n n n a a a a a a a a a ---===三. 基本题型与基本方法题型1:行列式的计算:行列式基本方法:利用性质及展开具体方法:方法一 :三角法(利用性质将行列式化为三角型行列式)例方法二:降阶法(利用展开降阶)例第二章 矩阵第一节 矩阵及其运算一. 基本内容1.矩阵概念1)定义2)特殊矩阵:(1)零矩阵:(2)阶方阵:(3)行矩阵(向量)、列矩阵(向量):(4)对角矩阵、单位矩阵、上三角矩阵、下三角矩阵:(5)对称矩阵、反对称矩阵:2.矩阵的运算1)线性运算:加法与数乘2)乘法:(1)乘法法则:(2)运算律:3)方阵的运算(1)方阵的幂及其运算律:(2)方阵的行列式4)转置:性质5)伴随矩阵性质:二、基本结论1.伴随矩阵的相关结论2.分块矩阵的逆 4124120233200112D =0111111n n a a D a +=12344000000a x a a a x x D x x x x +-=--()111212122212n n ij m n m m mn a a a a a a A a a a a ⨯⋅⋅⋅⎛⎫ ⎪⋅⋅⋅ ⎪== ⎪⋅⋅⋅⋅⋅⋅ ⎪⎝⎭第二节 可逆矩阵一、基本内容1.可逆的定义:2.阶矩阵可逆的充要条件:3.性质:二、基本题型与基本方法题型1:逆矩阵的计算与证明(具体矩阵、抽象矩阵)方法一:公式法求逆方法二:初等变换求逆:方法:例方法四:利用定义,求(证明)逆矩(抽象矩阵的情形中常见)例:n 阶矩阵满足 求第三节 矩阵的初等变换与秩一、基本内容1.初等变换的定义:2.初等矩阵(1)定义:由单位矩阵经过一次初等变换得到的矩阵(2)三种初等矩阵:(3)性质:初等矩阵都是可逆的,其逆仍是初等矩阵3.初等变换的本质(初等变换与初等矩阵的关系)4.矩阵等价1)定义:2)性质:5.矩阵的秩(1)定义:(2)性质:初等变换不改变矩阵的秩二、基本题型与基本方法题型:求矩阵的秩基本方法:初等变换法对矩阵作初等行变换,化为阶梯形,阶梯形中非零行的个数即为矩阵的秩。
第一章行列式(一)行列式的定义1.行列式的定义D n=∑(-1)t a1c1a2c2…a n cn(t是列标c的逆序数)=∑(-1)t a r11a r22…a rn n(t是行标r的逆序数) 2.余子式及代数余子式设有n阶行列式D n,对任何一个元素a ij,划去它所在的第i行及第j列,剩下的元素按原先次序组成一个n-1阶行列式,称它为元素a ij的余子式,记作M ij,再记A ij=(-1)i+j M ij,称A ij为元素a ij的代数余子式.3.特殊行列式①②③(二)行列式的性质性质1 行列式与它的转置行列式相等,即|A|=|A T|性质2用数k乘行列式D中某一行(列)的所有元素等于用数k乘此行列式D.推论1行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面性质3互换行列式的任意两行(列),行列式的值改变符号.推论2如果行列式中有某两行(列)相同,则此行列式的值等于零.推论3 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4如果行列式某行(列)所有元素均为两个数的和,则行列式可以按该行(列)拆为两个行列式的和.性质5 把行列式某一行(列)所有元素都乘以同一个数然后加到另一行(列)的对应元素上去,行列式不变. 定理1(行列式展开定理)n阶行列式D=|a ij|n等于它任意一行(列)各元素与其对应的代数余子式的乘积的和,即D=a i1A i1+a i2A i2+…+a in A in(i=1,2,…n)(D按第i行的展开式)或D=a1j A1j+a2j A2j+…+a nj A nj(j=1,2,…n)(D按第j列的展开式)定理2行列式D=|a ij|n的任一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即a i1A k1+a i2A k2+…+a in A kn=0(i≠k)或a1j A1s+a2j A2s+…+a nj A ns=0(j≠s)(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:第二章矩阵(一)矩阵的定义矩阵定义:m*n个数a ij(i=1,2,…m,j=1,2,…n)排列成一个m行n列的有序数表,称为m*n矩阵,记为(a ij)m*n (二)矩阵的运算1.矩阵的同型与相等设有矩阵A=(a ij)m*n, B=(b ij)k*s,若m=k, n=s,则说A与B是同型矩阵,若A与B同型,且对应元素相等,即a ij=b ij,则称矩阵A与B相等,记为A=B2.矩阵的加、减法设A=(a ij)m*n, B=(b ij)m*n,是两个同型矩阵,则A+B=(a ij+b ij)m*n , A-B=(a ij-b ij)m*n注意:矩阵的相加(减)体现为对应元素的相加(减),只有A与B为同型矩阵,它们才可以相加(减).①A+B=B+A ②(A+B)+C=A+(B+C) ③A-B=A+(-B)3.数乘运算设A=(a ij)m*n,k为任一个数,则规定kA=(ka ij)m*n, 数k与矩阵A的乘积就是A中所有元素都乘以k①(kj)A=k(j A) ②(k+j)A=k A+j A ③k(A+B)=k A+k B4.乘法运算设A=(a ij)m*k,B=(b ij)k*n,则规定AB=(c ij)m*n,其中c ij=a i1b1j+a i2b2j+…+a ik b kj (i=1,2,…,m, j=1,2,…,n)只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,且AB的行数为A的行数,AB的列数为B的列数,AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.矩阵乘法与普通数乘法不同:不满足交换律,即①AB≠BA②当AB=0,不能推出A=0或B=0,不满足消去律.①(AB)C=A(BC) ②A(B+C)=AB+AC ③(B+C)A=BA+CA ④k(AB)=(k A)B=A(k B)⑤AE=EA=A5.方阵的乘幂与多项式方阵A为n阶方阵,则A m=AAA…A(m个).①A k A j=A k+j ②(A k)j=A kj ③特别地A0=E④若f(x)=a m x m+a m-1x m-1+…+a1x+a0,则规定f(A)=a m A m+a m-1A m-1+…+a1A+a0E,称f(A)为A的方阵多项式。
第三部 线性代数 第1章 行列式1.了解或理解一些基本概念(1)了解n 阶行列式、余子式、代数余子式等概念; (2)了解n 阶行列式性质,尤其是:性质1 行列式D 和其转置行列式T D 相等;性质2 若将行列式的任意两行(或列)互换,则行列式的值改变符号; 性质3 行列式一行(或列)元素的公因子可以提到行列式记号的外面;性质5 若将行列式的某一行(或列)的倍数加到另一行(或列)对应的元素上,则行列式的值不变.例1 设行列式211201231--=D ,则D 中元素223=a 的代数余子式23A = 。
解 由代数余子式的定义ij A ij ji M +-=)1(,其中ij M 为ij a 的余子式,可知 23A =11311131)1(32-=-+。
应该填写 1131-。
例2 下列等式成立的是( ) ,其中d c b a ,,,为常数。
A .acb d dc ba -= B .111111c bd a d c b a +=++C .d c b a d c ba 22222= D .111111c b d a d c b a ⋅=⋅⋅ 解 因为 dc ba d cb acd a b a b c d a c b d ≠-==-=-,所以选项A 是错误的。
由行列式性质4可知,111111c b d a d c b a +=++,所以选项B 是正确的。
因为d c ba d cb a dc b a 242222≠=,所以选项C 是错误的。
因为1111,11c b d a cd ab d c b a ⋅-=⋅⋅=))((c b d a --,111111c b d a d c b a ⋅≠⋅⋅,所以选项D 是错误的。
例3 行列式4321100001000010=D = 。
解 按第1列展开行列式,得6300020001)1(432130000200001014-=-==+D故应该填写 –6。
2.掌握行列式的计算方法化三角形法:利用行列式性质化成上(或下)三角行列式,其主对角线元素的乘积即为行列式的值。
第一单元 行列式的定义一、学习目标通过本节课学习,理解行列式的递归定义,掌握代数余子式的计算,知道任何一个行列式就是代表一个数值,是可以经过特定的运算得到其结果的.二、内容讲解行列式 行列式的概念什么叫做行列式呢?譬如,有4个数排列成一个行方块,在左右两边加竖线。
即2153-称为二阶行列式;有几个概念要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列; 一般用ija 表示第i 行第j 列的元素,如上例中的元素311=a ,512=a ,121-=a ,222=a .再看一个算式075423011--称为三阶行列式,其中第三行为5,-7,0;第二列为–1,2,-7;元素423=a ,531=a又如1321403011320---,是一个四阶行列式.而11a 的代数余子式为()07421111111--=-=+M A代数余子式就是在余子式前适当加正负号,正负号的规律是-1的指数是该元素的行数加列数.()43011322332-=-=+M A问题思考:元素ija 的代数余子式ijA 是如何定义的? 代数余子式ijA 由符号因子j i +-)1(与元素ij a 的余子式ij M 构成,即()ijji ijM A +-=1三、例题讲解例题1:计算三阶行列式542303241---=D分析:按照行列式的递归定义,将行列式的第一行展开,使它成为几个二阶行列式之和, 二阶行列式可以利用对角相乘法,计算出结果.解:()()()5233145430112111---⋅-+--⋅=++D ()42031231--⋅++7212294121=⋅+⋅+⋅=四、课堂练习计算行列式hg f ed c b a D 00000004=利用n 阶行列式的定义选择答案.将行列式中的字母作为数字对待,利用递归定义计算.注意在该行列式的第一行中,有两个零元素,因此展开式中对应的两项不用写出来了.4D =⋅-⋅+11)1(a h f ed c 00+41)1(+-⋅b 000g f ed c ⋅五、课后作业1.求下列行列式的第二行第三列元素的代数余子式23A(1)210834021-- (2)3405122010141321---2.计算下列行列式(1)622141531-- (2)612053124200101---3.设00015413010212014=D(1)由定义计算4D ;(2)计算2424232322222121A a A a A a A a +++,即按第二行展开; (3)计算3434333332323131A a A a A a A a +++,即按第三行展开;(4)按第四行展开.1.(1)1021)1(32--+ (2)305120121)1(32---+2.(1)20 (2)243.(1)1 (2)1 (3)1 (4)1第二单元 行列式的性质一、学习目标通过本节课的学习,掌握行列式的性质,并会利用这些性质计算行列式的值.二、内容讲解 行列式的性质用定义计算行列式的值有时是比较麻烦的,利用行列式的性质能够使计算变的比较容易了.行列式的性质有七条,下面讲一讲几条常用的性质.在讲这些性质前,先给出一个概念:把行列式D 中的行与列按原顺序互换以后得到的行列式,称为D 的转置行列式,记为TD .如987654321=D ,963852741T =D1.行列式的行、列交换,其值不变.如264536543-==这条性质说明行列式中,行与列的地位是一样的.2.行列式的两行交换,其值变号.如243656543-=-=3.若行列式的某一行有公因子,则可提出.如d c b a dc ba333=注意:一个行列式与一个数相乘,等于该数与行列式的某行(列)的元素相乘. 4.行列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到另一行上2113-- 5513-=注意:符号“À+2Á”放在等号上面,表示行变换,放在等号下面表示列变换. 问题1:将n 阶行列式的最后一行轮换到第一行, 这两个行列式的值有什么关系?答案设n 阶行列式nD ,若将nD 的最后一行轮换到第一行,得另一个n 阶行列式nC ,那么这两个行列式的值的关系为: n C =n nD 1)1(--问题2:如果行列式有两行或两行以上的行都有公因子,那么按性质3应如何提取? 答案按顺序将公因子提出.三、例题讲解例1计算行列式dc b a 675081004000--.分析:利用性质6,行列式可以按任一行(列)展开.本题按第一行逐步展开,计算出结果.解:dc b a 675081004000--=dc b a 670800-=d c ab 60=abcdÀ+2Á我们将行列式中由左上角至右下角的对角线, 称为主对角线.如例1中,行列式在主对角线以上的元素全为零,则称为下三角行列式. 由例1的计算过程,可得这样规律:下三角行列式就等于主对角线元素的积. 同理,主对角线以下元素全为零的行列式,则称为上三角行列式,且上三角行列式也等于主对角线元素之积.今后,上、下三角行列式统称为三角行列式.例2 计算行列式4977864267984321----分析:原行列式中第三行的元素是第一行的2倍,因此,利用行列式的倍加运算(性质5),使第三行的元素都变为0,得到行列式的值.解:4977864267984321----497700067984321----= 0例3 计算行列式2211132011342211----分析:利用行列式的倍加运算(性质5),首先将某行(列)的元素尽可能化为0,再利用行列式可以按任一行(列)展开的性质(性质6),逐步将原行列式化为二阶行列式,计算出结果.解:2211132011342211---- 2411142010342011---Â+Ã111142010342011----=111134211)1(433-----⨯+1101312104----⨯=1121)1(412----⨯+12)21(4=---=通过此例可知,行列式两行成比例,则行列式为零.三、课堂练习练习1 若d a a a a a a a a a =333231232221131211,求行列式232221131211313231222333a a a a a a a a a ---利用行列式的性质3,将第一行的公因子3、第二行的公因子(-1)、第三行的公因子2提出.利用行列式的性质3和性质2,将所要计算的行列式化为已知的行列式,再求其值.练习2 计算行列式540554129973219882310391----由性质4,若行列式中某列的元素均为两项之和,则可将其拆写成两个行列式之和.在着手具体计算前,先观察一下此行列式有否特点?有,其第三列的数字较大,但又都分别接近100、200、300和400,故将第三列的元素分别写成两项之和, 再利用行列式的性质4将其写成两个行列式之和.注意,将第三列的元素分别写成两À+Á项之和时,还要考虑到结论“行列式中两列元素相同(或成比例),则该行列式的值为0”的利用.五、课后作业1.计算下列行列式(1)75701510--- (2)253132121-(3) ww w w ww22111 (0≠w ) (4)38790187424321--2.证明(1)0=---------cb b a ac b a a c c b a c c b b a (2)()32211122b a b b a a b ab a -=+1.(1)0 (2) -2 (3) 22)1(--w w (4)02. (1)提示:利用性质5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行展开,并推出等号右边结果.第三单元 行列式的计算一、学习目标通过本节课的学习,掌握行列式的计算方法.二、内容讲解行列式的计算行列式=按任何一行(列)展开 下面用具体例子说明.d c b a =bc ad -1156)1(5232153=+=-⋅-⋅=-一个具体的行列式就是代表具体的一个数.再看一个三阶行列式.75423011--可以按任何一行(列)展开按第一行展开=752300543107421-⨯+⨯+-⨯=02028+-=8 按第三列展开=231107511475230-⨯+--⨯--⨯=0)57(40++-⨯-=8注意:1.行列式计算一般按零元素较多的行(列)展开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证 2222222211110000d c b a d c b a d c b a d c dc b a b a =答案左边=222211122222111100)1(00)1(d c b a b a bc d c b a d c d a ++-+-222211)1(d c b a ad +-=222211)1(d c b a cb +--22222222)(d c b a d c b a d c b a cb ad =-==右边三、例题讲解例 计算行列式214200131000211---分析:由性质6可知,行列式可以按任何一行(列)展开来求值.因为第二、三行,第四列的零元素都较多,所以可选择其一展开,再进一步将其展成二阶行列式,并计算结果.解:按第三行展开214200131000211---=214100211)1(2021315021)1(14313----⨯+----⨯++=1411)1()1(22121)1(33232--⨯-⨯----⨯++==10)41(2)22(3-=+--⨯-四、课堂练习练习1 计算行列式dcb a 100110011001---根据定义,按第一行展开,使其成为两个三阶行列式之和.因为行列式第一行有较多的零元素,所以可采用“降阶法”,即先按第一行展开,使其成为两个三阶行列式之和,然后再计算两个三阶行列式降阶,最后求出结果.dcb a 100110011001--- =dcd cb a 101011101101-----练习2 计算行列式24524288251631220223------为了避免分数运算,先作变换“第一行加上第二行的2倍,即À+Á 2;第三行加上第二行的-2倍,即Â+Á(-2);第四行加上第二行的-2倍,即Ã+Á(-2)”.该行列式没有明显特点,采用哪种方法计算都可以,这里用“化三角行列式”的方法进行计算.注意尽量避免分数运算.21524288251631220223------111042011631212401----五、课后作业1.计算下列行列式:(1)881441221---- (2)4222232222222221À+Á2 Â+Á(-2(3) 4321651065311021 (4)00312007630050131135362432142.计算n阶行列式xaaa x a a a x/media_file/jjsx/4_1/3/khzy/khzy.htm - #1.(1)48 (2)4 (3)-3 (4)-3402. ])1[()(1x a n a x n +---第四单元 克拉默法则一、学习目标克拉默法则是行列式在解线性方程组中的一个应用,通过本节课的学习,要知道克拉默法则求线性方程组解的条件,了解克拉默法则的结论.二、内容讲解克拉默法则设n 个未知数的线性方程组为 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1)记行列式nnn n n na a a a a a a a a D 212222111211=称为方程组(1)的系数行列式.将D 中第j 列的元素njj j a ,,a ,a 21分别换成常数n b ,,b ,b 21而得到的行列式记作jD .克拉默法则 如果线性方程组(1)的系数行列式0≠D ,那么它有惟一解D D x D Dx D D x n n ===,,,2211 (2)证将(2)式分别代入方程组(1)的第i 个方程的左端的nx x x ,,,21 中,有D D a D Da D D a n in i i +++ 2211(3)将(3)中的jD 按第j 列展开, 再注意到j D中第j 列元素的代数余子式和D 中第j 列元素的代数余子式ij A是相同的, 因此有),,2,1(2211n j A b A b A b D njn j j j =+++= (4)把(4)代入(3),有D D a D Da D D a n in i i +++ 2211(){1121211111n n i i i A b A b A b A b a D+++=()222221212n n i i i A b A b A b A b a ++++…+…()}nn n in i n n in A b A b A b A b a ++++2211把小括弧打开重新组合得(){()()()}i nn in n i n i n in in i i i i i n in i i n in i i b A a A a A a b A a A a A a b A a A a A a b A a A a A a b D=+++++++++++++++++=2211221122222112112211111因由性质6和性质7⎩⎨⎧=≠=+++k i D ki A a A a A a kn in k i k i 02211 故上式等于i b ,即i n in i i b D D a D Da D D a =+++ 2211下面再证明方程组(1)的解是惟一的.设nn c x c x c x ===,,,2211为方程组(1)的任意一组解.于是 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b c a c a c a b c a c a c a b c a c a c a 22112222212111212111 (5)用j A 1,j A 2,…j n A 分别乘以(5)式的第一、第二、…、第n 个等式,再把n 个等式两边相加,得++++11221111)(c A a A a A a nj n j j +++++j nj nj j j j j c A a A a A a )(2211n nj nn j n j n c A a A a A a )(2211++++ njn j j A b A b A b +++= 2211根据性质6和性质7,上式即为),,2,1(n j D c D j j ==因为0≠D ,所以),,2,1(n j DD c j j ==克拉默法则有以下两个推论:推论1 如果齐次线性方程组的系数行列式0≠D , 那么 它只有零解.推论2 齐次线性方程组有非零解的必要条件是系数行列式0=D . 问题:对任一线性方程组都可用克拉默法则求解吗?答案 不对.当线性方程组中的未知量个数与方程个数不一样;或未知量个数与方程个数相同,但其系数行列式等于零时,不能使用克拉默法则.三、例题讲解例 利用克拉默法则解下列方程组⎩⎨⎧-=-=+-7526432121x x x x分析:这是一个两个变量、两个方程的方程组,它满足了克拉默法则一个条件.克拉默法则的另一个条件是要求系数行列式的值不等于零.因此,先求出方程组的系数行列式的值,若它的值不等于零,说明该方程组有惟一解,然后求常数项替代后的行列式的值,再用克拉默法则给出的公式求出解. 解:因为系数行列式()()24535243⨯--⨯-=--=D 07815≠=-= 且257461-=--=D ,972632=--=D ,所以7211-==D D x ,7922==D D x四、课堂练习k 取什么值时,下列方程组有唯一解?有唯一解时求出解.⎪⎩⎪⎨⎧=+--=++-=++0211321321321x x x x kx x kx x x对行列式作变换“第二行加上第一行的1倍,即Á+À;第三行加上第一行的-1倍,即Â+À(-1)”.这是三个未知量三个方程的线性方程组,由克拉默法则知,当系数行列式D ≠0时,方程组有唯一解.所以,先求系数行列式的值.2111111--=kk Dkk k k --++2211011五、课后作业用克莱姆法则解下列方程组1.⎪⎩⎪⎨⎧=+=++=-12 142 23232121x x x x x x x 2.⎪⎪⎩⎪⎪⎨⎧-=+++-=+-+=---=+++422222837432143214314321x x x x x x x x x x x x x x x 1.31=x ,42=x ,233-=x ,2. 21-=x ,3352=x ,2103=x ,204-=x。
经济数学线性代数学习讲义合川电大兰冬生1,矩阵:A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,称为矩阵。
认识矩阵第一步:行与列,横为行,竖为列, 第一行依次0,1,2, 第二行1,1,4 第一列0,1,2这是一个三行三列矩阵, 再给出一个三行四列矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=12614231213252A 教材概念的m 行n 列矩阵。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,这个矩阵记作n m A ⨯,表明这个矩阵有m 行,n 列,注意行m 写在前面,列n 写在后面,括号里面的称为元素,记为ij a ,i 是行,j 是列, 例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----12614231213252是三行四列矩阵,也说成43⨯矩阵,注意行3在前面,列4在后面,这里211=a (就是指的第一行第一列那个数) 123-=a (就是指的第二行第三列那个数) 2,矩阵加法矩阵加法,满足行列相同的矩阵才能相加,对应位置的数相加。
例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--011101010+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-021512220 减法是对应位置的数相减。
,3,矩阵的乘法矩阵乘法参看以下法则:注意字母对应⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b bb b b ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯=333323321331323322321231313321321131332323221321322322221221312321221121331323121311321322121211311321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 说明:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b bb b b =⎦⎢⎢⎢⎣⎡33323122211211c c c c c c c 乘积的结果矩阵11c 等于第一个矩阵的第一行元素11a 12a 13a 乘以第二个矩阵的第一列元素11b 21b 31b ,注意是对应元素相乘,再求和。
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
第一单元队列式的定义一、学习目标经过本节课学习,理解队列式的递归定义,掌握代数余子式的计算,知道任何一个队列式就是代表一个数值,是能够经过特定的运算获得其结果的.二、内容解说队列式队列式的观点什么叫做队列式呢?比如,有 4 个数摆列成一个行方块,在左右两边加竖3 5线。
即12 称为二阶队列式;有几个观点要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列;一般用aij表示第i行第j列的元素,如上例中的元素a11 3 , a12 5 ,a211,a222.110324再看一个算式57称为三阶队列式,此中第三行为5,-7 ,0;第二列为–1, 2,-7 ;元素a234,a3150231 1030 4123又如0010,是一个四阶队列式.a1124A11 1 M1170代数余子式就是在余子式前适合加正负号,正负号的规律是-1 的指数是该元素的行数加列数.A3213 2M321034问题思虑:元素aij的代数余子式Aij是怎样定义的?代数余子式Aij由符号因子 ( 1) i j与元素aij的余子式Mij 组成,即Aij1i jMij三、例题解说142D303例题 1:计算三阶队列式245剖析:依据队列式的递归定义,将队列式的第一行睁开,使它成为几个二阶队列式之和,二阶队列式能够利用对角相乘法,计算出结果.D1 1 1 1 034 1 123321 1 330解:4525241 12492 1272四、讲堂练习a00bD 40c d0 0e f0计算队列式g00h利用n阶队列式的定义选择答案.将队列式中的字母作为数字对待,利用递归定义计算.注意在该队列式的第一行中,有两个零元素,所以睁开式中对应的两项不用写出来了.c d00c de f00e fD4= a ( 1) 1 100h +b ( 1)1 4g 00五、课后作业1.求以下队列式的第二行第三列元素的代数余子式A23120438(1)012(2)12314101022150432.计算以下队列式135141(1)226(2)10100242135021061021D 42010 31453.设1000D( 2)计算 a 21 A 21 a 22 A 22 a 23 A 23a 24A24,即按第二行睁开;( 3)计算a 31A31a 32A32a 33A33a 34A34,即按第三行睁开;( 4)按第四行睁开.12 1( 1)2312 ( 1)232 1531.( 1)1( 2)2.( 1)20 (2)24 3.(1)1(2)1(3)1(4)1第二单元队列式的性质一、学习目标经过本节课的学习,掌握队列式的性质,并会利用这些性质计算队列式的值.二、内容解说队列式的性质用定义计算队列式的值有时是比较麻烦的,利用队列式的性质能够使计算变的比较简单了.队列式的性质有七条,下边讲一讲几条常用的性质.在讲这些性质前,先给出一个观点:把队列式 D 中的行与列按原次序交换此后获得的队列式,称为D 的转置队列式,记为 D T.1 2 31 4 7 D4 5 6 D T 2 5 8 如7 8 9 ,3 6 93 43 51.队列式的行、列交换,其值不变. 如5264 6这条性质说明队列式中,行与列的地位是同样的.3 45 622.队列式的两行交换,其值变号 .如563 4a ba b如 3c33.若队列式的某一行有公因子,则可提出.3d c d注意:一个队列式与一个数相乘,等于该数与队列式的某行(列)的元素相乘.4.队列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到3 1 à +2á 3 1125 5另一行上注意:符号“ à+2á”放在等号上边,表示行变换,放在等号下边表示列变换.问题 1:将 n 阶队列式的最后一行轮换到第一行,这两个队列式的值有什么关系?答案设 n 阶队列式 D n ,若将 Dn的最后一行轮换到第一行,得另一个n 阶行列式C n,那么这两个队列式的值的关系为: C n =( 1) n 1 D n问题 2:假如队列式有两行或两行以上的行都有公因子,那么按性质3 应怎样提取?答案按次序将公因子提出 .三、例题解说a000 4b00 18c0例 1 计算队列式576 d .剖析:利用性质 6,队列式能够按任一行(列)睁开.此题按第一行逐渐展开,计算出结果.a0004b00b0018c0 a 8c0c0解:5d =abd= abcd 7676 d =6我们将队列式中由左上角至右下角的对角线,称为主对角线.如例 1 中,行列式在主对角线以上的元素全为零,则称为下三角队列式.由例 1 的计算过程,可得这样规律:下三角队列式就等于主对角线元素的积.同理,主对角线以下元素全为零的队列式,则称为上三角队列式,且上三角队列式也等于主对角线元素之积.此后,上、下三角队列式统称为三角队列式.123489762468例 2 计算队列式7794剖析:原队列式中第三行的元素是第一行的 2 倍,所以,利用队列式的倍加运算(性质 5),使第三行的元素都变成 0,获得队列式的值.123412348976897624680000解:77947 794= 01 1 2243110 231例3计算队列式1122剖析:利用队列式的倍加运算(性质5),第一将某行(列)的元素尽可能化为 0,再利用队列式能够按任一行(列)睁开的性质(性质6),逐渐将原队列式化为二阶队列式,计算出结果.112211024311?+?430102310241解:11221142110243011120 2 4 1 4 ( 1)334311101=11101241314( 1)2112à+á011114(12) 12=经过此例可知,队列式两行成比率,则队列式为零.三、讲堂练习a11a12a133a313a323a31a21a22a23da11a12a13练习 1 若a31a32a33,求队列式2a212a222a23利用队列式的性质3,将第一行的公因子3、第二行的公因子( -1 )、第三行的公因子 2 提出.利用队列式的性质 3 和性质 2,将所要计算的队列式化为已知的队列式,再求其值.191033281982372991练习 2 计算队列式454055由性质 4,若队列式中某列的元素均为两项之和,则可将其拆写成两个队列式之和.在着手详细计算前,先察看一下此队列式有否特色?有,其第三列的数字较大,但又都分别靠近 100、200、300 和 400,故将第三列的元素分别写成两项之和,再利用队列式的性质 4 将其写成两个队列式之和.注意,将第三列的元素分别写成两项之和时,还要考虑到结论“队列式中两列元素同样(或成比率),则该队列式的值为 0”的利用.五、课后作业1.计算以下队列式015121107231(1)57 0(2)3521234 1112478 w w w 20010(3) w w 2w( w 0)(4)97 832.证明a b b c c a a 2ab b 2b c c a a b 02a a b 2ba b 3(1) c a a b b c(2)1111.( 1) 0(2) -2(3)w2(w1)2(4)02.(1)提示:利用性质 5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行睁开,并推出等号右侧结果.第三单元队列式的计算一、学习目标经过本节课的学习,掌握队列式的计算方法.二、内容解说队列式的计算队列式 =按任何一行(列)睁开下边用详细例子说明.a b35 d= ad bc 32 5(1) 6 5 11c12一个详细的队列式就是代表详细的一个数.再看一个三阶队列式.1103 2457 0能够按任何一行(列)睁开2434321107=28按第一行睁开 =70505200=83211110402 =0(7 5) 0=8按第三列睁开 =575734注意: 1.队列式计算一般按零元素许多的行(列)睁开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证答案左侧=ab a 1 b 1c d c 1 d 1 a b a 2 b 2 0 0 a 2 b 2 c d c 2d 2c 2d 2dc 1d 1b a 1b 1a( 1)1 10 a 2 b 2 c( 1)2 10 a 2 b 2 ad( 1)1 1 a2b 2 cb( 1)1 1a2b 2 0c 2d 20 c 2d 2c 2d 2c 2d 2(ad cb)a 2b 2 a b a 2 b 2c 2d 2 cd c 2 d 2 =右侧三、例题解说1 12 0 0 0 1 312例计算队列式41 2 0剖析: 由性质 6 可知,队列式能够按任何一行(列)睁开来求值.由于第二、三行,第四列的零元素都许多,所以可选择其一睁开,再进一步将其展成二阶队列式,并计算结果.解:按第三行睁开1 12 00 0 1 312 0 11 2 10 021(1)3151 32 ( 1)3400 1 412 0 =12 04123 ( 1)23 1 2 2 ( 1) ( 1)2311=1241==3(2 2) 2(1 4)10四、讲堂练习a1001b1001c1练习 1 计算队列式001d依据定义,按第一行睁开,使其成为两个三阶队列式之和.由于队列式第一行有许多的零元素,所以可采纳“降阶法”,即先按第一行展开,使其成为两个三阶队列式之和,而后再计算两个三阶队列式降阶,最后求出结a1001 b10b 1 01100 1 c 1 a 1 c 10 c 1果.00 1 d =0 1 d0 1 d322202131652828练习 2 计算队列式42524为了防止分数运算,先作变换“第一行加上第二行的 2 倍,即à+á 2 ;第三行加上第二行的 -2 倍,即 ?+á(-2) ;第四行加上第二行的-2 倍,即 ?+á(-2) ”.该队列式没有显然特色,采纳哪一种方法计算都能够,这里用“化三角队列式”的方法进行计算.注意尽量防止分数运算.3 22202 1 316 5 2 828 4 2 521à+á2 ?+á (-2) ?+á (-2)1041221316102400111五、课后作业1.计算以下队列式:1222 12222221442232(1)188(2)2224421342 12013651313 135610500 015636700(3)1234(4)2 1 300x a aa x a2.计算n阶队列式aa x1.(1)48 (2)4(3)-3(4)-3402. (x a)n 1[( n 1)a x]第四单元克拉默法例一、学习目标克拉默法例是队列式在解线性方程组中的一个应用,经过本节课的学习,要知道克拉默法例求线性方程组解的条件,认识克拉默法例的结论.二、内容解说克拉默法例设n个未知数的线性方程组为a 11 x1a12x2a1 nxn b1a 21 x1a22x2a2 nxn b2a n1 x1an2x2annxn b n(1)a11a12a1 nDa21a22a2 n记队列式a n1a n2a nn称为方程组( 1)的系数队列式.将D中第j列的元素a1 j ,a2 j , , a nj分别换成常数b,b , ,b D j.12n而获得的队列式记作克拉默法例假如线性方程组( 1)的系数队列式D0,那x1D1 , x2D2 , , x n Dn(2)么它有唯一解D D D证将( 2)式分别代入方程组( 1)的第i个方程的左端的x1, x2,, x n中,有D 1ai 2D 2ainD nai1D D(3)D将( 3)中的D j按第j列睁开,再注意到Dj中第j列元素的代数余子式和 D中第j列元素的代数余子式A ij是同样的,所以有Djb1A1 jb2A2 j b nAnj( j1,2,, n)(4)把( 4)代入( 3),有ai1D 1 D 2 D nDai 2 Dain D1a i1 b1 A11 b2A21biAi1bnAn1ai 2b1A12b2A22biAi 2bnAn 2 D+ainb1A1nb2A2nbiAinbnAnn 把小括弧翻开从头组合得1 b 1 a i 1 A 11 a i2 A 12a in A 1nDb 2 a i 1 A 21 a i 2 A 22 a in A 2nb i a i 1 A i1 a i 2 A i 2a in A inb n a i 1A n1a i 2An 2a inAnnb i来由性质 6 和性质 7a i1A k1a i 2Ak 2a inAkni kDik 故上式等于 b i ,即D 1 D 2D nai1Dai 2DainDb i下边再证明方程组( 1)的解是唯一的.设 x 1 c 1 , x 2 c 2 , , x nc n为方程组( 1)的随意一组解.于是a 11c 1 a 12 c 2 a 1n c nb 1 a 21c 1 a 22c 2 a 2n c n b 2a n1c 1a n2c 2a nn c nb n( )用 A 1 j , A 2 j ,A n j分别乘以( 5)式5的第一、第二、 、第n 个等式,再把 n 个等式两边相加,得(a 11A1 ja 21 A2 ja n1A nj)c1(a 1 jA1 ja 2 j A2 ja njA nj)cj( a 1 nA1 ja 2nA2 ja nnA nj)c nb 1A 1 jb 2A2 jb nAnj依据性质 6 和性质 7,上式即为D c jD j ( j 1,2,, n)由于D,所以 c j D j ( j 1,2, ,n)D克拉默法例有以下两个推论:推论 1 假如齐次线性方程组的系数队列式 D 0,那么它只有零解.推论 2齐次线性方程组有非零解的必需条件是系数队列式D0.问题:对任一线性方程组都可用克拉默法例求解吗?答案不对.当线性方程组中的未知量个数与方程个数不同样;或未知量个数与方程个数同样,但其系数队列式等于零时,不可以使用克拉默法例.三、例题解说3x14x26例利用克拉默法例解以下方程组2 x15x27剖析:这是一个两个变量、两个方程的方程组,它知足了克拉默法例一个条件.克拉默法例的另一个条件是要求系数队列式的值不等于零.所以,先求出方程组的系数队列式的值,若它的值不等于零,说明该方程组有唯一解,而后求常数项代替后的队列式的值,再用克拉默法例给出的公式求出解.解:由于系数队列式343 54 2D5158702D1642 D 2369D12D29 7527x17 ,x27且,,所以D D 四、讲堂练习k取什么值时,以下方程组有独一解?有独一解时求出解.x1x2kx31x1kx2x31x1x22x30对队列式作变换“第二行加上第一行的 1 倍,即á+à;第三行加上第一行的-1 倍,即 ?+à(-1 )”.组有独一解.所以,先求系数队列式的值.11k11kD1k10k1k1112022k五、课后作业用克莱姆法例解以下方程组x1x2x3 x472x1x22x13x3x48x1x2 4 x31x12x2x3x421.x2 2 x312. 2x12x2 2x3x44x3335101.x13,x24 2 ,2.x1 2 ,x2x320, 3 , 2 ,x4。
高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
例如)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
经济数学线性代数学习讲义合川电大兰冬生1,矩阵:A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,称为矩阵。
认识矩阵第一步:行与列,横为行,竖为列, 第一行依次0,1,2, 第二行1,1,4 第一列0,1,2这是一个三行三列矩阵, 再给出一个三行四列矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=12614231213252A 教材概念的m 行n 列矩阵。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,这个矩阵记作n m A ⨯,表明这个矩阵有m 行,n 列,注意行m 写在前面,列n 写在后面,括号里面的称为元素,记为ij a ,i 是行,j 是列, 例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----12614231213252是三行四列矩阵,也说成43⨯矩阵,注意行3在前面,列4在后面,这里211=a (就是指的第一行第一列那个数) 123-=a (就是指的第二行第三列那个数) 2,矩阵加法矩阵加法,满足行列相同的矩阵才能相加,对应位置的数相加。
例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--011101010+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-021512220 减法是对应位置的数相减。
,3,矩阵的乘法矩阵乘法参看以下法则:注意字母对应⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b bb b b ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯=333323321331323322321231313321321131332323221321322322221221312321221121331323121311321322121211311321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 说明:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b bb b b =⎦⎢⎢⎢⎣⎡33323122211211c c c c c c c 乘积的结果矩阵11c 等于第一个矩阵的第一行元素11a 12a 13a 乘以第二个矩阵的第一列元素11b 21b 31b ,注意是对应元素相乘,再求和。
乘积的结果矩阵21c 等于第一个矩阵的第二行元素21a 22a 23a 乘以第二个矩阵的第一列元素11b 21b 31b 。
依次类推,结果元素ij c 等于第i 行乘以第j 列,举例:矩阵 A AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412 第一行乘以第一列,)2(4)2(1061-=⨯-+⨯+⨯ 第一行乘以第二列,11)2(2031=⨯-+⨯+⨯ 第二行乘以第一列,4401)2(61=⨯+⨯-+⨯ 第二行乘以第二列,1102)2(31-=⨯+⨯-+⨯可以乘的条件:第一个矩阵的列数和第二个矩阵的行数必须相同,就是尾首必须相同,v w n m B A ⨯⨯可以乘必须是A 矩阵脚标的尾n 等于B 矩阵脚标的首w 相等,w n =例如: 3332⨯⨯B A 可乘3432⨯⨯B A 不可乘,只要尾首相同就可乘,v w n m B A ⨯⨯乘积为v m ⨯矩阵 例如: 3332⨯⨯B A 可乘,乘积结果为32⨯C 矩阵2334⨯⨯B A 可乘,乘积结果为24⨯C 矩阵矩阵的数乘,一个数乘以一个矩阵,等于这个矩阵的每个元素乘以这个数例:A =⎥⎦⎤⎢⎣⎡--021201,3A =⎥⎦⎤⎢⎣⎡--063603. 矩阵的乘法可以看出,矩阵的乘法不可交换,一般情况下BA AB ≠ 4,矩阵的转置矩阵A 转置矩阵记为T A ,转置就是把矩阵的行列元素对调,也可以看成沿主对角线翻转!AA 则⎢⎢⎢⎣⎡-=T AA T 是3×2矩阵(3行2列),2012年1月考题:设A 为3×4矩阵,B 为5×2矩阵,且乘积矩阵AC T B T 有意义,则C 为( B )矩阵。
A. 4×2B. 2×4C. 3×5D. 5×3分析:根据尾首相同法AC T B T 可表示为(3×4)( )(2×5),中间一个就是4×2,注意是C T ,所以C 就是2×4。
对称矩阵:对称矩阵的元素依主对角线对称:1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 0 时,A 是对称矩阵.5,求矩阵的逆预备知识:(1),在数的学习中,数的单位是1,1313=⨯, 矩阵的单位是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 I ,除主对角是1以外,其余全是0,并且,单位矩阵全是方阵(行数与列数相等)任何矩阵乘以单位阵不变AI =A ,(可以试一试)例,3阶单位阵,I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001,我们以3阶阵来说逆, 已知A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210 与前面1313=⨯类似,能不能找到一个矩阵,使得A 乘以这个矩阵等于单位阵? 记为I AA =-1,1-A 称为A 的逆,(2)矩阵的初等变换,①将矩阵的任意两行互换,②把某一行乘以一个数(指对这一行的每个元素都乘以这个数), ③把某一行乘以一个数,然后加到另外一行。
求逆求逆原理:][][1-→A I I A ,举例:设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 分析: 第一步:把A 和单位阵I 写在一起,[A I ] =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010001012411210 第二步:初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→100001010012210411,(由于第一行第一个数是0,要化成前面是单位阵,这里就不能是0,于是交换1,2行,随便两行都可以交换,因为第二行第一个数是1,简单,所以就1,2行互换)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→120001010830210411第一行乘以-2加到第三行,目的是化0,除主对角以外,其他全部化成0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→123001010200210411第二行乘以3加到第三行, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123001011200210201现在开始化上面,第二行乘以-1加到第一行 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→123124112200010001第三行直接加到第一行;加到第二行 把对角线上的都化成1,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 第三行乘以21-,这一步是把前面化成单位阵,这个就是我们要的][1-A I ,前半部分是I ,后半部分就是1-A所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----21123124112这是个考题,具体计算可以省略些步骤,给出解题答案为:设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 解 因为(A I ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----21123124112另一种题型,解矩阵方程,其原理是对B AX =两边左乘(就是靠在左边)1-A ,得B A AX A 11--=,因为I A A =-1,所以B A X 1-=,注意任何矩阵乘以单位阵保持不变。
例:已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X . 分析:先求逆,在计算。
解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→121100255010364021121100013210001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A 由矩阵乘法和转置运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X考题举例: 1,2.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 解 因为AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412 (AB I ) =⎥⎦⎤⎢⎣⎡-→⎥⎦⎤⎢⎣⎡--1210011210140112 ⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡---→121021210112101102 所以 (AB )-1= ⎥⎥⎦⎤⎢⎢⎣⎡1221213.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BA I )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以 (BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--2522314.解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X . 解 因为⎥⎦⎤⎢⎣⎡--10430132⎥⎦⎤⎢⎣⎡→10431111 ⎥⎦⎤⎢⎣⎡--→23101111⎥⎦⎤⎢⎣⎡--→23103401即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---233443321所以,X =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--212334=⎥⎦⎤⎢⎣⎡-12 5.设矩阵 A =102120-⎡⎤⎢⎥-⎣⎦,B =123012-⎡⎤⎢⎥-⎣⎦,计算(AB T )-1. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=231201021201T AB ⎥⎦⎤⎢⎣⎡--=2347 所以⎥⎥⎦⎤⎢⎢⎣⎡=-272321)(1TAB 6.设矩阵A =--⎡⎣⎢⎤⎦⎥1213,且有⎥⎦⎤⎢⎣⎡=+2453TAB A ,求矩阵B . 解:T A AB -⎥⎦⎤⎢⎣⎡=2453 所以⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=--32112453245311A A AB T ⎥⎦⎤⎢⎣⎡=-52621A ,又⎥⎦⎤⎢⎣⎡--=-11231A 所以⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=114281052621123B 7. 设矩阵 A =1536-⎡⎤⎢⎥-⎣⎦,B =11⎡⎤⎢⎥-⎣⎦,计算(A-I )-1B . 设矩阵A=[-1-6],B=[1] 解:8. 已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X . 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→121100255010364021121100013210001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A 由矩阵乘法和转置运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X 9.已知AX B =,其中122110135A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,210B ⎛⎫⎪=- ⎪ ⎪⎝⎭,求.X10.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 解:因为⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121 ⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-110111.设矩阵⎥⎥⎥⎦⎢⎢⎢⎣------=843722A ,I 是3阶单位矩阵,求1)(--A I . 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I 利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111 即 ()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111 12.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001即 ⎥⎥⎥⎦⎢⎢⎢⎣---=-1461351A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-7641121461351341B A 13. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113421201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=321B ,求B A I )2(T -. 解 因为T 2A I -= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000100012T113421201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200020002⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142120311=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311所以B A I )2(T -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--9310 14.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=521,322121011B A ,求B A 1-. 解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001即 ⎥⎥⎥⎦⎢⎢⎢⎣---=-1461351A 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-9655211461351341B A 15.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1121243613,求1-A . 解 因为 (A I )= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1001120101240013613⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100112210100701411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→1302710210100701411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→172010210100141011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→210100172010031001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→210100172010031001 所以 A -1 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---210172031 16.1A )(I ,121511311A -+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=求解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+++-++++-+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+021501310)1(0)2(01050)1(1103010)1(1121511311100010001A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+100001010021310501100010001021501310][I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+∴⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−→−-11233556101123355610100010001112001011003105011100010105203105011A )(I17.设矩阵100101,011212A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求1()T B A -。