杭州中恒高压直流电源HVDC的应用
- 格式:ppt
- 大小:2.19 MB
- 文档页数:74
再论高压直流(HVDC )在数据机房的应用摘要:数据中心首先应用在军事之上,随着社会科技不断发展、进步,逐渐在各个行业中使用,随着人们对数据的飞速增加的需求量,促进了通信行业在数据中心机房的建设压力,但庞大的数据市场,不可预估的数据增长趋势,也极大地刺激了通信行业、互联网行业在数据中心机房投入建设的决心,并付诸行动。
而在数据中心机房的配电系统的建设中,从最初的简单的机械化的UPS 到安全系数高的系统,再逐步发展到高压直流配电系统,仅仅几十年。
传统的UPS 电源,存在初始投资大,后期利用率低、可靠性差、运行能效低和维护困难等明显缺点。
因此,作为UPS 的替代产品—高压直流电源(HVDC)便应运而生,而且越来越受到电源、通信等行业的重视。
关键词:数据机房;UPS供电系统;高压直流供电系统;引言:在本文,从UPS配电系统产生、原理及使用与高压直流配电系统分开叙述,剖析高压直流电源与UPS 电源对比和数据中心配电不同,完全地论述高压直流的应用前景,为进入该行业或有兴趣的读者提供参考。
1、传统的UPS供电系统1.1、传统UPS供电发展不间断电源是随着电子计算机的发展而发展的,由最初纯机械机构逐渐改变成为科技含量高且电子集成的电气设备,不间断电源的历史至今也不过几十年的历史。
在不间断电源(UPS)发展经历了四代:第一代UPS电源—动态UPS:利用机械惯性储能以及电动机、发电机的能量传输机制以提供短时间的不间断供电,这种早期产品体积庞大、造价昂贵、噪声巨大,犹如一个小型电厂。
第二代UPS电源—工频UPS电源机。
工频UPS电源机目前常用于功率较大、用电环境较差的场合。
第三代UPS电源—高频UPS电源机。
高频机的出现进一步提升了功率密度,体积减小了50%,从功能模块上提升了维护性,缩短了MTTR时间,可在数小时内完成修复。
第四代UPS电源—模块化高频UPS电源。
高频机技术的发展为UPS的模块化架构提供了技术可能,结合类似通信电源的模块冗余技术的供电架构,模块化的高频UPS得以实现。
高压直流远供技术资料第一章系统设计原理将宏基站内已有的直流-48V基础通信电源经局端电源设备升压为直流280V(可调),通过电缆线或复合光缆将直流280V传送至远端,远端侧安装降压电源,将直流280V降压至48V,给通信设备供电。
下图为整个电源系统的供电原理框图:本方案中所用的直流电源采用中达电通股份有限公司产品。
第二章设计方案说明DCS直流远供电源系统是采用280V/900W DC-DC模块组成,系统可以嵌入式或壁挂式,嵌入式配置5台DC-DC模块,容量为280V/4500W;壁挂式配置3台DC-DC模块,容量为280V/2700W。
根据客户要求系统最大可以配置12台DC-DC 远供模块,提供稳定可靠的直流电源给负载设备。
2.1标准19〞嵌入式远供电源标准嵌入式结构高度为3U,由3个抽屉式的SHELF构成,每个SHELF可放置2台DCM900 DC-DC模块共5台,用1个监控模块完成系统的侦测控制。
直流输入和输出配电设计在机框的左侧,详见下图。
背面2.1.1系统组成系统组成:直流输入配电单元、高压直流配电单元、DC-DC模块、监控模块及相关辅件。
机箱尺寸(宽深高mm):482×400×133(133mm为3U高),后面接线,前后面维护。
系统容量:48V转280V/3A整流模块5个,最大容量15A系统标配: 1路48V直流输入、2路280V直流输出(空开)、配输出防雷2.1.2技术指标(1)直流输入;输入电压范围: 40 ~ 58Vdc输入方式:一路输入,采用断路器保护(2)直流输出输出电压范围: -225V~-360V输出容量: 4500W (标准配置)负载分路:10A/2P×2路直流型空气开关。
2.2壁挂式远供电源箱体尺寸(宽深高mm):450×200×400可放置3台DCM900 DC-DC模块,用1个监控模块完成系统的侦测控制。
外观见下图。
浅谈HVDC技术的发展和优势以及作用摘要:高压直流输电(hvdc),是利用稳定的直流电具有无感抗,容抗也不起作用,无同步问题等优点而采用的大功率远距离直流输电。
输电过程为直流。
常用于海底电缆输电,非同步运行的交流系统之间的连络等方面。
中图分类号: tm621 文献标识码: a 文章编号:一、为什么采用高压直流输电?追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。
当时输电电压仅100v。
随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000v。
但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。
由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。
19世纪80年代末,人类发明了三相交流发电机和变压器。
1891年,世界上第一个三相交流发电站在德国竣工。
此后,交流输电普遍代替了直流输电。
随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。
大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。
1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。
之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kv,投入商业运营的直流工程最高电压等级为±600kv(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kv电压等级。
在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。
在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。
直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。
高压直流电源系统(HVDC)替代化工企业交流不间断电源系统(UPS)的可行性研究发布时间:2021-07-31T06:32:33.173Z 来源:《电力设备》2021年第3期作者:卢亮[导读] 不管是控制还是结构都因为要求的不断提高而变得越来越复杂,造价也是一直居高不下。
UPS的基本结构如下图:(恒力石化(大连)炼化有限公司(电气部) 116318)摘要:目前化工企业的自控用电源系统均采用交流不间断电源系统(UPS),该系统已经应用近60年,性能可靠稳定,产品系列齐全,但随着电子电源的逐渐兴起,高频开关电源技术的不断发展成熟,受UPS供电的设备绝大多数已经采用高频开关电源,不再拘泥于交流电源的供电,使这些设备直流供电成为可能。
UPS的交-直-交结构已经明显表现出臃肿,与之相比直流电源供电则更加简洁、高效、经济、灵活、可靠,本文对高压直流电源系统(HVDC)替代化工企业交流不间断电源系统(UPS)进行分析与探讨,通过技术层面的分析及对HVDC在电信行业应用的借鉴,充分验证HVDC替代UPS的可行性。
关键词:高压直流系统(HVDC);交流不间断电源系统(UPS);高频开关电源交流不间断电源(UPS)的结构:目前化工企业自控系统的电源均采用交流不间断电源(UPS)供电,自控系统对UPS的要求很高,一旦UPS发生故障将会导致整个生产系统停运,因此UPS在多年的发展过程中经历了多次改造、升级、优化,不管是控制还是结构都因为要求的不断提高而变得越来越复杂,造价也是一直居高不下。
UPS的基本结构如下图:高压直流电源系统(HVDC)结构图HVDC大致由交流配电单元、滤波元件、整流模块、蓄电池、电池管理单元及监控模块组成。
系统在向负载提供稳定的直流电源的同时给电池充电,当市电故障或主机故障时,能够自动通过蓄电池放电,不间断输出直流电的电源。
高频开关电源:化工企业自控系统包括DCS系统、服务器、交换机、现场仪表、电磁阀、PLC系统、分析仪表等用电设备,以上所列除电磁阀外内部实际所用电源均为直流电压,直流5V、24V居多,都是经过开关电源转换而得,目前的绝大多数的开关电源的基本原理如下图:高频开关电源基本原理图从开关电源的原理图可以看出,不管是交流电源输入还是直流电源输入,只要满足开关电源的输入条件,均可在输出端得到期望的直流电压。
2024年高压直流输电系统(HVDC系统)市场需求分析引言高压直流输电系统(High Voltage Direct Current,简称HVDC系统)是一种通过直流电进行能量传输的电力系统。
随着能源需求的不断增长和传统交流输电系统的局限性,HVDC系统在电力行业中的应用越来越广泛。
本文将对HVDC系统市场需求进行分析,包括市场规模、市场趋势及未来发展方向。
市场规模HVDC系统市场具有巨大的潜力和吸引力。
根据市场研究机构的数据,2019年全球HVDC系统市场规模超过100亿美元,并预计在未来几年持续增长。
这主要得益于HVDC系统具有传输效率高、输电距离远、输电损耗低等优势,能够满足不同地区的能源需求。
市场趋势能源转型推动市场需求全球范围内的能源转型趋势是HVDC系统市场增长的主要推动力之一。
随着可再生能源的不断发展和普及,如风能、太阳能等,HVDC系统成为了连接分布式能源和电力网络的重要工具。
HVDC系统可以有效地将分散的可再生能源转化成可靠的电能并输送到消费地,解决传统输电系统面临的限制。
互联互通需求增加随着经济全球化进程的不断推进,国际间的电力互联互通需求也在增加。
HVDC 系统作为跨国能源合作的工具,可以实现多国电网之间的互联互通。
此外,HVDC系统还能够有效地解决不同国家之间的电压和频率差异问题,提高电力互联互通的可行性和稳定性,满足不同地区间的能源供应需求。
增加的海底电缆项目HVDC系统在海底电缆项目中的需求也在不断增加。
随着海上风电场、跨海电力输送项目的兴起,HVDC系统作为海底电缆的主要传输技术,具有优越的性能和可靠性。
预计未来几年将有更多的海底电缆项目投入运营,进一步推动HVDC系统市场的发展。
未来发展方向技术创新驱动市场增长在HVDC系统市场中,技术创新是推动市场增长的关键因素之一。
未来,随着科技的进步和投资的持续增加,HVDC系统的功率密度、输电距离、输电效率等方面将进一步提升,满足不断增长的能源需求。
HVDC供电技术及其应用前景分析HVDC(高压直流)相比UPS电源具有巨大的优势,其与UPS 电源相比,具有高可靠性、高负载率及便于操作性等优点,在解决了后端设备的高压供电标准化后,HVDC供电技术将会大规模商用。
【标签】HVDC;技术;前景近年来,随着通信技术的IP化,IDC机房不断扩大,IT设备得到了大量的应用,作为其主要供电方式的UPS电源也在通信机房中大量应用。
但UPS固有的特点,决定了其具有可靠性差、转换效率低、输入电流谐波大等一系列缺点,大型UPS系统故障造成的通信阻断频繁发生,造成重大的经济损失和社会影响。
在此背景下,采用HVDC替代UPS供电的呼声越来越高,部分省市运营商已经在小规模商用试点,主流设备厂家已经在推出HVDC供电电源。
1 HVDC供电技术的优点HVDC就是直流采用高压直流电源(区别于常用的-48V)直接对采用220V 交流输入电源的设备供电,采用该技术后,电源系统将具有直流电源系统本身的天然优点,如下所述。
1.1 技术方面1.1.1 可靠性大幅提升HVDC供电技术引入的主要目的就在于提升系统的安全性。
UPS系统本身仅并联主机具有冗余备份,系统组件之间更多地是串联关系,其可用性是各部分组件可靠性的连乘结果,总体可靠性低于单个组件的可靠性。
反观直流系统,系统的并联整流模块、蓄电池组均构成了冗余关系,不可靠性是各组件连乘结果,总体可靠性高于单个组件的可靠性。
理论计算和运行实践都表明,直流系统的可靠性要远远高于UPS系统,一个例证就是大型直流系统瘫痪的事故基本没有。
1.1.2 大大节约能耗目前大量使用的UPS主机均为在线双变换型,在负载率大于50%时,其转换效率与开关电源相近。
但一个不容忽视的现实是,为了保证UPS系统的可靠性,UPS主机均采用n+1(n=1、2、3)方式运行,加之受后端负载输入的谐波和波峰因数的影响,UPS主机并不能满足运行,通常UPS单机的设计最大稳定运行负载率仅为35~53%。
高压直流输电系统(HVDC)基本概念和应用1HVDC的基本概念高压直流输电(HVDC)的基本原理是通过整流器将交流电变换为直流电形式,再通过逆变器将直流电变换为交流电,从而实现电能传输和电网互联。
典型双极HVDC的主系统如图2-1所示。
图2-1 高压直流输电系统原理接线图根据直流导线的正负极性,直流输电系统分为单极系统、双极系统和同极系统。
为了提高直流现路的电压和减小换流器产生的谐波,常将多个换流桥串联而成为多个多桥换流器。
多桥换流器的接线方式有双极和同极。
图2-1即为双极接线方式。
换流站中的主要设备有:换流器、换流变压器、平波电抗器、交流滤波器、直流滤波器、无功补偿设备和断路器。
换流器的功能是实现交流电与直流电之间的变换。
把交流变为直流时称为整流器,反之称为逆变器。
组成换流器的最基本元件是阀元件。
现代高压阀元件的额定电压约为3~5kV,额定电流约为 2.5~3kA。
由于阀元件的耐压值和过流量有限,换流器可由一个或多个换流桥串并联组成。
用于直流输电的换流桥为三相桥式换流电路。
一个换流桥有6个桥臂,桥臂由阀元件组成。
换流桥的直流端与直流线路相连,交流端与换流变压器的二次绕组相连。
换流变压器的一次绕组与交流电力系统相连。
换流变压器与普通的电力变压器相同,但通常须带有有载调压分接头,从而可以通过调节换流变压器的变比方便地控制系统的运行状况。
换流变压器的直流侧通常为三角形或星形中性点不接地接线,这样直流线路可以有独立于交流系统的电压参考点。
换流器运行时,在其交流侧和直流侧都产生谐波电压和谐波电流。
这些谐波分量影响电能质量,干扰无线通讯,因而必须安装参数合适的滤波器抑制这些谐波。
平波电抗器的电感值很大,有时可达1H。
其主要作用是减小直流线路中的谐波电压和谐波电流;避免逆变器的换相失败;保证直流电流在轻负荷时的连续;当直流线路发生短路时限制整流器中的短路电流峰值。
另外,换流器在运行时需从交流系统吸收大量无功功率。