材料科学导论第二章原子键
- 格式:ppt
- 大小:6.65 MB
- 文档页数:79
第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料.(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性.分子晶体:熔点低,硬度低.如高分子材料。
氢键:(离子结合)X-H—--Y(氢键结合),有方向性,如O-H-O(4)混合键.如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键.(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格.空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷;b 可有无限多种.2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小.(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示.(4)晶胞中点的位置表示(坐标法).3 布拉菲点阵图1-714种点阵分属7个晶系。
第1 章原子结构与键合决定材料性能的最根本的因素是组成材料的各元素的原子结构,原子间的相互作用、相互结合,原子或分子在空间的排列分布和运动规律,原子集合体的形貌特征等。
物质是由原子组成的,而原子是由位于原子中心的带正电的原子核和核外带负电的电子构成的。
原子结构中的电子结构——决定了原子键合的本身。
1.1 原子结构1.1.1 物质的组成一切物质是由无数微粒按一定的方式聚集而成的。
这些微粒可能是分子、原子或离子。
分子是能单独存在、且保持物质化学特性的一种微粒。
分子的体积很小,如H2O分子的直径约为0.2 nm。
而分子的质量则有大有小:H2分子是分子世界中最小的,它的相对分子质量只有2,而天然高分子化合物——蛋白质可高达几百万。
分子是由一些更小的微粒——原子所组成的。
在化学变化中,分子可以再分成原子,而原子却不能再分,原子是化学变化中的最小微粒。
量子力学中,原子并不是物质的最小微粒。
它具有复杂结构。
原子结构直接影响原子间的结合方式。
1.1.2 原子的结构原子由质子和中子组成的原子核,以及核外的电子所构成。
原子的体积很小,原子直径约为10–10 m 数量级,原子核直径为10–15 m 数量级。
原子的质量主要在原子核内。
每个质子和中子的质量大致为1.67×10–24 g,电子的质量约为9.11×10–28 g,为质子的1/1836。
原子呈电中性。
原子核带正电(质子带正电,中子不带电),电子带负电(1.6022×10–19 C),电子和质子数目相等。
原子核与电子的结合力为静电力。
1.1.3 原子的电子结构电子云:电子在原子核外空间作高速旋转运动,就好像带负电荷的云雾笼罩在原子核周围。
电子既具有粒子性又具有波动性,即具有波粒二象性。
电子运动没有固定的轨道,但可根据电子的能量高低,用统计方法判断其在核外空间某一区域内出现的几率的大小。
能量低的,通常在离核近的区域(壳层)运动;能量高的,通常在离核远的区域运动。
第二章材料科学与工程的四个基本要素作业一第一部分填空题(10个空共10分,每空一分)1.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、结构与成份和合成与加工。
2.材料性质的表述包括力学性质、物理性质和化学性质。
3.强度可以用弹性极限、屈服强度和比例极限等来表征。
4.结构材料三类主要的失效形式分别是:断裂、磨损和腐蚀。
5.材料的结构包括键合结构、晶体结构和组织结构。
6.晶体结构有三种形式,它们分别是:晶体、非晶体和准晶体。
7.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。
8.材料的强韧化手段主要有固溶强化、加工强化、弥散强化、第二相强化和相变增韧。
第二部分判断题(10题共20分,每题2分)1.材料性质是功能特性和效用的描述符,是材料对电、磁、光、热、机械载荷的反应。
(√)2.疲劳强度是材料抵抗交变应力作用下断裂破坏的能力。
(√)3.硬度是指材料在表面上的大体积内抵抗变形或破裂的能力。
(错)4.性能是包括材料在内的整个系统特征的体现;性质则是材料本身特征的体现。
(√)5.晶体是指原子排列短程有序,有周期。
(错)6.材料的热处理是指通过一定的加热、保温、冷却工艺过程,来改变材料的相组成情况,达到改变材料性能的方法。
(√)7.材料表面工程包括表面改性和表面保护两个方面。
(错)8.材料复合的过程就是材料制备、改性、加工的统一过程。
(√)9.材料合成与加工过程是在一个不限定的空间,在给定的条件下进行的。
(错)10.材料中裂纹的形成和扩展的研究是微观断裂力学的核心问题。
(√)第三部分简答题(4题共40分,每题10分)1.材料性能的定义是什么?答:在某种环境或条件作用下,为描述材料的行为或结果,按照特定的规范所获得的表征参量。
2.金属材料的尺寸减小到一定值时,材料的工程强度值不再恒定,而是迅速增大,原因有哪两点?答:1)按统计学原理计算单位面积上的位错缺陷数目,由于截面减小而不能满足大样本空间时,这个数值不再恒定;2)晶体结构越来越接近无缺陷理想晶体,强度值也就越接近于理论强度值。
材料科学导论作业第一章材料科学概论1.氧化铝既牢固又坚硬而且耐磨,为什么不用来制造榔头?[答]因为Al2O3的耐震性不佳,且脆性较高,不适合做榔头的材料。
2.将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜、氯化钠、环氧树脂、混凝土、镁合金、玻璃钢、沥青、碳化硅、铅-锡焊料、橡胶、纸杯[答]金属有黄铜、铅-锡焊料、镁合金。
陶瓷有氯化钠、碳化硅。
聚合物有环氧树脂、橡胶、沥青、纸杯。
复合材料有混凝土、玻璃钢。
3.下列用品选材时,哪些力学性能和物理性能具有特别重要性:汽车曲柄轴、电灯泡灯丝、剪刀、汽车挡风玻璃、电视机荧光屏[答]汽车曲柄轴的疲劳寿命最为重要。
电灯泡灯丝的熔点需高,其发光性能要强。
剪刀的刀刃的硬度要强。
汽车挡风玻璃的光的穿透性要强。
电视机荧光屏光学的颜色及其他穿透性各种光学特性极重要。
4. 什么是纳米材料?纳米材料有哪些效应?请举例说明。
[答] 通常把粒子尺寸小于0.1μm(10nm)的颗粒称为纳米材料纳米材料有以下效应:⑴小尺寸效应⑵表面效应⑶量子尺寸效应⑷宏观量子隧道效应举例略第二章原子结构1.原子序数为12的Mg有三个同位素:78.70%的Mg原子有12个中子,10.13%的Mg原子有13个中子,11.17%的Mg原子有14个中子,计算Mg的原子量。
[答]M = 0.7870×(12+12)+0.1013×(12+13)+0.1117×(12+14) = 24.3247 g/mol2.试计算原子N壳层内的最大电子数,若K、L、M和N壳层中所有的能级都被填满,试确定该原子的原子序数。
[答]N壳层内最大电子数为2×42= 32。
但考虑能级交错:N壳层内刚刚达到最大电子数时的电子排布为:1s22s22p63s23p64s23d104p65s24d105p66s24f14,该原子的原子数为70。
(本题目书上原解:N壳层中电子最多有2+6+10+14 = 32个,K、L、M、N壳层中电子共有2+8+18+32 = 60个,故原子序数为60。
复习要点(Emphasis of revision)1. 考试是以PPT 和上述参考书内容为主。
2. 试题一共10题,有一半简单计算一半概念题。
3. 试题内容包含在上述复习要点中。
的部分为重点复习内容 ◆ PPT 第二讲 (英文参考书第二章) 原子结构的回顾电子,质子,中子,原子的量子力学,电子态,周期表 固体中的原子键合键能键能(Bond Energy )通常是指在101.3KPa 和298K 下将1mol 气态分子拆开成气态原子时,每个键所需能量的平均值,键能用E 表示。
是表征化学键强度的物理量,可以用键断裂时所需的能量大小来衡量。
基本的原子键离子键,共价键,金属键正负离子间的静电相互作用是离子键的根源。
共价键的本质在于两个原子各有一个自旋相反的未成对的电子,由于原子轨道相重叠而构成价键轨道,导致体系的能量下降。
金属键在本质上和共价键有类似的地方,但是其外层电子比共价键更公有化,电子自由游移于正离子之间,遍及整个晶体,构成近自由电子,这就像是正离子浸在近自由电子的海洋之中。
金属键和共价键最明显的区别就是金属键缺乏方向性和饱和性。
二次键(范德华力) ◆ PPT 第三讲 (英文参考书第三章)结构基元:通过周期性重复排列而组成晶体的最基本的重复单元。
晶体结构−−−−−−→偶极矩的感作用近原子相互作用→荷位移→偶极子(dipoles )范德力面心立方结构,体心立方结构,六角密堆结构原子堆积因素原子堆积系数APF=原子总体积/结构基元体积配位数:相邻原子周围没有电子轨道重叠的参考原子(离子)的数量。
(1)面心立方结构:配位数CN=12每个结构基元的原子数,n=4面上:6×1/2=3角上原子数:8×1/8=1原子堆积系数APF=0.68总体积:结构基元的体积:(2)体心立方结构:a=4R √3配位数CN=8每个结构基元的原子数,n=2中间原子数:1×1=1角上原子数:8×1/8=1原子堆积系数APF=0.68 (3)六角密堆结构:配位数CN=12每个结构基元的原子数,n=6中间原子数:1×3=3角上原子数:12×1/6=2角上原子数:2×1/2=1原子堆积系数APF=0.7 原子堆积系数密度计算:其中:Vc=a 3(FCC 和BCC), a=2R √2(FCC);a=4R √3(BCC);n —原子中的结构基元数;A---分子量;N A =6.023×1023atoms/mol.晶面指数结晶取向◆ PPT 第四讲 (英文参考书第四、五章)点缺陷:包括(空缺,间隙,杂质)晶体中的点缺陷是在晶体晶格结点上或邻近区域偏离其正常结构的一种缺陷。
第二章材料科学与工程的四个基本要素作业一第一部分填空题(10个空共10分,每空一分)1.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、结构与成份和合成与加工。
2.材料性质的表述包括力学性质、物理性质和化学性质。
3.强度可以用弹性极限、屈服强度和比例极限等来表征。
4.结构材料三类主要的失效形式分别是:断裂、磨损和腐蚀。
5.材料的结构包括键合结构、晶体结构和组织结构。
6.晶体结构有三种形式,它们分别是:晶体、非晶体和准晶体。
7.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。
8.材料的强韧化手段主要有固溶强化、加工强化、弥散强化、第二相强化和相变增韧。
第二部分判断题(10题共20分,每题2分)1.材料性质是功能特性和效用的描述符,是材料对电、磁、光、热、机械载荷的反应。
(√)2.疲劳强度是材料抵抗交变应力作用下断裂破坏的能力。
(√)3.硬度是指材料在表面上的大体积内抵抗变形或破裂的能力。
(错)4.性能是包括材料在内的整个系统特征的体现;性质则是材料本身特征的体现。
(√)5.晶体是指原子排列短程有序,有周期。
(错)6.材料的热处理是指通过一定的加热、保温、冷却工艺过程,来改变材料的相组成情况,达到改变材料性能的方法。
(√)7.材料表面工程包括表面改性和表面保护两个方面。
(错)8.材料复合的过程就是材料制备、改性、加工的统一过程。
(√)9.材料合成与加工过程是在一个不限定的空间,在给定的条件下进行的。
(错)10.材料中裂纹的形成和扩展的研究是微观断裂力学的核心问题。
(√)第三部分简答题(4题共40分,每题10分)1.材料性能的定义是什么?答:在某种环境或条件作用下,为描述材料的行为或结果,按照特定的规范所获得的表征参量。
2.金属材料的尺寸减小到一定值时,材料的工程强度值不再恒定,而是迅速增大,原因有哪两点?答:1)按统计学原理计算单位面积上的位错缺陷数目,由于截面减小而不能满足大样本空间时,这个数值不再恒定;2)晶体结构越来越接近无缺陷理想晶体,强度值也就越接近于理论强度值。
第二章材料的基本结构2.1 原子结构2.2 原子间的键结2.3 晶体结构2.4 单晶/复晶与非晶体结构2.5 晶体缺陷2.6相图与相变化2.7 材料制程方式2.8 材料量测与分析材料的特性与物质的结构有密不可分的关系。
例如导体,半导体,与绝缘体等材料,因物质结构的差异,导致迥然不同的导电特性,也造成各有不同的应用领域。
即使同一类型的材料(如同样的半导体),可能因为材料成份与微结构的差异,造成电,磁,光,热….等特性的改变。
因此若要能充份掌握与运用各种材料,首先必须了解物质的结构。
物质的结构与材料的类别有关。
例如大部份的固体电导材料或半导体材料是由原子规则排列而成的晶体结构(crystal structure)所组成。
液体与气体大部份是简单几个原子组成的分子(如H2O水分子,H2,CO2气体分子),形成无规则排列的非晶体结构(amorphous)。
此外,还有以碳,氢元素为主,以数百(或上千)的原子聚合形成链状的高分子材料。
例如大多数的有机绝缘材料,如塑料,橡胶,树脂等,都属于这类的结构。
尽管物质有各种不同的结构,但我们注意到它们都有共同点- 组成的基本单位皆为原子(atom),因此我们首先介绍原子结构。
了解原子结构特性之后,我们可再由原子间的键结力,探讨原子排列方式的成因,以及各种不同的晶体结构。
2.1原子结构原子的基本组成包含电子(electron),质子(proton)与中子(neutron)。
电子带有161019.⨯-库伦的负电荷,质子带有等量的正电荷,中子不带电。
质子与中子的质量相等,电子质量非常小,只有质子的1/1837倍。
一个中性原子的电子数与质子数目相等,此一数目决定该原子的基本特性,我们称该数目为原子序。
中子数目等于或略大于质子数目。
不同的原子序形成不同的元素(element)。
例如氢(H)元素的原子序为1,具有一个电子,一个质子与一个中子;硅(Si)元素的原子序为14,具有14个电子,14个质子与14个中子。