第049讲 总复习:不等式的综合应用(基础)知识梳理
- 格式:doc
- 大小:278.00 KB
- 文档页数:7
高三不等式知识点归纳总结不等式在高中数学中占有重要的地位,它是数学中一种常见的关系式。
在高三数学学习过程中,我们需要掌握并灵活运用各种不等式知识点,以提升解题能力。
本文将对高三不等式相关知识进行归纳总结,帮助大家系统地掌握不等式的内容。
一、基本不等式基本不等式是不等式的基础,它通过对大小关系的描述,为其他类型不等式的证明提供了依据。
常见的基本不等式有以下几种:1. 正数不等式:若a>0,则a的平方大于0,即a²>0;a与-b的乘积小于0,即ab<0。
2. 负数不等式:若a<0,则a的平方大于0,即a²>0;a与-b的乘积小于0,即ab>0。
3. 平方不等式:若a>b≥0,则a的平方大于b的平方,即a²>b²。
4. 平均不等式:若a1,a2,...,an为正数,则它们的算术平均大于等于它们的几何平均,即(a1+a2+...+an)/n≥(a1*a2*...*an)^(1/n)。
二、一元一次不等式一元一次不等式是形如ax+b>0或ax+b<0的不等式,其中a和b为常数。
我们可以通过移项和分析a的正负来求解不等式。
1. 求解步骤:a) 对不等式进行变形,将不等式变为ax>c的形式,其中c为常数。
b) 根据a的正负确定不等式的方向,若a>0,则不等式为单调递增,解集为x>c/a;若a<0,则不等式为单调递减,解集为x<c/a。
2. 注意事项:a) 在乘以或除以负数的过程中,需注意不等式方向的变化。
b) 当a为0时,不等式变为bx>c,若b>0,则不等式为恒成立;若b<0,则不等式无解。
三、一元二次不等式一元二次不等式是形如ax²+bx+c>0或ax²+bx+c<0的不等式,其中a、b和c为常数。
我们可以通过求解二次方程和分析a的正负来求解不等式。
高三选修基本不等式知识点总结高中数学中,基本不等式是一项重要的内容,也是学习不等式的基础。
掌握基本不等式的知识,对于解决解析几何和一元二次函数的相关问题以及应对高考数学题目都有着重要的作用。
本文将对高三选修基本不等式的知识点进行总结,以帮助同学们更好地理解和掌握这一内容。
一、不等式的基础概念在掌握基本不等式之前,我们首先要明确不等式的基础概念。
不等式是一种数学关系,通过不等于号(>、<、≥、≤)来表示数之间的大小关系。
在解不等式时,我们需要找到使不等式成立的数的范围,这个范围就是不等式的解集。
解不等式的方法包括图像法、试位法、代入法等,具体的解法要根据具体的不等式形式进行选择。
二、基本不等式的形式和证明1. 平均值不等式平均值不等式是基本不等式的核心内容之一。
设有n个正数a₁,a₂,...,aₙ,则它们的算术平均数不大于它们的几何平均数,即(a₁+a₂+...+aₙ)/n ≥ √(a₁a₂...aₙ)。
这一不等式的证明可通过构造不等式链进行完成,具体证明过程略。
2. 开平方不等式开平方不等式是基于二次函数的求解加以证明的不等式。
设函数f(x) = x²为所考察不等式的左侧,即 f(x) > 0。
我们通过研究函数f(x)的图像,得到不等式的解集。
3. 其他常用基本不等式除了平均值不等式和开平方不等式之外,以下这些基本不等式也是我们在高中数学中经常会遇到的,同学们需要注意这些不等式的性质并掌握其应用方法。
- Cauchy-Schwarz不等式- AM-GM不等式- Jensen不等式- Muirhead不等式- Schur不等式- Holder不等式三、基本不等式的应用了解基本不等式的形式和证明只是学习的一部分,我们还需要应用这些不等式解决实际问题。
以下是一些典型的基本不等式应用示例。
1. 解决最值问题通过利用基本不等式,我们可以解决一些求最值的问题。
例如,求证当a+b+c=3时,有(a²+3)(b²+3)(c²+3) ≥ 64。
初中数学知识点梳理第四章不等式初中数学第四章主要介绍了不等式的基本理论、解不等式的一般步骤以及一元一次不等式、一元二次不等式的解法等内容。
一、不等式的基本性质1.不等式的定义:不等式是表达两个数据之间大小关系的数学式,用不等号“<”、“>”、“≤”、“≥”等表示。
2.不等式的两端可以加上、减去相同的数,并且不等号方向不变。
3.不等式的两端可以乘以、除以正数,并且不等号方向不变;如果乘以或除以负数,则需要改变不等号的方向。
4.不等式的两端可以交换位置,但要改变不等号的方向。
二、不等式的解法步骤1.将不等式化简,使其符合格式要求。
2.根据不等式的性质,找出合适的变量范围。
3.根据条件,求出变量的取值范围。
4.根据不等式的性质,确定不等式的解集。
三、一元一次不等式的解法1. 一元一次不等式是指只含有一个变量的一次函数不等式,形如ax + b < c 或 ax + b > c。
2.解一元一次不等式的步骤:(1) 将不等式化为形如ax + b < 0或ax + b > 0的形式。
(2)确定变量范围,找出通解的形式。
(3) 求解方程ax + b = 0,得出一个关键点,并将变量范围分为几个部分。
(4)根据关键点判断每个部分的取值情况,得出不等式的解集。
四、一元二次不等式的解法1. 一元二次不等式是指只含有一个变量的二次函数不等式,形如ax² + bx + c > 0或ax² + bx + c < 0。
2.解一元二次不等式的步骤:(1) 将不等式化为标准形式ax² + bx + c > 0或ax² + bx + c < 0。
(2)确定变量范围,找出通解的形式。
(3) 求解方程ax² + bx + c = 0,得出两个关键点,并将变量范围分为几个部分。
(4)根据关键点判断每个部分的取值情况,得出不等式的解集。
高三数学第一轮复习:不等式的综合应用【本讲主要内容】一. 本周教学内容:不等式的综合应用【知识掌握】【知识点精析】等的关系体现了数学的对称美和统一美,不等关系则如同仙苑奇葩呈现出了数学的奇异美。
不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其它问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题无一不与不等式有着密切的联系。
许多问题最终归结为不等式的求解或证明;不等式还可以解决现实世界中反映出来的数学问题。
不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程。
总之,不等式的应用体现了一定的综合性,灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用。
在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。
不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其它知识综合运用的特点比较突出。
不等式的应用大致可分为两类:一类是建立不等式求参数的取值X 围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题。
1、解答不等式应用题,一般可分为如下四步:(1)阅读理解材料:应用题所用语言多为“文字语言,符号语言,图形语言”并用,而且不少应用题文字叙述篇幅较长,阅读理解材料要达到的目的是将实际问题抽象成数学模型,这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系。
初步形成用怎样的模型能够解决问题的思路,明确解题方向。
(2)建立数学模型:根据(1)中的分析,把实际问题用“符号语言”、“图形语言”抽象成数学模型,并且,建立所得数学模型和已知数学模型的对应关系,以便确立下一步的努力方向。
(3)讨论不等式关系:根据(2)中建立起来的数学模型和题目要求,讨论与结论有关的不等关系,得到有关理论参数的值。
新课标一一回归教材不等式1、不等式的性质注:表中是等价关系的是解、证明不等式的依据,其它的仅仅是证明不等式的依据.典例:1)对于实数a,b,c中,给出下列命题:①a b ac2 be2;②ac2 be2 a b ;③ a b 0 a2 ab b2;④ a b 0 --;⑤ a b 0 --;a b a b⑥ a b 0 | a | |b |;⑦ c a b 0 ;⑧ a b,- - a 0,b 0.c a c b a b其中正确的命题是②③⑥⑦⑧.2)已知1 x y 1, 1 x y 3,则3x y的取值范围是[1,7];3)已知a b c ,且a b c 0,则-的取值范围是(2,丄).a ____ 22、不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幕的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.典例:1)设a 0且a 1,t 0,比较^log a t和log a t 1的大小2 2答案:①当 a 1 时,-1 lOg a t lOg a (在t 1 时取“=”);②当0 a 1 时,1 log a t loga^2^(在t 1 时取“二”);2)已知a 0,a 1,试比较p a a31,q討1的大小•(答:p q)3)设a 2,p a — , q 2 a 4a 2,试比较p,q 的大小(答:p q);a 24)比较1 + log x3与2log x2(x 0且x 1)的大小.3当 1 x 4时,1+ log x3 V 2log x 2 ;当x -时,1+ log x3 = 2叽23 35)若a,b,c R ,且2a log°.5a,(0.5)b log0.5 b,(0.5)c log2 c ,比较a,b,c 的大小.(答:c b a)3. 利用重要不等式求函数最值:“一正二定三相等,和定积最大,积定和最小”.典例:1)下列命题中正确的是(B)A. y x -的最小值是2B. y 2 3x 4(x 0)的最大值是2 4.3x x2C.y 4=X的最小值是2D. y 2 3x 4(x 0)的最小值是2 4頁;J x5 6 7 2 x2) 若x 2y 1,则2x 4y的最小值是竺;3) 已知x,y R ,且x y 1,则8 2的最小值为18;x y变式①:已知o x 1,则8—的最小值为18;x 1 x 一②:已知x,y R ,且41 9,则x y的最大值为1;x y -③:已知x, y R ,且xy x 4y ,则x y的最小值为9;4. 常用不等式有:(1) ,a2『口.ab 务(a,b R,当a b时取二号)V 2 2 丄丄a b ⑵a2b2 (a b^ 2ab(a,b R,当 a b 时取=号)2上式从左至右的结构特征为:“平方和”不小于“和平方之半”不小于“积两倍”.⑶真分数性质定理:若a b 0,m 0,则卫—(糖水的浓度问题).a a m典例:若a,b R ,满足ab a b 3,则ab的取值范围是9,.5. 证明不等式的方法:比较法、分析法、综合法和放缩法.比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论.)1 1 1 1 1 1 1常用的放缩技巧有:一——- 刁- 一丄(右边当n 2时成立)n n 1 n(n 1) n n(n 1) n 1 n 典例:1)已知 a b c,求证:a2b b2c c2a ab2 bc2 ca2;2) 已知a,b, c R,求证:a2b2 b2c2 c2a2 abc(a b c);4 若a,b,c是不全相等的正数,求证:lg _b lg _c lglga lg b lgc;2 2 25 若n N*,求证:,(n _1)~1 (n 1) '百n;6 求证:1 2 A L 丄2.22 32n26. 常系数一元二次不等式的解法:判别式-图象法步骤:(1)化一般形式:ax2 bx c 0( 0),其中a 0;⑵求根的情况:ax2bx c 0能否因式分解0( 0, 0);⑶由图写解集:考虑y ax2 bx c(a 0)图象得解. 典例:解不等式6x2x 2 0.(答:x -丄,))3 23) 已知a,b,x,y R ,且1 1,x y ,求证:一^ y;a b x a y b(非正负无穷大)是对应一元二次方程(函数)的根(零点).典例:若关于x的不等式ax2bx c 0的解集为{x| x m,或x n}( n m 0),解关于x的不等式ex2bx a0.(答:{x| x ?,或x 丄})n m7. 简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2) 将每一个一次因式的根标在数轴上,从最大根右上方依次通过每一点画曲线(奇穿偶回);(3) 根据曲线显现f(x)的符号变化规律,写出不等式的解集.典例:1)解不等式(x 1)(x 2)2 0.(答:{x|x 1 或x 2});2) 不等式(x 2) .x2 2x 3 0 的解集是{x|x 3,或x 1};3) 设函数f(x)、g(x)的定义域都是R ,且f(x) 0的解集为{x|1 x 2}, g(x) 0的解集为,则不等式f(x) g(x) 0的解集为(,1)U[2,);4) 要使满足关于x的不等式2x2 9x a 0(解集非空)的每一个x的值至少满足不等式x2 4x 30和x2 6x 8 0中的一个,则实数a的取值范围是[7,聖).88. 分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解.解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母.典例:1)解不等式J x 1(答:(1,1)U(2,3));x 2x 32)关于x的不等式ax b 0的解集为(1,),则关于x的不等式心0的解集为x 2 (,1)U(2,).注:和一元二次不等式一样,不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.9. 绝对值不等式的解法:(了解)(1)分域讨论法(最后结果应取各段的并集)典例:解不等式|2 |x| 2 |x £|;(答:x R);(3) 利用绝对值的定义;(3)数形结合;典例:解不等式|x| |x 1| 3;(答:(,1)U(2,))(4) 两边平方典例:若不等式|3x 2| |2x a|对x R恒成立,则实数a的取值范围为{-}310. 含参不等式的解法:通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”②按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.0})典例:1)若log a - 1,则a 的取值范围是a 1,或 0 a -;3322)解不等式 王 x(a R).ax 11 1 (答:a 0 时,{x|x 0}; a 0 时,{x|x 一 或 x 0} ; a 0 时,{x|— x 0,或 x aa含参数的一元二次不等式的解法:三级讨论法.一般地,设关于x 的含参数a 的一元二次形式的不等式为:f(a)x 2 g(a)x (1) 第一级讨论:讨论二次项系数f (a)是否为零; (2) 第二级讨论:若f(a) 0时,先观察其左边能否因式分解,否则讨论提醒:解不等式是求不等式的解集,最后务必有集合的形式表示.11. 不等式的恒成立、能成立、恰成立等问题 :不等式恒成立问题的常规处理方 式?常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的 结构特征,利用数形结合法•1).恒成立问题★★★若不等式f x A 在区间D 上恒成立,则等价于在区间D 上f x min A若不等式f x B 在区间D 上恒成立,则等价于在区间D 上f X max B 典例:1)设实数x, y 满足x 2 (y 1)2 1 ,当x y c 0时,c 的取值范围是 2 1,;2) 不等式x 4 |x 3 a 对一切实数x 恒成立,求实数a 的取值范围a 1; 3) 若2x 1 m(x 21)对满足m 2的所有m 都成立,则x 的取值范围(-^一,-^—);4) 若不等式(1)n a 2对于任意正整数n 恒成立,则实数a 的取值范围是nr(a) 0( 0).的符号;(3) 第三级讨论:若f(a) 0,0时,先观察两根xx 大小是否确定,否则讨论两根的大小.注意:每一级的讨论中,都有三种情况可能出现,即“〉” 不重不漏. 典例:1)解关于x 的不等式ax答:①当a 1时,x ;②当0”,“ V ” ,应做到③当a 0时,x (0,);④当1 ⑤当a 1时,x R2)解关于x 的不等式 答:①当a 0时,xax 2x a 0(a R).a 1 时,x (in,—Z); a a1 .1a 2aa 0 时,x(1 1 a 2aax(a R).);②当2 2x25a③当2 a 0时,x [2, 1];④当a 2时,xa{ 0;⑤当a1]1自35) 若不等式x2 2mx 2m 1 0对0 x 1恒成立,则m的取值范围m -0})2).能成立问题若在区间D上存在实数x使不等式f x A成立,则等价于在区间D上f X max A;若在区间D 上存在实数x使不等式fx B成立,则等价于在区间D上的X min注意:若方程a f(x)(x D)有解,则等价于a {y|y f(x),x D}典例:1)已知x 4 x 3 a在实数集R上的解集不是空集,求实数a的取值范围a 12)已知P {x|2 x 2},函数y log2(ax2 2x 2)的定义域为Q .①若P Q ,求实数a的取值范围.(答: a 4)②若方程log2(ax2 2x 2) 2在[丄,2]内有解,求实数的取值范围.(答:a [3,12])2 23).恰成立问题若不等式f x A在区间D上恰成立,则等价于不等式f x A的解集为D; 若不等式f x B在区间D上恰成立,则等价于不等式f x B的解集为D.12..简单的线性规划问题:(1)二元一次不等式(组)表示平面区域①一般地,二元一次不等式Ax By C 0( 0)在平面直角坐标系中表示直线Ax By C 0某一侧的所有点组成的平面区域(半平面)不含边界线;。
不等式七年级知识点总结不等式是数学中的重要概念,在初中阶段也是一个重要的知识点。
针对七年级的不等式知识点,本文对其进行总结,帮助学生对该知识点做一个全面的了解。
一、不等式的概念不等式是指带有不等于号的数学关系式,用来描述两个数之间的大小关系。
不等式中的符号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
例如,4>3表示4大于3,3<4表示3小于4。
二、不等式的解法1.加减法解不等式在不等式的两边同时加上或减去同一个数,不等式的关系不会改变。
例如,若a>b,则a+2>b+2,a-2>b-2。
2.乘除法解不等式在不等式的两边同时乘以或除以同一个正数,不等式的关系不会改变;若乘以或除以的是一个负数,则不等式的关系会发生变化。
例如,若a>b,则2a>2b,a/2>b/2;若a<b,则2a<2b(因为乘以负数),a/2<b/2。
3.绝对值不等式绝对值不等式是指形如|ax+b|>c(或≥,<,≤)的不等式。
对于这种不等式,需要对两种情况进行讨论分别解决。
例如,对于|2x-3|>5,需要分别对2x-3>5和2x-3<-5进行求解。
三、不等式的应用1.线性不等式的应用线性不等式在生活中有很多应用,例如物品的价格、工资收入和支出等,这些都是实际问题的线性不等式。
通过解决这些实际问题,可以让学生更好地理解不等式的应用。
2.面积和周长的不等式在解决空间中的问题时,常常需要涉及到物体的面积和周长。
这些问题可以转化为不等式问题,通过解决这些问题,可以让学生更好地应用不等式。
3.绝对值不等式的应用绝对值不等式在实际问题中也有很多应用,例如温度的变化、物体的长度等,这些都是实际问题的绝对值不等式。
通过解决这些实际问题,可以让学生更好地理解不等式的应用。
总之,不等式是初中数学中的重要概念,对于学生来说也是一个重要的知识点。
不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,AxCBxC(C0)在不等式中,如果乘以同一个负数,不等号改向;例如:AB,AxC如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a>bb>a②传递性:a>b,b>ca>c③可加性:a>ba+c>b+c④可积性:a>b,c>0ac>bc⑤加法法则:a>b,c>da+c>b+d⑥乘法法则:a>b>0,c>d>0ac>bd⑦乘方法则:a>b>0,an>bn(n∈N)⑧开方法则:a>b>02.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号) 如果为实数,则重要结论(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
《不等式》全章复习与巩固【学习目标】1.能正确的记忆和灵活运用不等式的性质;2.会从实际情境中抽象出一元二次不等式模型和二元一次不等式组,提高数学建模能力;3.掌握一元二次方程,二次函数,一元二次不等式,这三个“二次”的联系,会解一元二次不等式;4.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;5.会用基本不等式解决简单的最大(小)值问题,注意基本不等式适用的条件. 【知识网络】【要点梳理】要点一:不等式的主要性质 (1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,, bd ac d c b a >⇒>>>>0,0(5) 乘方法则:0n na b a b >>⇒>(*1)n N n ∈>且 (6) 开方法则:0a b >>⇒>(*1)n N n ∈>且要点诠释:不等式性质中要注意等价双向推出和单向推出关系的不同. 要点二:三个“二次”的关系一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a >的解集:不等式不等关系与不等式 一元二次不等式及其解法 二元一次不等式(组)与平面区域基本不等式最大(小)值问题简单的线性规划设相应的一元二次方程20ax bx c ++=(0)a >的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆0=∆0<∆二次函数cbx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数:2A ax bx c =++(0)a > (2)计算判别式∆,分析不等式的解的情况:①0∆>时,求根12,x x (注意灵活运用因式分解和配方法); ②0∆=时,求根abx x 221-==; ③0∆<时,方程无解 (3)写出解集.要点诠释:若0a <,可以转化为0a >的情形解决. 要点三:线性规划用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax+By+C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)线性规划的有关概念: ①线性约束条件:如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=ax+by(a ,b ∈R)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. ③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:在线性规划问题中,满足线性约束条件的解(x,y )叫可行解.由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:求线性目标函数在线性约束条件下的最优解的步骤 (1)设变量,建立线性约束条件及线性目标函数; (2) 由二元一次不等式表示的平面区域做出可行域; (3)求出线性目标函数在可行域内的最值(即最优解); (4)作答.要点四:基本不等式 两个重要不等式①,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)②基本不等式:如果,a b 是正数,那么2a b+≥(当且仅当a b =时取等号“=”). 算术平均数和几何平均数 算术平均数:2ba +称为,ab 的算术平均数; 几何平均数:ab 称为,a b 的几何平均数.因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 基本不等式的应用,(0,)x y ∈+∞,且xy P =(定值),那么当x y =时,x y +有最小值;,(0,)x y ∈+∞,且x y S +=(定值),那么当x y =时,xy 有最大值2S 41.要点诠释 :在用基本不等式求函数的最值时,应具备的三个条件: ① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值 【典型例题】 类型一:不等式的性质例1.若0<<b a ,则下列不等关系中不能成立的是( ) A .b a 11> B .ab a 11>- C .||||b a > D .22b a > 【思路点拨】利用不等式的性质,逐项进行判断.【解析】∵0<<b a ,∴0>->-b a . 由b a -<-11,ba 11>,∴A 项成立. 由0<<b a ,||||b a >,∴C 项成立.由0>->-b a ,22)()(b a ->-,22b a >,∴D 项成立.∵0<<b a ,0<-b a ,0<-<b a a ,0>->-a b a ,)(11b a a --<-,ba a ->11,∴B 项不成立. 故应选B【总结升华】运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误. 举一反三:【变式】已知,m n R ∈,则11m n>成立的一个充要条件是( ) A.0m n >> B.0n m >> C.()0mn m n -< D.0m n << 【答案】C例2.如果3042x <<,1624y <<,则 (1)2x y -的取值范围是 ; (2)xy的取值范围是 . 【思路点拨】利用不等式性质运算时,注意不等式成立的条件. 【答案】(1)(18,10)-;(2)521(,)48. 【解析】(1)1624,48232y y <<∴-<-<-Q ,又3042x <<Q , 利用不等式的性质d b c a d c b a +>+⇒>>,可得:18210x y -<-<.(2)1111624,2416y y <<∴<<Q ,3042x <<Q , 利用不等式的性质bd ac d c b a >⇒>>>>0,0可得:52148x y <<. 【总结升华】注意同向(异向)不等式的两边可以相加(相减),这种转化的正确应用. 举一反三:【变式】如果3042x <<,1624y <<,则(1) x y +的取值范围是; (2) xy 的取值范围是 【答案】(1)(46,66);(2)(480,1008)例3.已知函数2()f x ax c =-,满足4(1)1f -≤≤-,1(2)5f -≤≤,那么(3)f 的取值范围是 . 【思路点拨】将(3)f 用(1)f 及(2)f 表示出来,再利用不等式性质求得正确的范围. 【解析】解法一:方程思想(换元):由⎩⎨⎧=-=-)2(4)1(f c a f c a ,求得[]1(2)(1)341(1)(2)33a f f c f f ⎧=-⎪⎪⎨⎪=-+⎪⎩∴ )2(38)1(359)3(f f c a f +-=-= 又 340)2(3838,320)1(3535≤≤-≤-≤f f ∴ 20)2(38)1(351≤+-≤-f f ,即20)3(1≤≤-f . 解法二:待定系数法设f(3)=9a-c=mf(1)+nf(2)=m(a-c)+n(4a-c)5-493()---183m m n m n n ⎧=⎪+=⎧⎪⇒⇒⎨⎨=⎩⎪=⎪⎩下略解法三:数形结合(线性规划)-4(1)-1-4--1-1(2)5-14-5f a c f a c ≤≤≤≤⎧⎧⇒⎨⎨≤≤≤≤⎩⎩Q 所确定区域如图:设9-z a c =,将边界点(0,1)(3,7)代入即求出.【总结升华】利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径.举一反三:【变式】已知15a b -≤+≤,13a b -≤-≤,求32a b -的取值范围. 【答案】[-3,10] 类型二:不等式的求解例4 . 设2{|430}A x x x =-+<,2{|280}B x x x a =-+-≤,且A B ⊆,求a 的取值范围. 【解析】令2()28f x x x a =-+-由A B ⊆,及二次函数图象的性质可得 (1)0(3)0f f ≤⎧⎨≤⎩,即12809680a a -+-≤⎧⎨-+-≤⎩,解之得95a -≤≤. 因此a 的取值范围是95a -≤≤.【总结升华】正确求解不等式,弄清楚两个集合对应二次函数图象之间的关系是解决本题的关键. 举一反三:【变式1】若不等式()(1)0x a x ++≥的解集为(-∞,-1] ∪[2,+ ∞),求实数a 的值 【答案】由题设知 x=2为方程f(x)=0的根, ∴f(2)=0⇔a=-2 ∴所求实数a=-2【变式2】不等式ax 2+bx+12>0的解集为{x|-1<x<2},则a=_______, b=________. 【答案】由不等式的解集为{x|-1<x<2}知a<0,且方程ax 2+bx+12=0的两根为-1,2.由根与系数关系得12112(1)22baa⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩解得a=-6,b=6.【变式3】已知关于x 的方程(k-1)x 2+(k+1)x+k+1=0有两个相异实根,求实数k 的取值范围 【答案】5(1,1)(1,)3k ∈-U .例5.若关于x 的不等式2(1)(21)20m x m x m --++-≥的解集为一切实数R ,求m 的取值范围. 【解析】当1m =时,原不等式为:310x --≥,不符合题意. 当1m <时,原不等式为一元二次不等式,显然不符合题意 当1m >时,只需0∆≤,即2(21)4(1)(2)01m m m m ⎧+---≤⎨>⎩,解得m ∈∅, 综上,m 的取值范围为m ∈∅.【总结升华】①在含参不等式问题中,二次不等式恒成立的充要条件的理论依据: ax 2+bx+c>0对任何x ∈R 恒成立⇔a>0且Δ=b 2-4ac<0; ax 2+bx+c<0对任何x ∈R 恒成立⇔a<0且Δ=b 2-4ac<0.②与不等式恒成立相互依存,相互支撑与相互转化的最值命题:μ<f(x)恒成立⇔μ<f(x)的最小值μ>f(x)恒成立⇔μ>f(x)的最大值举一反三:【变式】若对于任意X∈R恒有3x2+2x+2>m(x2+x+1)*(m N)∈,求m的值【答案】对任意x∈R有3x2+2x+2>m(x2+x+1)恒成立⇔对任意x∈R 恒(3-m)x2+(2-m)x+(2-m)>0成立23m0(2m)4(3m)(2m)0->⎧∴⎨∆=----<⎩m3m210m2m3<⎧⎪⇔⇔<⎨<>⎪⎩或又因m∈N*,∴m=1类型三:二元一次方程(组)与平面区域例6.设集合A={(x,y)|x,y,1-x-y是三角形的三边长},则A所表示的平面区域(不含边界的阴影部分)是()【解析】利用三角形的三边关系得:111x y x yx y x yy x x y+>--⎧⎪-<--⎨⎪-<--⎩,即1,21,21,2x yxy⎧+>⎪⎪⎪<⎨⎪⎪<⎪⎩表示的平面区域为A选项.【总结升华】注意本例中三角形本身的性质.举一反三:【变式1】不等式组24236x yx y+≥⎧⎨-<⎩所表示的平面区域为()xyO xyO xyO xyOA B C D【答案】选B【变式2】不等式组0101x yx yxy->⎧⎪+≥⎪⎨<<⎪⎪<<⎩在xy平面上的解的集合为()A.四边形内部 B. 三角形內部 C.一点 D.空集【答案】不等式组所表示的平面区域图形如下,=+yx∴交集为三角形内部,选B.类型四:求线性目标函数在线性约束条件下的最优解例7.(2015 陕西)某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元【思路点拨】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值。
不等式知识点总结(精选5篇)不等式知识点总结篇11、不等式及其解集用“<”或“>”号表示大小关系的式子叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
2、不等式的性质不等式有以下性质:不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。
3、实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa)的形式。
4、一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。
解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。
解一元一次不等式组时。
一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
不等式知识点总结篇2不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
不等式的综合应用【考纲要求】1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.. 【知识网络】【考点梳理】考点一:不等式问题中相关方法 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形 →判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维不等式的综合应用解不等式问题实际应用问题不等式中的含参问题不等式证明等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.考点二:不等式与相关知识的渗透1.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
归纳不等式初三知识点总结初三知识点总结:归纳不等式不等式在初中数学学习中占据了重要地位,它是一种比较数值大小的关系,并且往往与代数式一起出现。
学好不等式对于初三学生来说至关重要。
本文将归纳初三不等式的知识点,帮助学生对不等式的概念、性质、求解方法等进行系统理解和掌握。
概念部分:不等式的基本概念:不等式是表示两个数的大小关系的一种数学表示方式。
常见的不等式符号有“<”、“>”、“≤”、“≥”。
例如,a < b表示a小于b,a ≤ b表示a小于等于b。
不等式的解集:不等式的解集是满足不等式条件的所有实数的集合。
例如,不等式2x + 3 > 7的解集可以表示为{x| x > 2}。
不等式的性质部分:不等式的性质有以下几点:1. 加法性质:如果a < b,则a + c < b + c。
即不等式两边同时加(或减)一个相同的正(或负)数,不等号保持不变。
2. 乘法性质:如果a < b且c > 0,则ac < bc。
即不等式两边同时乘以一个正数,不等号保持不变。
3. 乘方性质:如果a < b,且c为正奇数(或负奇数)或c > 1,则ac < bc。
即不等式两边同时乘以一个正奇数次幂(或负奇数次幂)或大于1的正数,不等号保持不变。
不等式求解方法部分:1. 一次不等式的求解:对于形如ax + b < c或ax + b > c的一次不等式,可以通过代数运算将x的系数与常数项带到一边,并将x系数的符号保持不变,最终求解得到合理的解域。
示例:解不等式2x + 3 > 7首先将x系数与常数项带到一边,得到2x > 4然后将x系数的符号保持不变,得到x > 2因此,不等式2x + 3 > 7的解集为{x| x > 2}。
2. 二次不等式的求解:对于形如ax² + bx + c < 0或ax² + bx + c > 0的二次不等式,可以通过因式分解、配方法或图像法等方式求得x的取值范围。
不等式知识点归纳Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998第三章 不等式、不等关系与不等式 1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>, ④(可积性)bc ac c b a >⇒>>0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒>(异向正数可除性)0,0a ba b c d c d>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>⇒>∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭(也可用柯西不等式22222()()()a b c d ac bd ++≥+)用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号).⑥0,2b aab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ba nb n a m a m b a b <++<<++<1 其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 ⑨绝对值三角不等式.a b a b a b -≤±≤+①平均不等式:1122a b a b --+≤≤≤+ ()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均). 变形公式: ②幂平均不等式:③二维形式的三角不等式:④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式: ⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和. ⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有 则称f(x)为凸(或凹)函数. 4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+②将分子或分母放大(缩小),如*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理) 规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔> ⑵当01a <<时, ()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断: 法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域⑵二元一次不等式组所表示的平面区域:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分. ⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值: 法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值.⑷常见的目标函数的类型:①“截距”型:;z Ax By =+②“斜率”型:y z x =或;y bz x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.基础练习一 选择题1.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关[答案] A[解析] M -N =x 2+x +1=(x +12)2+34>0,∴M >N .2.(2013·辽宁鞍山市第一中学高二期中测试)若a <b <0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a |>|b |D .(12)a >(12)b[答案] B[解析] ∵a <b ,y =2x 单调递增,∴2a <2b , 故选B .3.已知a <0,-1<b <0,则下列各式正确的是( ) A .a >ab >ab 2 B .ab >a >ab 2 C .ab 2>ab >a D .ab >ab 2>a[答案] D[解析] ∵-1<b <0,∴1>b 2>0>b >-1, 即b <b 2<1,两边同乘以a 得, ∴ab >ab 2>a .故选D .4.如果a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2 D .ac (a -c )<0[答案] C[解析] ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A 、B 、D 均正确. ∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立.5.设a =lge ,b =(lge)2,c =lg e ,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a[解析] ∵0<lge<1,∴b =(lg e )2=a 2<a ,c =lg e =12lge =12a <a .又∵b =(lge)2<lg 10·lge=12lge =c ,∴b <c <a . 6.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg2x B .x 2+1>2x C .1x 2+1≤1D .x +1x≥2[答案] C[解析] A 中x >0;B 中x =1时,x 2+1=2x ;C 中任意x ,x 2+1≥1,故1x 2+1≤1;D 中当x <0时,x +1x≤0.7.若x >1>y ,下列不等式不成立的是( ) A .x -1>1-y B .x -1>y -1 C .x -y >1-y D .1-x >y -x[答案] A[解析] 特殊值法.令x =2,y =-1,则x -1=2-1<1-(-1)=1-y ,故A 不正确. 8.设a =, b =,c =,则a ,b ,c 的大小关系是( ) A .a <b <c B .a >b >c C .b >a >c D .c >a >b[答案] B[解析] ∵>100,∴>1. 又∵<,∴0<<1. ∵<lg1,∴<0.∴a >1,0<b <1,c <0,∴a >b >c ,选B . 9.设a +b <0,且a >0,则( ) A .a 2<-ab <b 2 B .b 2<-ab <a 2 C .a 2<b 2<-ab D .ab <b 2<a 2[答案] A[解析] ∵a +b <0,且a >0,∴0<a <-b , ∴a 2<-ab <b 2.10.已知a 2+a <0,那么a ,a 2,-a ,-a 2的大小关系是( ) A .a 2>a >-a 2>-a B .-a >a 2>-a 2>a C .-a >a 2>a >-a 2D .a 2>-a >a >-a 2[解析] ∵a 2+a <0,∴0<a 2<-a ,∴0>-a 2>a , ∴a <-a 2<a 2<-a ,故选B .[点评] 可取特值检验,∵a 2+a <0,即a (a +1)<0,令a =-12,则a 2=14,-a 2=-14,-a =12,∴12>14>-14>-12,即-a >a 2>-a 2>a ,排除A 、C 、D ,选B . 11.设a ,b ∈R ,则(a -b )·a 2<0是a <b 的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] 由(a -b )·a 2<0得a ≠0且a <b ;反之,由a <b ,不能推出(a -b )·a 2<0.即(a -b )·a 2<0是a <b 的充分非必要条件.12.如果a >0,且a ≠1,M =log a (a 3+1),N =log a (a 2+1),那么( ) A .M >N B .M <NC .M =ND .M 、N 的大小无法确定 [答案] A [解析]M -N =log a (a 3+1)-log a (a 2+1)=log a a 3+1a 2+1,若a >1,则a 3>a 2,∴a 3+1a 2+1>1,∴log a a 3+1a 2+1>0,∴M >N ,若0<a <1,则0<a 3<a 2,∴0<a 3+1<a 2+1,∴0<a 3+1a 2+1<1,∴log a a 3+1a 2+1>0,∴M >N ,故选A .13.(2014·江西文,2)设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(綂R B )=( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3)[答案] C[解析] 本题主要考查集合的运算,∵A ={x |x 2-9<0}={x |-3<x <3},而綂R B ={x |x ≤-1或x >5},∴A ∩綂R B ={x |-3<x ≤-1},选C . 14.不等式9x 2+6x +1≤0的解集是( ) A .{x |x ≠-13}B .{x |-13≤x ≤13}C .D .{-13}[解析] 变形为(3x +1)2≤0.∴x =-13.15.不等式3x 2-x +2<0的解集为( ) A .B .RC .{x |-13<x <12}D .{x ∈R |x ≠16}[答案] A[解析] ∵△=-23<0,开口向上, ∴3x 2-x +2<0的解集为.16.函数y =x 2+x -12的定义域是( ) A .{x |x <-4,或x >3} B .{x |-4<x <3} C .{x |x ≤-4,或x ≥3} D .{x |-4≤x ≤3}[答案] C[解析] 使y =x 2+x -12有意义,则x 2+x -12≥0. ∴(x +4)(x -3)≥0,∴x ≤-4,或x ≥3.17.(2012·陕西文,1)集合M ={x |lg x >0},N ={x |x 2≤4},则M ∩N =( ) A .(1,2) B .[1,2) C .(1,2] D .[1,2][答案] C[解析] 本题考查对数不等式、一元二次不等式的解法及集合的交集运算.M ={x |x >1},N ={x |-2≤x ≤2},所以M ∩N ={x |1<x ≤2}=(1,2].18.(2013·广东东莞市第五高级中学高二期中测试)不等式x 2+2x -3≥0的解集为( ) A .{x |x ≤-1或x ≥3} B .{x |-1≤x ≤3} C .{x |x ≤-3或x ≥1} D .{x |-3≤x ≤1}[答案] C[解析] 由x 2+2x -3≥0,得(x +3)(x -1)≥0, ∴x ≤-3或x ≥1,故选C .19.(北京学业水平测试)不等式(x -1)(2x -1)<0的解集是( ) A .{x |1<x <2} B .{x |x <1或x >2} C .{x |x <12或x >1}D .{x |12<x <1}[答案] D[解析] 方程(x -1)(2x -1)=0的两根为x 1=1,x 2=12,所以(x -1)(2x -1)<0的解集为{x |12<x <1},选D . 20.设集合M ={x |0≤x ≤2},N ={x |x 2-2x -3<0},则M ∩N 等于( ) A .{x |0≤x <1} B .{x |0≤x ≤2} C .{x |0≤x ≤1} D .{x |0≤x ≤2}[答案] D[解析] ∵N ={x |x 2-2x -3<0}={x |-1<x <3},M ={x |0≤x ≤2}, ∴M ∩N ={x |0≤x ≤2},故选D .21.若{x |2<x <3}为x 2+ax +b <0的解集,则bx 2+ax +1>0的解集为( ) A .{x |x <2或x >3} B .{x |2<x <3} C .{x |13<x <12}D .{x |x <13或x >12}[答案] D[解析] 由x 2+ax +b <0的解集为{x |2<x <3},知方程x 2+ax +b =0的根分别为x 1=2,x 2=3.由韦达定理,得x 1+x 2=-a ,x 1·x 2=b , 即a =-5,b =6.所以不等式bx 2+ax +1>0,即6x 2-5x +1>0,解集为{x |x <13,或x >12},故选D .22.不等式(x -2)2(x -3)x +1<0的解集为( )A .{x |-1<x <2或2<x <3}B .{x |1<x <3}C .{x |2<x <3}D .{x |-1<x <3}[答案] A[解析] 原不等式等价于⎩⎪⎨⎪⎧(x -3)(x +1)<0,x +1≠0,(x -2)2≠0,解得-1<x <3,且x ≠2,故选A .23.若0<t <1,则不等式x 2-(t +1t )x +1<0的解集是( )A .{x |1t <x <t }B .{x |x >1t 或x <t }C .{x |x <1t 或x >t }D .{x |t <x <1t}[答案] D[解析] 化为(x -t )(x -1t)<0,∵0<t <1,∴1t >1>t ,∴t <x <1t.24.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4 D .a <-4或a >4[答案] A[解析] 欲使不等式x 2+ax +4<0的解集为空集,则△=a 2-16≤0,∴-4≤a ≤4. 25.不在3x +2y <6表示的平面区域内的点是( ) A .(0,0) B .(1,1) C .(0,2) D .(2,0)[答案] D[解析] 将点的坐标代入不等式中检验可知,只有(2,0)点不满足3x +2y <6. 26.不等式组⎩⎪⎨⎪⎧y <x x +y ≤1y ≥3,表示的区域为D ,点P 1(0,-2),点P 2(0,0),则( )A .P 1D ,P 2DB .P 1D ,P 2∈DC .P 1∈D ,P 2D D .P 1∈D ,P 2∈D[答案] A[解析] P 1点不满足y ≥点不满足y <x .和y ≥3 ∴选A .27.已知点P (x 0,y 0)和点A (1,2)在直线l :3x +2y -8=0的异侧,则( ) A .3x 0+2y 0>0 B .3x 0+2y 0<0 C .3x 0+2y 0<8 D .3x 0+2y 0>8[答案] D[解析] ∵3×1+2×1-8=-3<0,P 与A 在直线l 异侧,∴3x 0+2y 0-8>0. 28.图中阴影部分表示的区域对应的二元一次不等式组为( )A .⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≥0B .⎩⎪⎨⎪⎧x +y -1≤0x -2y +2≤0C .⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≤0D .⎩⎪⎨⎪⎧x +y -1≤0x -2y +2≥0[答案] A[解析] 取原点O (0,0)检验满足x +y -1≤0,故异侧点应为x +y -1≥0,排除B 、D . O 点满足x -2y +2≥0,排除C . ∴选A .29.不等式x 2-y 2≥0表示的平面区域是( ) [答案] B[解析] 将(±1,0)代入均满足知选B .30.不等式组⎩⎪⎨⎪⎧(x -y +5)(x +y )≥00≤x ≤3表示的平面区域是一个( )A .三角形B .直角梯形C .梯形D .矩形[答案] C[解析] 画出直线x -y +5=0及x +y =0,取点(0,1)代入(x -y +5)(x +y )=4>0,知点(0,1)在不等式(x -y +5)(x +y )≥0表示的对顶角形区域内,再画出直线x =0和x =3,则原不等式组表示的平面区域为图中阴影部分,它是一个梯形.31.目标函数z =2x -y ,将其看成直线方程时,z 的意义是( ) A .该直线的截距 B .该直线的纵截距 C .该直线的纵截距的相反数 D .该直线的横截距 [答案] C[解析] z =2x -y 可变化形为y =2x -z ,所以z 的意义是该直线在y 轴上截距的相反数,故选C .32.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值为( ) A .-1 B .1 C .2 D .-2[答案] B[解析] 可行域为图中△AOB ,当直线y =x -z 经过点B 时,-z 最小从而z 最大∴z max=1.33.已知x 、y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0x +y ≥0x ≤3,则z =2x +4y 的最小值为( )A .5B .-6C .10D .-10[答案] B[解析] 可行域为图中△ABC 及其内部的平面区域,当直线y =-x 2+z4经过点B (3,-3)时,z 最小,z min =-6.34.若x 、y ∈R ,且⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x ,则z =x +2y 的最小值等于( )A .2B .3C .5D .9[答案] B[解析] 不等式组表示的可行域如图所示: 画出直线l 0:x +2y =0, 平行移动l 0到l 的位置, 当l 通过点M 时,z 取到最小值. 此时M (1,1),即z min =3.35.设x 、y 满足约束条件⎩⎪⎨⎪⎧2x +y ≥4x -y ≥1x -2y ≤2,则目标函数z =x +y ( )A .有最小值2,无最大值B .有最大值3,无最小值C .有最小值2,最大值3D .既无最小值,也无最大值[答案] A[解析] 画出不等式组⎩⎪⎨⎪⎧2x +y ≥4x -y ≥1x -2y ≤2表示的平面区域,如下图,由z =x +y ,得y =-x+z ,令z =0,画出y =-x 的图象.当它的平行线经过点A (2,0)时,z 取得最小值,最小值为2;无最大值.故选A . 36.(2013·四川文,8)若变量x 、y 满足约束条件 ⎩⎪⎨⎪⎧x +y ≤82y -x ≤4x ≥0y ≥0,且z =5y -x 的最大值为a ,最小值为b ,则a -b 的值是( )A .48B .30C .24D .16[答案] C[解析] 本题考查了线性规划中最优解问题.作出不等式组表示的平面区域如图. 作直线l 0:y =15x ,平移直线l 0.当l 0过点A (4,4)时可得z max =16,∴a =16. 当l 0过点B (8,0)时可得z min =-8,∴b =-8. ∴a -b =16-(-8)=24.37.若变量x 、y 满足约束条件⎩⎪⎨⎪⎧y ≤1x +y ≥0x -y -2≤0,则z =x -2y 的最大值为( )A .4B .3C .2D .1[答案] B[解析] 先作出可行域如图.作直线x -2y =0在可行域内平移,当x -2y -z =0在y 轴上的截距最小时z 值最大. 当移至A (1,-1)时,z max =1-2×(-1)=3,故选B . 38.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧2x +y ≤44x -y ≥-1x +2y ≥2,则目标函数z =3x -y 的取值范围是( )A .[-32,6]B .[-32,-1]C .[-1,6]D .[-6,32][答案] A[解析] 本题考查了线性规划的基础知识及数形结合的思想.根据约束条件,画出可行域如图,作直线l 0:3x -y =0,将直线平移至经过点A (2,0)处z 有最大值,经过点B (12,3)处z 有最小值,即-32≤z ≤6.39.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-3[答案] A[解析] 作出可行域如图中阴影部分.直线z =x -y 即y =x -z .经过点A (2,1)时,纵截距最大,∴z 最小.z min =1.40.变量x 、y 满足下列条件⎩⎪⎨⎪⎧2x +y ≥122x +9y ≥362x +3y =24x ≥0y ≥0,则使z =3x +2y 最小的(x ,y )是( )A .(4,5)B .(3,6)C .(9,2)D .(6,4)[答案] B[解析] 检验法:将A 、B 、C 、D 四选项中x 、y 代入z =3x +2y 按从小到大依次为A 、B 、D 、C .然后按A →B →D →C 次序代入约束条件中,A 不满足2x +3y =24,B 全部满足,故选B .41.已知x 、y 满足约束条件⎩⎪⎨⎪⎧2x +y ≤4x +2y ≤4x ≥0,y ≥0,则z =x +y 的最大值是( )A .43B .83C .2D .4[答案] B[解析] 画出可行域为如图阴影部分.由⎩⎪⎨⎪⎧x +2y =42x +y =4,解得A (43,43),∴当直线z =x +y 经过可行域内点A 时,z 最大,且z max =83.42.(2014·广东理,3)若变量x ,y 满足约束条件 ⎩⎪⎨⎪⎧y ≤x x +y ≤1y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .8[答案] B[解析] 作出可行域如图,由⎩⎪⎨⎪⎧y =x ,y =-1,得⎩⎪⎨⎪⎧ x =-1,y =-1,∴A (-1,-1); 由⎩⎪⎨⎪⎧ x +y =1,y =-1.得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1);由⎩⎪⎨⎪⎧y =x ,x +y =1,得⎩⎨⎧x =12,y =12.∴C (12,12).作直线l :y =-2x ,平移l 可知,当直线y =-2x +z ,经过点A 时,z 取最小值,当y min =-3;当经过点B 时,z 取最大值,z max =3,∴m =3,n =-3,∴m -n =6.43.下列各式,能用基本不等式直接求得最值的是( )A .x +12xB .x 2-1+1x 2-1C .2x +2-x D .x (1-x ) 答案:C44.已知a 、b ∈R ,且ab ≠0,则在①a 2+b 22≥ab ;②b a +ab ≥2;③ab ≤⎝⎛⎭⎫a +b 22;④⎝⎛⎭⎫a +b 22≤a 2+b 22这四个不等式中,恒成立的个数有( )A .1个B .2个C .3个D .4个 答案:C45.某工厂第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b 2B .x ≤a +b2C .x >a +b 2D .x ≥a +b2解析:依题意有A (1+x )2=A (1+a )(1+b ),∴1+x =(1+a )(1+b )≤12[(1+a )+(1+b )]=1+a +b 2∴x ≤a +b 2.故选B.答案:B46.若x >0,则函数y =-x -1x( )A .有最大值-2B .有最小值-2C .有最大值2D .有最小值2解析:∵x >0,∴x +1x ≥2.∴-x -1x≤-2.当且仅当x =1时,等号成立,故函数y =-x-1x有最大值-2. 答案:A47.数列{a n }的通项公式a n =nn 2+90,则数列{a n }中的最大项是( )A .第9项B .第8项和第9项C .第10项D .第9项和第10项解析:a n =n n 2+90=1n +90n∵n +90n≥290,且n ∈N *,∴当n =9或10时,n +90n最小,a n 取最大值.故选D.答案:D48.lg 9lg 11与1的大小关系是( ) A .lg 9·lg 11>1 B .lg 9·lg 11 =1 C .lg 9·lg 11<1 D .不能确定解析:lg 9×lg 11≤2+⎛⎫ ⎪⎝⎭lg9lg112=2⎛⎫ ⎪⎝⎭lg992<2⎛⎫ ⎪⎝⎭lg1002=2⎛⎫ ⎪⎝⎭22=1,故选C.答案:C49.已知a ,b ∈R +,且a +b =1,则ab +1ab的最小值为( )A .2D .不存在解析:∵a ,b ∈R +,a +b =1,∴ab ≤a +b 2=12,∴0<ab ≤14.令t =ab ,则f (t )=t +1t 在⎝⎛⎦⎤0,14上单调递减, ∴f (t )的最小值为f ⎝⎛⎭⎫14=14+4=174,故选C. 答案:C50.某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10 g 黄金,售货员先将5 g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客,然后又将5 g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( )A .大于10 gB .小于10 gC .大于等于10 gD .小于等于10 g解析:设两臂长分别为a ,b ,两次放入的黄金数是x ,y , 依题意有ax =5b ,by =5a ,∴xy =25. ∵x +y 2≥xy ,∴x +y ≥10,又a ≠b ,∴x ≠y .∴x +y >10.即两次所得黄金数大于10克,故选A. 答案:A51.函数f (x )=xx +1的最大值为( )D .1解析:当x =0时,f (0)=0;当x >0时,x +1≥2x >0,∴f (x )≤x 2x =12,当且仅当x=1时等号成立.故函数f (x )=x x +1的最大值为12.答案:B二 填空题1.若a >b ,则a 3与b 3的大小关系是________. [答案] a 3>b 32.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. [答案] x <y[解析] x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0, ∴x <y .3.已知a >b >0,且c >d >0,则a d与bc的大小关系是________. [答案]a d>b c[解析] ∵c >d >0,∴1d >1c >0,∵a >b >0,∴a d >bc >0,∴a d>b c. 4.若a 、b 、c 、d 均为实数,使不等式a b >cd >0和ad <bc 都成立的一组值(a ,b ,c ,d )是________(只要举出适合条件的一组值即可).[答案] (2,1,-1,-2)[解析] 由a b >c d >0知,a 、b 同号,c 、d 同号,且a b -c d =ad -bcbd >0.由ad <bc ,得ad -bc <0,所以bd <0.所以在取(a ,b ,c ,d )时只需满足以下条件即可: ①a 、b 同号,c 、d 同号,b 、d 异号; ②ad <bc .令a >0,b >0,c <0,d <0, 不妨取a =2,b =1,c =-1, 则d <bc a =-12,取d =-2,则(2,1,-1,-2)满足要求.5.(2013·广东理,9)不等式x 2+x -2<0的解集为________. [答案] {x |-2<x <1}[解析] 由x 2+x -2<0,得(x +2)(x -1)<0, ∴-2<x <1,故原不等式的解集为{x |-2<x <1}. 6.不等式0≤x 2-2x -3<5的解集为________. [答案] {x |-2<x ≤-1或3≤x <5}[解析] 由x 2-2x -3≥0得:x ≤-1或x ≥3; 由x 2-2x -3<5得-2<x <4, ∴-2<x ≤-1或3≤x <4.∴原不等式的解集为{x |-2<x ≤-1或3≤x <4}.7.关于x 的不等式:x 2-(2m +1)x +m 2+m <0的解集是________. [答案] {x |m <x <m +1}[解析] 解法一:∵方程x 2-(2m +1)x +m 2+m =0的解为x 1=m ,x 2=m +1,且知m <m +1.∴二次函数y =x 2-(2m +1)x +m 2+m 的图象开口向上,且与x 轴有两个交点. ∴不等式的解集为{x |m <x <m +1}.解法二:注意到m 2+m =m (m +1),及m +(m +1)=2m +1, 可先因式分解,化为(x -m )(x -m -1)<0, ∵m <m +1,∴m <x <m +1. ∴不等式的解集为{x |m <x <m +1}.8.若集合A ={x |ax 2-ax +1<0}=,则实数a 的取值范围是________. [答案] 0<a ≤4[解析] ①若a =0,则1<0不成立,此时解集为空.②若a ≠0,则⎩⎪⎨⎪⎧Δ=a 2-4a ≤0,a >0,∴0<a ≤4.9.已知x ,y 为非负整数,则满足x +y ≤2的点(x ,y )共有________个. [答案] 6[解析] 符合条件的点有(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)共6个.10.用三条直线x +2y =2,2x +y =2,x -y =3围成一个三角形,则三角形内部区域(不包括边界)可用不等式表示为________.[答案] ⎩⎪⎨⎪⎧x +2y <22x +y >2x -y <311.若非负变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1x +2y ≤4,则x +y 的最大值为________.[答案] 4[解析] 本题考查线性规化的最优解问题. 由题意知x 、y 满足的约束条件⎩⎪⎨⎪⎧x ≥0y ≥0x -y ≥-1x +2y ≤4.画出可行域如图所示.设x +y =ty =-x +t ,t 表示直线在y 轴截距,截距越大,t 越大.作直线l 0:x +y =0,平移直线l 0,当l 0经过点A (4,0)时, t 取最大值4. 12.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0x +y -2≥0y ≥0所表示的区域上一动点,则|OM |的最小值是________.[答案]2[解析] 本题考查不等式组表示平面区域及点到直线距离问题.不等式组所表示平面区域如图,由图可知|OM |的最小值即O 到直线x +y -2=0的距离.故|OM |的最小值为|-2|2= 2.13.已知x 、y 满足约束条件⎩⎪⎨⎪⎧x ≥0x ≥y2x -y ≤1,则z =3x +2y 的最大值为________.[答案] 5[解析] 作出可行域如图,当直线z =3x +2y 平移到经过点(1,1)时,z 最大∴z max =5. 14.已知x 、y 满足⎩⎪⎨⎪⎧y -2≤0x +3≥0x -y -1≤0,则x 2+y 2的最大值为________.[答案] 25[解析] 画出不等式组表示的平面区域,如图中的阴影部分所示. 由图知,A (-3,-4),B (-3,2),C (3,2), 则|OA |=9+16=5, |OB |=9+4=13, |OC |=9+4=13.设P (x ,y )是不等式组表示的平面区域内任意一点, 则x 2+y 2=(x 2+y 2)2=|OP |2,由图知,|OP |的最大值是|OA |=5,则x 2+y 2最大值为|OA |2=25. 15.已知x 、y 满足约束条件⎩⎪⎨⎪⎧x ≥0x ≥y2x -y ≤1,则z =3x +2y 的最大值为________.[答案] 5[解析] 作出可行域如图,当直线z =3x +2y 平移到经过点(1,1)时,z 最大∴z max =5.16.已知x 、y 满足⎩⎪⎨⎪⎧y -2≤0x +3≥0x -y -1≤0,则x 2+y 2的最大值为________.[答案] 25[解析] 画出不等式组表示的平面区域,如图中的阴影部分所示. 由图知,A (-3,-4),B (-3,2),C (3,2), 则|OA |=9+16=5, |OB |=9+4=13, |OC |=9+4=13.设P (x ,y )是不等式组表示的平面区域内任意一点, 则x 2+y 2=(x 2+y 2)2=|OP |2,由图知,|OP |的最大值是|OA |=5,则x 2+y 2最大值为|OA |2=25.三 解答题1.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:的所有不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则 ⎩⎪⎨⎪⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎪⎨⎪⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.10.设a >0,b >0且a ≠b ,试比较a a b b 与a b b a 的大小. [解析] 根据同底数幂的运算法则. a a b b a b b a =a a -b ·b b -a=(a b )a -b , 当a >b >0时,ab >1,a -b >0,则(a b)a -b >1,于是a a b b >a b b a .当b >a >0时,0<ab <1,a -b <0,则(a b)a -b >1,于是a a b b >a b b a . 综上所述,对于不相等的正数a 、b ,都有a a b b >a b b a .2.已知a >0,b >0,a ≠b ,n ∈N 且n ≥2,比较a n +b n 与a n -1b +ab n -1的大小. [解析] (a n +b n )-(a n -1b +ab n -1)=a n -1(a -b )+b n -1(b -a )=(a -b )(a n -1-b n -1),(1)当a >b >0时,a n -1>b n -1,∴(a -b )(a n -1-b n -1)>0, (2)当0<a <b 时,a n -1<b n -1,∴(a -b )(a n -1-b n -1)>0,∴对任意a >0,b >0,a ≠b ,总有(a -b )(a n -1-b n -1)>0.∴a n +b n >a n -1b +ab n -1. 3.如果30<x <42,16<y <24.分别求x +y 、x -2y 及xy 的取值范围.[解析] 46<x +y <66;-48<-2y <-32, ∴-18<x -2y <10;∵30<x <42,124<1y <116,∴3024<x y <4216,即54<x y <218. 4.解不等式:1<x 2-3x +1<9-x . [解析] 由x 2-3x +1>1得,x 2-3x >0, ∴x <0或x >3;由x 2-3x +1<9-x 得,x 2-2x -8<0,∴-2<x <4. 借助数轴可得:{x |x <0或x >3}∩{x |-2<x <4} ={x |-2<x <0或3<x <4}.5.已知关于x 的不等式ax 2+2x +c >0的解集为(-13,12),求-cx 2+2x -a >0的解集.[解析] 由ax 2+2x +c >0的解集为(-13,12),知a <0,且-13和12是ax 2+2x +c =0的两个根.由韦达定理,得⎩⎨⎧-13×12=c a,-13+12=-2a解得⎩⎪⎨⎪⎧a =-12,c =2.所以-cx 2+2x -a >0,即2x 2-2x -12<0.解得-2<x <3.所以-cx 2+2x -a >0的解集为{x |-2<x <3}. 6.解下列不等式:(1)2x -13x +1>0; (2)ax x +1<0. [解析] (1)原不等式等价于(2x -1)(3x +1)>0, ∴x <-13或x >12.故原不等式的解集为{x |x <-13或x >12}.(2)axx +1<0ax (x +1)<0. 当a >0时,ax (x +1)<0x (x +1)<0-1<x <0, ∴解集为{x |-1<x <0};当a =0时,原不等式的解集为;当a <0时,ax (x +1)<0x (x +1)>0x >0或x <-1,∴解集为{x |x >0,或x <-1}. 7.解关于x 的不等式x 2-(a +a 2)x +a 3>0. [解析] 原不等式可化为(x -a )(x -a 2)>0.则方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2, 由a 2-a =a (a -1)可知, (1)当a <0或a >1时,a 2>a . ∴原不等式的解集为x >a 2或x <a . (2)当0<a <1时,a 2<a , ∴原不等的解为x >a 或x <a 2.(3)当a =0时,原不等式为x 2>0,∴x ≠0. (4)当a =1时,原不等式为(x -1)2>0,∴x ≠1. 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ≠0}; 当a =1时,原不等式的解集为{x |x ≠1}. 8.画出不等式组⎩⎪⎨⎪⎧x +y -6≥0x -y ≥0y ≤3x <5表示的平面区域.[解析] 不等式x +y -6≥0表示在直线x +y -6=0上及右上方的点的集合,x -y ≥0表示在直线x -y =0上及右下方的点的集合,y ≤3表示在直线y =3上及其下方的点的集合,x <5表示直线x =5左方的点的集合,所以不等式组⎩⎪⎨⎪⎧x +y -6≥0x -y ≥0y ≤3x <5 表示的平面区域为如图阴影部分.9.经过点P (0,-1)作直线l ,若直线l 与连结A (1,-2)、B (2,1)的线段总有公共点,求直线l 的斜率k 的取值范围.[解析]由题意知直线l 斜率存在,设为k . 则可设直线l 的方程为kx -y -1=0,由题知:A 、B 两点在直线l 上或在直线l 的两侧,所以有: (k +1)(2k -2)≤0 ∴-1≤k ≤1.10.求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎩⎪⎨⎪⎧5x +3y ≤15y ≤x +1x -5y ≤3.[解析] 作出可行域为如图所示的阴影部分. ∵目标函数为z =3x +5y ,∴作直线l 0:3x +5y =0.当直线l 0向右上平移时,z 随之增大,在可行域内以经过点A (32,52)的直线l 1所对应的z 最大.类似地,在可行域内,以经过点B (-2,-1)的直线l 2所对应的z 最小,∴z max =17,z min =-11,∴z 的最大值为17,最小值为-11.11.某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A 、B 两种规格金属板,每张面积分别为2 m 2与3 m 2.用A 种规格金属板可造甲种产品3个,乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A 、B 两种规格金属板各取多少张,才能完成计划,并使总的用料面积最省[解析] 设A 、B 两种金属板分别取x 张、y 张,用料面积为z ,则约束条件为 ⎩⎪⎨⎪⎧3x +6y ≥455x +6y ≥55x ≥0y ≥0.目标函数z =2x +3y .作出以上不等式组所表示的平面区域(即可行域),如图所示.z =2x +3y 变为y =-23x +z 3,得斜率为-23,在y 轴上截距为z3且随z 变化的一族平行直线.当直线z =2x +3y 过可行域上点M 时,截距最小,z 最小.解方程组⎩⎪⎨⎪⎧5x +6y =553x +6y =45 ,得M 点的坐标为(5,5).此时z min =2×5+3×5=25 (m 2).答:当两种金属板各取5张时,用料面积最省.12.制造甲、乙两种烟花,甲种烟花每枚含A 药品3 g 、B 药品4 g 、C 药品4 g ,乙种烟花每枚含A 药品2 g 、B 药品11 g 、C 药品6 g .已知每天原料的使用限额为A 药品120 g 、B 药品400 g 、C 药品240 g .甲种烟花每枚可获利2 元,乙种烟花每枚可获利1 元,问每天应生产甲、乙两种烟花各多少枚才能获利最大.[解析] 设每天生产甲种烟花x 枚,乙种烟花y 枚,获利为z 元,则⎩⎪⎨⎪⎧3x +2y ≤1204x +11y ≤4004x +6y ≤240x ≥0y ≥0,作出可行域如图所示.目标函数为:z =2x +y .作直线l :2x +y =0,将直线l 向右上方平移至l 1的位置时,直线经过可行域上的点A (40,0)且与原点的距离最大.此时z =2x +y 取最大值.故每天应只生产甲种烟花40枚可获最大利润.13.某运输公司接受了向抗洪抢险地区每天至少运送180t 支援物资的任务,该公司有8辆载重为6t 的A 型卡车和4辆载重为10t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的成本费A 型车为320元,B 型车为504元,请你给该公司调配车辆,使公司所花的成本费最低.[解析] 设每天调出A 型车x 辆,B 型车y 辆,公司所花的成本为z 元,则由题意知⎩⎪⎨⎪⎧x ≤8,y ≤4,x +y ≤10,4x ×6+3y ×10≥180,x ≥0,y ≥0,目标函数为z =320x +504y (其中x ,y ∈N ).作出可行域如图所示.由图易知,当直线z =320x +504y 在可行域内经过的整数点中,点(8,0)使z =320x +504y 取得最小值,z min =320×8+504×0=2560,∴每天调出A 型车8辆,B 型车0辆,公司所花成本费最低.14.(1)求函数y =1x -3+x (x >3)的最小值; 解析:∵x >3,∴y =1x -3+x =1x -3+(x -3)+3≥5,当且仅当x -3=1x -3,即x =4时取等号.∴y min =5.(2)求函数y =x (a -2x )(x >0,a 为大于2x 的常数)的最大值; 解析:∵x >0,a >2x ,∴y =x (a -2x )=12·2x ·(a -2x )≤12·2+(-)⎡⎤⎢⎥⎣⎦2x a 2x 2=a 28, 当且仅当x =a4时,取等号,∴y max =a28.(3)已知x >0,y >0,2x +5y =20,求μ=lg x +lg y 的最大值. 解析:∵x >0,y >0,2x +5y =20,∴2x ·5y ≤⎝⎛⎭⎫2x +5y 22=⎝⎛⎭⎫2022=100, ∴xy ≤10,∴μ=lg x +lg y =lg(xy )≤lg 10=1, 当且仅当2x =5y =10,即x =5,y =2时上式取等号, ∴当x =5,y =2时,μ=lg x +lg y 取最大值,最大值为1. 15.围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如右上图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;解析:如图所示,设矩形的另一边长为a m , 则y =45x +180(x -2)+180×2a =225x +360a -360.由已知xa =360,得a =360x .所以y =225x +3602x-360(x >0).(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.解析:∵x >0,∴225x +3602x≥2225×3602=10 800.∴y =225x +3602x-360≥10 440.当且仅当225x =3602x时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440强化练习一 选择题1.(2010~2011·内蒙古赤峰市田家炳中学高二期中)已知a <0,-1<b <0,则下列各式正确的是( )A .a >ab >ab 2B .ab >a >ab 2C .ab 2>ab >aD .ab >ab 2>a[答案] D[解析] ∵-1<b <0,∴1>b 2>0>b >-1, 即b <b 2<1,两边同乘以a <0, ∴ab >ab 2>a .故选D.2.如果a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2 D .ac (a -c )<0 [答案] C[解析] ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A 、B 、D 均正确. ∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立.3.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系为( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b [答案] C [解析]⎭⎪⎬⎪⎫a +b >0a >-b b <0-b >0a >-b >0-a <b <0.∴选C. [点评] 可取特值检验.∵a +b >0,b <0,∴可取a =2,b =-1,∴-a =-2,-b =1,∴-a <b <-b <a ,排除A 、B 、D ,∴选C.4.设x <a <0,则下列各不等式一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<ax D .x 2>a 2>ax[答案] B[解析]⎭⎪⎬⎪⎫x <a <0x <0a <0⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x 2>ax ax >a 2x 2>ax >a 2∴选B.5.下列结论中正确的是( ) ①a >b >0,d >c >0a c >bd ,②a >b ,c >da -c >b -d , ③a c 2>bc2a >b , ④a >ba n >b n (n ∈N ,n >1). A .①②③ B .①③ C .②③④ D .①③④[答案] B[解析]⎭⎪⎬⎪⎫d >c >01c >1d >0 a >b >0a c >b d ∴①对;a >b ,-c <-d 不同向不可加,∴②错. ∵a c 2>bc2,∴c 2>0.∴a >b .③对; 只有a >b >0时,对任意正整数n >1才有a n >b n , ∴④错.故选B.6.设a =2,b =7-3,c =6-2,则( ) A .c <b <a B .a <c <b C .c <a <b D .b <c <a[答案] D[解析] 假设a >b 即2>7-3,∴2+3>7,平方得6>1成立,∴a >b 排除B 、C.又假设b >c ,即7-3>6- 2∴7+2>6+3,平方得14>18显然不成立 ∴b <c 排除A.7.已知:0<a <b <1,x =a b ,y =log b a ,z =log 1a b ,则( )A .z <x <yB .z <y <xC .y <z <xD .x <z <y [答案] A[解析] y =log b a >log b b =1,0<x =a b <a 0=1,z =log 1a b <0,∴z <x <y .8.若a ,b 是任意实数,且a >b ,则( ) A .a 2>b 2<1。
初中知识点梳理——不等式篇初中数学中,不等式是一个重要的内容。
不等式是描述数值之间大小关系的一种数学语言,它运用广泛,涉及到绝大多数数学领域。
在这篇文章中,我们将系统地梳理初中阶段学习的不等式知识点,帮助读者更好地理解和掌握这一部分内容。
一、不等式的基本概念和符号不等式是用不同的符号表示的数之间的大小关系。
初中阶段最常用的不等式符号为小于(<)、大于(>)、小于等于(≤)和大于等于(≥)。
我们以“a>b”为例进行解释。
这个不等式表示a的值要大于b的值,也可以理解为b的值小于a的值。
在解不等式时,我们要找出满足不等式条件的解集,即能够使不等式成立的数值的集合。
二、一元一次不等式一元一次不等式是形如ax+b>c(或ax+b≥c)的不等式,其中a、b、c为已知数,x为未知数。
我们可以通过将不等式中的符号视作等号,按照求解方程的方式解决不等式。
然后再根据符号的关系确定解集,即找出满足不等式条件的x的取值范围。
例如,对于不等式3x-4>7,我们可以将它转化为3x-4=7,解得x=11。
然后再根据原不等式的符号关系,得到实数集合{x|x>11},即满足不等式的x的取值范围。
三、一元一次不等式组一元一次不等式组是由一组一元一次不等式组成的数学表达式。
解一元一次不等式组的方法与解一元一次方程组的方法相似,我们可以使用图像法、代入法、消元法等不同的解法。
其中,图像法可以将不等式表示为一条直线或者一条射线对应的部分,通过观察图像来确定解集;代入法是将一个不等式的解代入其他不等式中,判断是否满足条件;消元法则是通过对不等式进行逐步的代入和合并操作,最终得出解集。
四、绝对值不等式绝对值不等式是由带有绝对值符号的不等式组成的方程。
解绝对值不等式的关键是考虑绝对值的取值范围。
当绝对值内部的表达式为正数时,绝对值不起作用,不等式的解同样成立;当绝对值内部的表达式为负数时,绝对值取反,不等式的解反转。
不等式的综合应用【考纲要求】1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.. 【知识络】【考点梳理】考点一:不等式问题中相关方法 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形 →判断符(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择不等式的综合应用解不等式问题实际应用问题不等式中的含参问题不等式证明适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.考点二:不等式与相关知识的渗透1.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
2.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:10审题,20建立不等式模型,30解数学问题,40作答。
要点诠释:⑴解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。
⑵解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。
⑶不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。
如运用放缩法证明不等式时要注意调整放缩的度。
⑷根据题目结构特点,执果索因,往往是有效的思维方法。
【典型例题】类型一:不等式求解问题例1.解关于x 的不等式: ()0922>≤-a a a x x 【思路点拨】含绝对值的不等式问题应该先考虑分情况讨论去掉不等式。
解:当()⎩⎨⎧≤--≥⎩⎨⎧≤-≥≥029929222a ax x ax a a x x a x a x 即时,不等式可转化为 a bx a 173+≤≤∴⎩⎨⎧≥+-<⎩⎨⎧≤-<<02992)(222a ax x ax a x a ax a x a x 即时不等式可化为当]2332(,33a a x x aaa ∴≤≤<⎡⎤-∞⋃⎢⎥⎣⎦或故不等式的解集为【总结升华】含参数问题应该首先考虑到是否需要分类讨论,绝对值问题往往需要根据绝对值内与零的关系进行讨论。
举一反三:【高清课堂:基本不等式394889 典型例题一】【变式1】已知函数2()21()f x ax x a R =++∈(1)若()f x 的图像与x 轴恰有一个公共点,求a 的值; (2)若方程()0f x =至少有一个正跟,求a 的范围。
解:(1)当0a =时函数()f x 为一次函数,符合题意; 当0a ≠时,函数()f x 为二次函数,则440a ∆=-=,所以1a = 综上,01a =或.(2)当0a =时,()0f x =为一次方程,不符合题意; 当0a ≠时, ()0f x =为二次方程,显然(0)1f = 所以0a <时有一正一负根,符合题意; 当0a >时,121210100020a x x x a x x aφ⎧⎪≤∆≥⎧⎪⎪⎪⋅>⇒>⇒∈⎨⎨⎪⎪+>⎩⎪->⎪⎩ 综上,a 的范围0a <. 类型二:不等式证明【例2】(2014 南京校级四模)已知a >0,b >0且a +b =1≤【思路点拨】利用不等式()2222a b a b ++≥【证明】若x >0,y >0,222x y xy +≥则()()2222222x y x y xy x y +≥++=+即()()2222x y x y+≤+所以当a>0,b>0,且a+b=1时()2221218a b ≤+++=≤=12a b ==时取等. 【总结升华】本题考查不等式的证明,解题关键时要注意到基本不等式与均值不等式之间的关系,同时要考虑到不等式中等成立的条件. 举一反三:【变式】(2014 衡阳县校级模拟)(1)已知函数()2cos 12f x x π⎛⎫=+⎪⎝⎭,()11sin 22g x x =+设0x x =是函数y=f(x)图像的一条对称轴,求()0g x 的值.(1)已知函数()244f x x ax x a =-++-在[]0,3x ∈时,()0f x >成立,求a 的取值范围.【解析】(1)由题意()21cos 26cos 122x f x x ππ⎛⎫++ ⎪⎛⎫⎝⎭=+= ⎪⎝⎭ 0x x =是函数()y f x =的一条对称轴02,6x k k Z ππ∴+=∈()011sin 26g x k ππ⎛⎫∴=+- ⎪⎝⎭∴当k 为偶数时, ()034g x =,当k 为奇数时()054g x = (2)[]2440,0,3x ax x a x -++->∈成立()()22121144212111x x x x a x x x x ++++++∴<==++++++11241x x +++≥+(0x =时取等) 4a ∴<类型三:不等式与相关知识的融合例3.已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1. (1)证明:|c |≤1;(2)证明:当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x ).【思路点拨】关于函数不等式,需要对自变量灵活取值,凑出需要的函数值。
(1)证明:由条件当=1≤x ≤1时,|f (x )|≤1,取x =0得:|c |=|f (0)|≤1,即|c |≤1. (2)证法一:依题设|f (0)|≤1而f (0)=c ,所以|c |≤1.当a >0时,g (x )=ax +b 在[-1,1]上是增函数,于是 g (-1)≤g (x )≤g (1),(-1≤x ≤1). ∵|f (x )|≤1,(-1≤x ≤1),|c |≤1, ∴g (1)=a +b =f (1)-c ≤|f (1)|+|c |=2,g (-1)=-a +b =-f (-1)+c ≥-(|f (-2)|+|c |)≥-2, 因此得|g (x )|≤2 (-1≤x ≤1);当a <0时,g (x )=ax +b 在[-1,1]上是减函数, 于是g (-1)≥g (x )≥g (1),(-1≤x ≤1), ∵|f (x )|≤1 (-1≤x ≤1),|c |≤1 ∴|g (x )|=|f (1)-c |≤|f (1)|+|c |≤2.综合以上结果,当-1≤x ≤1时,都有|g (x )|≤2. 证法二:∵|f (x )|≤1(-1≤x ≤1) ∴|f (-1)|≤1,|f (1)|≤1,|f (0)|≤1,∵f (x )=ax 2+bx +c ,∴|a -b +c |≤1,|a +b +c |≤1,|c |≤1, 因此,根据绝对值不等式性质得: |a -b |=|(a -b +c )-c |≤|a -b +c |+|c |≤2, |a +b |=|(a +b +c )-c |≤|a +b +c |+|c |≤2,∵g (x )=ax +b ,∴|g (±1)|=|±a +b |=|a ±b |≤2,函数g (x )=ax +b 的图象是一条直线,因此|g (x )|在[-1,1]上的最大值只能在区间的端点x =-1或x =1处取得,于是由|g (±1)|≤2得|g (x )|≤2,(-1<x <1).)21()21(])21()21([])21()21([)2121(])21()21[()(,)21()21(4)1()1(:22222222--+=+-+--++++=--++--+=+=∴--+=--+=x f x f c x b x a c x b x a x x b x x a b ax x g x x x x x 证法三当-1≤x ≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∵|f (x )|≤1,(-1≤x ≤1),∴|f )21(+x |≤1,|f (21-x )|≤1; 因此当-1≤x ≤1时,|g (x )|≤|f )21(+x |+|f (21-x )|≤2. (3)解:因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即 g (1)=a +b =f (1)-f (0)=2. ① ∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1. 因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图象的对称轴,由此得-ab2<0 ,即b =0.由①得a =2,所以f (x )=2x 2-1.举一反三:【变式1】已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3],(1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证:lg57≤F (|t -61|-|t +61|)≤lg 513. 【解析】设y =1222+++x cbx x ,则(y -2)x 2-bx +y -c =0①∵x ∈R ,∴①的判别式Δ≥0,即 b 2-4(y -2)(y -c )≥0, 即4y 2-4(2+c )y +8c +b 2≤0 ②由条件知,不等式②的解集是[1,3]∴1,3是方程4y 2-4(2+c )y +8c +b 2=0的两根⎪⎩⎪⎨⎧+=⨯+=+48312312b c c ∴c =2,b =-2,b =2(舍) (2)任取x 1,x 2∈[-1,1],且x 2>x 1,则x 2-x 1>0,且 (x 2-x 1)(1-x 1x 2)>0,∴f (x 2)-f (x 1)=-)1)(1()1)((2)12(122221211221222x x x x x x x x x x ++--=+--+>0,∴f (x 2)>f (x 1),lg f (x 2)>lg f (x 1),即F (x 2)>F (x 1)∴F (x )为增函数.,31|)61()61(||||,61||61|)3(=+--≤+--=t t u t t u 记即-31≤u ≤31,根据F (x )的单调性知F (-31)≤F (u )≤F (31),∴lg 57≤F (|t -61|-|t +61|)≤lg 513对任意实数t 成立.类型四:不等式相关应用题例4.用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器,设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)【思路点拨】应用题需要首先读懂题意,然后把实际问题转化为数学模型问题。