时间序列笔记
- 格式:doc
- 大小:2.02 MB
- 文档页数:15
《时间序列分析及应用:R语言》读书笔记姓名:石晓雨学号:1613152019(一)、时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型;基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报。
通常我们不能假定观测值独立取自同一总体,时间序列分析的要点是研究具有相关性质的模型。
(二)、下面是书上的几个例子1、洛杉矶年降水量问题:用前一年的降水量预测下一年的降水量。
第一幅图是降水量随时间的变化图;第二幅图是当年降水量与去年降水量散点图。
win.graph(width=4.875, height=2.5,pointsize=8) #这里可以独立弹出窗口data(larain) #TSA包中的数据集,洛杉矶年降水量plot(larain,ylab='Inches',xlab='Year',type = 'o') #type规定了在每个点处标记一下win.graph(width = 3,height = 3,pointsize = 8)plot(y = larain,x = zlag(larain),ylab = 'Inches',xlab = 'Previous Year Inches')#zlag 函数(TSA包)用来计算一个向量的延迟,默认为1,首项为NA从第二幅图看出,前一年的降水量与下一年并没有什么特殊关系。
2、化工过程win.graph(width = 4.875,height = 2.5,pointsize = 8)data(color)plot(color,ylab = 'Color Property',xlab = 'Batch',type = 'o')win.graph(width = 3,height = 3,pointsize = 8)plot(y = color,x = zlag(color),ylab = 'Color Property',xlab = 'Previous Batch Color Property')len <- length(color)cor(color[2:len],zlag(color)[2:len])#相关系数>0.5549第一幅图是颜色属性随着批次的变化情况。
《时间序列分析及应用:R语言》读书笔记姓名:石晓雨学号:1613152019(一)、时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型;基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报。
通常我们不能假定观测值独立取自同一总体,时间序列分析的要点是研究具有相关性质的模型。
(二)、下面是书上的几个例子1、洛杉矶年降水量问题:用前一年的降水量预测下一年的降水量。
第一幅图是降水量随时间的变化图;第二幅图是当年降水量与去年降水量散点图。
win.graph(width=4.875, height=2.5,pointsize=8) #这里可以独立弹出窗口data(larain) #TSA包中的数据集,洛杉矶年降水量plot(larain,ylab='Inches',xlab='Year',type = 'o') #type规定了在每个点处标记一下win.graph(width = 3,height = 3,pointsize = 8)plot(y = larain,x = zlag(larain),ylab = 'Inches',xlab = 'Previous Year Inches')#zlag 函数(TSA包)用来计算一个向量的延迟,默认为1,首项为NA从第二幅图看出,前一年的降水量与下一年并没有什么特殊关系。
2、化工过程win.graph(width = 4.875,height = 2.5,pointsize = 8)data(color)plot(color,ylab = 'Color Property',xlab = 'Batch',type = 'o')win.graph(width = 3,height = 3,pointsize = 8)plot(y = color,x = zlag(color),ylab = 'Color Property',xlab = 'Previous Batch Color Property')len <- length(color)cor(color[2:len],zlag(color)[2:len])#相关系数>0.5549第一幅图是颜色属性随着批次的变化情况。
1. 时域分析方法的基本思想:事件的发展通常都具有一定的惯性,这种惯性用统计的语言来描述就是序列值之间存在着一定的相关关系,这种相关关系通常具有某种统计规律。
寻找出序列值之间相关关系的统计规律,并拟合出适当的数学模型来描述这种规律,进而利用这个拟合模型预测序列未来的走势,这是时域分析方法的基本思想。
2. 白噪声序列的统计性质:均值为0,方差为常数,自协方差(自相关系数)为0。
即不同时期没有记忆性,不相关的序列。
3. ADF 检验的原理及检验的类型:通过构建p 阶自回归模型,检验其是否存在为1的特征根,如果有,说明该序列不平稳。
检验三种类型:有漂移项的,有漂移项和趋势的,和既无漂移项又无趋势的。
4. 对于一个非平稳序列,一般应选择怎样的差分方法使其平稳:序列蕴含着显著的线性趋势,一阶差分就可以实现趋势平稳序列蕴含着曲线趋势,通常低阶(二阶或三阶)差分就可以提取出曲线趋势的影响;对于蕴含着固定周期的序列进行步长为周期长度的差分运算,通常可以较好地提取周期信息。
5. 平稳时间序列的统计性质:常数均值,常数方差,自协方差函数和自相关函数只依赖于时间的平移长度而与时间的起止点无关。
6. DF 检验的原理及检验的类型:通过构建一阶自回归模型,检验其是否存在为1的特征根,如果有,说明该序列不平稳。
检验三种类型:有漂移项的,有漂移项和趋势的,和既无漂移项又无趋势的。
7. 常用的判断时间序列是否平稳的方法有:时序图检验,自相关图检验,单位根检验8. 求随机游走模型的方差解:t t t x x :),,(ARIMA ε+=-1010模型递推得 其方差是随着时间递增的。
不平稳。
9. 纯随机性检验(白噪声检验)的原假设: 备择假设: 检验统计量:10. AR(1)模型平稳的充要条件: 11. AR(2)模型平稳的充要条件:其特征根方程: 平稳域: 12. 2110ε-σ=ε+ε+ε+=t )x (Var )x (Var t t t 11012ε+ε+ε+=ε+ε+=--- t t t t t t x )x (x 1,0:210≥∀====m H m ρρρ m k m H k ≤≥∀≠,1,0:1ρ至少存在某个)m (~ˆn Q m k k 212χρ=∑=()为白噪声序列为非白噪声序列,否则则拒绝原假设,原序列若m Q 2χ>{}1-1|<<=φφφφλ,特征根方程0212=--φλφλ1,1,112212<-<+<φφφφφ()j j j t j t t t t G B B x x B AR 10111)(111)1(ϕεφεφεφ=⇒⇒-=⇒=-∑∞=)(模型格林函数推导(格林)函数为Green G G x Var j j j t ,)(202εσ∑∞==13. 对一个非平稳时间序列建型,论述其建模步骤,常用方法及基本思想.一、首先进行平稳性的检验(时序图检验,相关图检验和单位根检验),如果不平稳,要选用适当的方法使其平稳(差分方式的选择),平稳之后再判断是否是白噪声。
统计学时间数列分析笔记
时间序列数据用于描述现象随时间发展变化的特征。
时间序列(timesseries)是同一现象在不同时间的相继观察值
排列而形成的序列。
经济数据大多数以时间序列的形式给出。
时间序列可以分为平稳序列和非平稳序列两大类。
平稳序列是基本上不存在趋势的序列。
这类序列中的各观察值基本上在某个固定的水平上波动,虽然在不同的时间段波动的程度不同,但并不存在某种规律,波动可以看成是随机的。
时间序列的成分可以分为四种:
趋势(T)、季节性或季节变动(S)、周期性或循环波动(C)、随机性或不规则波动(I)。
构成要素:长期趋势,季节变动,循环变动,不规则变动。
1)长期趋势(T)现象在较长时期内受某种根本性因素作用而形成的总的变动趋势。
2)季节变动(S)现象在一年内随着季节的变化而发生的有规律的周期性变动。
3)循环变动(C)现象以若干年为周期所呈现出的波浪起伏形态的有规律的变动。
4)不规则变动(I)是一种无规律可循的变动,包括严格的随机变动和不规则的突发性影响很大的变动两种类型。
时间序列分析模型~()()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧=-=-⎩⎨⎧∑∑-可变权数选点法固定权数选点法选点法曲线曲线如修正指数曲线曲线的模型参数主要用于估计一些增长三段求和法差分指数平法滑高次指数平滑法双参数线性指数平滑法单参数线性指数平滑法一次指数平滑法指数平滑法二次移动平均法一次移动平均法移动平均法折扣最小二乘法普通最小二乘法最小二乘法分段平均法全列平均法平均数法isticGompertzHoltBrownyyyyiiitlog,,,,,:minˆ:minˆ:22α1. 时间序列作用:描述系统运行规律预测对特殊政策或事件的影响加以估计2. 时间序列分类:确定时间序列,随机时间序列3. 确定时间序列的分析方法:它不计算时间序列的随机变动值,建模的目的是要消除随机变动的影响,揭示预测对象随时间变动的规律性用于预测,这是确定性时间序列和随机时间序列分析的区别。
趋势外推法:有明显上升或下降趋势,没有明显季节变动,能用函数表示%移动平均法:一次移动平均:大体成水平变动,平滑公式,预测公式两次移动平均:线性上升或下降,预测公式指数平滑法:一次指数平滑法:水平变动,平滑公式,预测公式Brown 单参数线性指数平滑法:线性上升或下降,平滑公式,预测公式Holt 双参数线性指数平滑法: 线性上升或下降,平滑公式,预测公式 参数选择主观性较强,不能提供置信区间信息季节调整术:试图度量序列中的季节变动,并利用这些指数剔除序列中的季节变动。
4.随机时间序列分析:平稳时间序列分析严平稳的概率分布与时间的平移无关。
宽平稳序列的均值随时间的平移而不变,自协方差仅与时间间隔有关*自回归模型、滑动平均模型和自回归滑动平均模型分析平稳的时间序列的规律。
自回归模型:如果时间序列() ,2,1=t X t 是平稳的且数据之间前后有一定的依存关系,即t X 与前面p t t t X X X --- ,,21有关与其以前时刻进入系统的扰动(白噪声)无关,具有p 阶的记忆,描述这种关系的数学模型就是p 阶自回归模型可用来预测:t p t p t t t a X X X X ++++=---ϕϕϕ 2211滑动平均模型:如果时间序列() ,2,1=t X t 是平稳的与前面p t t t X X X --- ,,21无关与其以前时刻进入系统的扰动(白噪声)有关,具有q 阶的记忆,描述这种关系的数学模型就是q 阶滑动平均模型可用来预测:q t q t t t t a a a a X ---+++-=θθθ 2211回归滑动平均模型:如果时间序列() ,2,1=t X t 是平稳的与前面p t t t X X X --- ,,21有关且与其以前时刻进入系统的扰动(白噪声)也有关,则此系统为自回归移动平均系统,预测模型为:=+++----p t p t t t X X X X ϕϕϕ 2211q t q t t t a a a a ---+++-θθθ 2211非平稳时间序列分析用模型来预测应是要把趋势和波动综合考虑进来,是它们的叠加。
时间序列分析笔记总结一、主要概念经典的T 检验、f 检验隐含假定了所依据的时间序列是平稳的,若时间序列不平稳,我们做的T 值、F 值、R ²等是失效的。
弱平稳:如果一个随机过程的均值、方差和协方差在时间上是恒定的(不随时间的变化变化)。
平稳性检验可以通过图示简单判断,平稳时间序列的相关图会很快变平,非平稳时间序列消失缓慢;平稳性可以通过时间序列是否含有单位根来检查,如DF ,ADF 检验。
伪回归: 回归分析结果中,R ²>DW 就可能存在伪回归问题。
随机游走:如股票、汇率等价格为随机游走,是非平稳的。
随机游走分为带漂移的随机游走(不存在常数项或截距项)和不带漂移的随机游走(出现常数项)。
单整(单积随机过程):差分后平稳。
不带漂移的随机游走模型为一阶单整序列,记为I(1),如果进行两次差分后为平稳序列,为二阶单整, I (0),I (1),I (2)以此类推。
单位根过程:对于Y t= Y t-1+μt (-1≤ρ≤0),当ρ=1时是一个单位根过程。
两边同时减去一个Y t-1,式子变形为△Y=(ρ-1)Y t-1+μt ,然后看ρ-1的值。
当ρ <1时,我们说Y t 是一个平稳序列;而当ρ >1时, Y t 是非平稳的。
DF 检验:如果ρ=1或者δ=0, xt 就是最基本的单位根过程(随机游走),是非平稳的,然后用最小二乘法估计δ,但是得到的t 统计量不服从t 分布,所以DF 两人构造了专门的临界值分布表。
参数ρ或δ所对应的t 统计量服从DF 分布,若计算值小于临界值,拒绝原假设。
ADF 检验(增广DF ):在DF 基础上通过在三个方程中增加因变量△Yt 的滞后值控制εt 的自相关(差分)。
协整:把两个非平稳的波动相减或相加抵消掉,剩余的部分是平稳的,变成了有效的回归分析。
残差序列做平稳性检验。
二、主要模型ARMA 模型(Auto-Regressive and Moving Average Model )是研究时间序列的重要方法,由自回归模型(简称AR 模型)与滑动平均模型(简称MA 模型)相加构成。
文档结尾是FAQ和var建模的15点注意事项【梳理概念】向量自回归(VAR, Vector Auto regression)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。
VAR模型:VAR方法通过把系统中每一个内生变量,作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的要求。
VAR模型对于相互联系的时间序列变量系统是有效的预测模型,同时,向疑自回归模型也被频繁地用于分析不同类型的随机误差项对系统变量的动态影响。
如果变量之间不仅存在滞后影响,而不存在同期影响关系,则适合建立VAR模型,因为VAR模型实际上是把当期关系隐含到了随机扰动项之中。
协整:Engle和Granger (1987a)指岀两个或多个非平稳时间序列的线性组合可能是平稳的。
假如这样一种平稳的或的线性组合存在,这些非平稳(有单位根)时间序列之间被认为是具有协整关系的。
这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期均衡关系。
* 第六讲时间序列分析*一一目录——♦d•简介*6」时间序列数据的处理d ■平稳时间序列模型* 6.2 ARIMA 模型* 6.3 VAR 模型非平稳时间序列模型一近些年得到重视,发展很快* 6.4非平稳时间序列简介* 6.5单位根检验——检验非平稳* 6.6协整分析一一非平稳序列的分析黑-自回归条件异方差模型* 6.7 GARCH模型一一金融序列不同时点上序列的差界反映动态关系的时间数据顺序不可颠倒cd d:\stata 10\ado\personal\Net_Course\B6_TimcS*时间序列数据的处理help time*声明时间序列:tsset命令use gnp96.dta, clearlist in 1/20gen Lg叩=L.gnp(此时没办法生成之后一阶的变量,因为没有设左时间变量)tsset date (设定 date 为时间变timeseries ) list in 1/20 gen Lgnp = L.gnp96滞后一期,所以会产生1个缺失值 •检查是否有断点——肉眼看不方便,用命令检査 use gnp96.dta, clear tsset datetsreport, reportdrop in 10/10— 一去掉断点成连续的,才能继续进行 list in 1/12 tsreport, report tsreport, report list /* 列 出 存 在 断 点 的 样 本 信 息 */.tsreport. rep-ort Number o£ gaps in sairple: 1・ tsreport x repor 七 listRecord1969q3•填充缺漏值一一接着上一步,看看SR 怡如何填充缺漏值。
金融时间序列模型笔记金融时间序列模型是用于分析和预测金融市场数据的统计模型。
这些模型可以帮助我们理解市场的动态,预测未来的趋势,以及做出更有效的投资决策。
以下是关于金融时间序列模型的简单笔记:1. 平稳性: 在金融时间序列分析中,平稳性是一个重要的概念。
一个平稳的时间序列具有恒定的均值、方差和自相关结构。
如果一个时间序列是非平稳的,那么它的统计性质可能会随时间变化。
2. ARIMA 模型: ARIMA 模型(自回归积分滑动平均模型)是用于分析和预测平稳时间序列的常用模型。
ARIMA(p, d, q) 包括自回归部分(AR)、差分部分(I)和滑动平均部分(MA)。
3. GARCH 模型: GARCH(广义自回归条件异方差模型)是用于处理具有条件异方差的金融时间序列的模型。
条件异方差是指时间序列的方差随时间变化。
4. EGARCH 模型: EGARCH(指数广义自回归条件异方差模型)是 GARCH 模型的扩展,它允许负冲击对波动有更大的影响。
5. VAR 模型: VAR(向量自回归模型)用于分析多个时间序列之间的动态关系。
VAR(p) 表示该模型有 p 个滞后。
6. 协整: 对于长期均衡关系的时间序列,即使它们自身可能非平稳,它们的线性组合可能是平稳的。
这种现象被称为协整。
7. 随机游走模型: 随机游走模型假设时间序列的下一个值与前一个值无关,只受随机因素的影响。
8. 单位根检验: 对于非平稳时间序列,单位根检验(如ADF检验)可用于检测是否存在单位根,即是否存在一个过程,其长期平均值不为0。
9. 技术分析和基本面分析: 金融时间序列分析不仅仅是统计建模。
投资者通常会结合技术分析和基本面分析来做出决策。
技术分析关注价格和交易量的动态,而基本面分析则关注公司的财务状况、行业趋势等因素。
10. 数据来源: 金融数据通常来自各种来源,如交易所、新闻网站、金融数据提供商等。
在分析之前,确保数据的准确性和完整性非常重要。
《时间序列分析——基于R》王燕,读书笔记笔记:⼀、检验:1、平稳性检验:图检验⽅法:时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列⾃相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的⾃相关系数ρ会很快地衰减向0(指数级指数级衰减),反之⾮平稳序列衰减速度会⽐较慢衰减构造检验统计量进⾏假设检验:单位根检验adfTest()——fUnitRoots包2、纯随机性检验、⽩噪声检验(Box.test(data,type,lag=n)——lag表⽰输出滞后n阶的⽩噪声检验统计量,默认为滞后1阶的检验统计量结果)1、Q统计量:type=“Box-Pierce”2、LB统计量:type=“Ljung-Box”⼆、模型1、ARMA平稳序列模型1.1平稳性检验1.2ARMA的p、q定阶——acf(),pacf(),auto.arima()⾃动定阶1.3建模arima()1.4模型显著性检验:残差的⽩噪声检验Box.test();参数显著性检验t分布2、⾮平稳确定性分析2.1趋势拟合:直线、曲线(⼀般是多项式,还有其它函数)2.2平滑法移动平均法:SMA()——TTR包指数平滑法:HoltWinters()3、⾮平稳随机性分析3.1ARIMA1平稳性检验,差分运算2拟合ARMA3⽩噪声检验3.2疏系数模型arima(p,d,f)3.3季节模型可以叠加的模型4、残差⾃回归模型:4.1建⽴线性模型4.2对滞后的因变量间拟合线性模型,对模型做残差⾃相关DW检验。
dwtest()——lmtest包,增加选项order.by指定延迟因变量4.3对残差建⽴ARIMA模型5、条件异⽅差模型:异⽅差检验:LM检验ArchTest()——FinTS包,⽤ARCH、GARCH模型建模第⼀章简介统计时序分析⽅法:1、频域分析⽅法2、时域分析⽅法步骤:1、观察序列特征2、根据序列特征选择模型3、确定模型的⼝径4、检验模型,优化模型5、推断序列其它统计性质或预测序列将来的发展时域分析研究的发展⽅向:1、AR,MA,ARMA,ARIMA(Box-Jenkins模型)2、异⽅差场合:ARCH,GARCH等(计量经济学)3、多变量场合:“变量是平稳”不再是必需条件,协整理论3、⾮线性场合:门限⾃回归模型,马尔科夫转移模型第⼆章时间序列的预处理预处理内容:对它的平稳性和纯随机性进⾏检验,最好是平稳⾮⽩噪声的序列1、特征统计量1.1概率分布分布函数或密度函数能够完整地描述⼀个随机变量的统计特征,同样⼀个随机变量族{Xt}的统计特性也完全由它们的联合分布函数或联合密度函数决定。
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
时间序列重点1.(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。
一般来讲,经济运行的时间序列都不是平稳序列。
(二)对非平稳序列进行平稳化处理。
如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。
(三)根据时间序列模型的识别规则,建立相应的模型。
若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
(四)进行参数估计,检验是否具有统计意义。
(五)进行假设检验,诊断残差序列是否为白噪声。
(六)利用已通过检验的模型进行预测分析。
平稳序列的时序图应该显示出序列始终围绕一个常数值波动,且波动的范围不大。
如果观察序列的时序图显示出该序列有明显的趋势或周期,那它通常不是平稳序列。
从折线图可以看出原序列可能存在线性增长趋势,所以在eviews中输入命令:series sha1=d(sha,1),生成一阶差分序列sha1,并绘制该序列的折线图,如下图3-3::series sha2=d(sha,2),即生成二阶差分生序列sha2,按照同样的方法绘制该序列的折线图并做单位根检验,认为sha2序列是也平稳的,并且比sha1序列更加平稳。
因此用序列sha2建模更好。
42.980282,相应的P-值分别为0.928247和0.072552,均大于显著性水平,所以要接受原假设,认为剩余序列是白噪声序列,两个模型都通过了检验。
α但根据AIC准则,由表3-8和3-9知ARMA(2,1)的AIC=9.202282,ARMA(4,3)的AIC=9.302502,所以我们选择ARMA(2,1)模型对sha2序列进行建模。
)时间序列分析模型~()()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧=-=-⎩⎨⎧∑∑-可变权数选点法固定权数选点法选点法曲线曲线如修正指数曲线曲线的模型参数主要用于估计一些增长三段求和法差分指数平法滑高次指数平滑法双参数线性指数平滑法单参数线性指数平滑法一次指数平滑法指数平滑法二次移动平均法一次移动平均法移动平均法折扣最小二乘法普通最小二乘法最小二乘法分段平均法全列平均法平均数法isticGompertzHoltBrownyyyyiiitlog,,,,,:minˆ:minˆ:22α1. 时间序列作用:描述系统运行规律预测对特殊政策或事件的影响加以估计2. ~3. 时间序列分类:确定时间序列,随机时间序列4. 确定时间序列的分析方法:它不计算时间序列的随机变动值,建模的目的是要消除随机变动的影响,揭示预测对象随时间变动的规律性用于预测,这是确定性时间序列和随机时间序列分析的区别。
趋势外推法:有明显上升或下降趋势,没有明显季节变动,能用函数表示移动平均法:一次移动平均:大体成水平变动,平滑公式,预测公式两次移动平均:线性上升或下降,预测公式指数平滑法:一次指数平滑法:水平变动,平滑公式,预测公式Brown 单参数线性指数平滑法:线性上升或下降,平滑公式,预测公式 ?Holt 双参数线性指数平滑法: 线性上升或下降,平滑公式,预测公式 参数选择主观性较强,不能提供置信区间信息季节调整术:试图度量序列中的季节变动,并利用这些指数剔除序列中的季节变动。
4.随机时间序列分析:平稳时间序列分析严平稳的概率分布与时间的平移无关。
宽平稳序列的均值随时间的平移而不变,自协方差仅与时间间隔有关自回归模型、滑动平均模型和自回归滑动平均模型分析平稳的时间序列的规律。
%自回归模型:如果时间序列() ,2,1=t X t 是平稳的且数据之间前后有一定的依存关系,即t X 与前面p t t t X X X --- ,,21有关与其以前时刻进入系统的扰动(白噪声)无关,具有p 阶的记忆,描述这种关系的数学模型就是p 阶自回归模型可用来预测:t p t p t t t a X X X X ++++=---ϕϕϕ 2211滑动平均模型:如果时间序列() ,2,1=t X t 是平稳的与前面p t t t X X X --- ,,21无关与其以前时刻进入系统的扰动(白噪声)有关,具有q 阶的记忆,描述这种关系的数学模型就是q 阶滑动平均模型可用来预测:q t q t t t t a a a a X ---+++-=θθθ 2211回归滑动平均模型:如果时间序列() ,2,1=t X t 是平稳的与前面p t t t X X X --- ,,21有关且与其以前时刻进入系统的扰动(白噪声)也有关,则此系统为自回归移动平均系统,预测模型为:=+++----p t p t t t X X X X ϕϕϕ 2211q t q t t t a a a a ---+++-θθθ 2211非平稳时间序列分析!用模型来预测应是要把趋势和波动综合考虑进来,是它们的叠加。
金融时间序列知识点总结一、时间序列数据的描述统计时间序列数据的描述统计是对时间序列数据的基本特征进行描述和分析。
时间序列数据通常表现为趋势、季节性和随机性。
趋势是指时间序列数据随时间变化呈现出的总体上升或下降的趋势;季节性是指时间序列数据在一年内周期性的变动规律;随机性是指时间序列数据除了趋势和季节性之外的随机波动。
常用的描述统计方法包括数据的平均值、方差、标准差、最大值、最小值、分位数、偏度和峰度等指标。
这些指标可以帮助我们直观地了解时间序列数据的分布规律和基本特征。
二、时间序列的基本模型和预测方法时间序列的基本模型和预测方法包括了平稳时间序列模型、非平稳时间序列模型和预测方法。
平稳时间序列模型是指时间序列数据在时间平均和方差都保持恒定的模型,其中最为重要的是自回归移动平均模型(ARMA模型)和自回归积分移动平均模型(ARIMA模型),它们分别是对时间序列数据的自相关性和滞后效应的建模;非平稳时间序列模型是指时间序列数据在时间平均和方差存在趋势或季节性变化的模型,其中最为重要的是趋势模型、季节模型和趋势季节模型,它们是对时间序列数据在趋势和季节上的变化规律进行建模;时间序列的预测方法包括了朴素预测、移动平均法、指数平滑法、回归分析法、时间序列模型法、神经网络法、支持向量机法等。
这些方法可以帮助我们对时间序列数据的未来走势进行预测。
三、时间序列数据的平稳性检验和建模时间序列数据的平稳性是对时间序列数据的基本特征之一。
平稳时间序列的平均值和方差在时间上是保持恒定的,而非平稳时间序列的平均值和方差在时间上是存在趋势或季节性变化的。
平稳性检验主要包括了图示法、单位根检验、差分平稳性检验、协整性检验和平滑法。
平稳时间序列的建模方法包括了白噪声模型、自回归模型、移动平均模型、自回归移动平均模型、自回归积分移动平均模型、趋势模型、季节模型、趋势季节模型和混合模型。
这些方法可以帮助我们对时间序列数据的平稳性进行检验和建模四、时间序列数据的相关性和协整性分析时间序列数据的相关性是对时间序列数据之间的关联程度进行分析。
时间序列知识点总结时间序列的特征在进行时间序列分析之前,需要先了解时间序列数据的特征。
时间序列数据通常包括趋势、季节性、周期性和随机性等几个方面的特征。
趋势是时间序列数据长期变化的倾向,可以分为上升趋势、下降趋势和水平趋势。
趋势可以通过线性趋势、非线性趋势等形式进行建模。
季节性是时间序列数据在一年内重复出现的短期周期性变化。
例如,零售业的销售额在每年的圣诞节期间通常会有显著增长,这就是季节性的表现。
周期性是时间序列数据在非固定时间段内重复出现的周期性变化。
例如,房地产市场可能会出现10年一个周期的波动。
随机性是无法被趋势、季节性和周期性所解释的时间序列数据的波动。
随机性也被称为噪声,它可以通过模型的残差项来描述。
时间序列的模型时间序列分析的目标是从历史数据中找出模式,并据此预测未来的走势。
在时间序列分析中,最常用的模型有自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)和指数平滑模型等。
ARMA模型是一种描述时间序列数据的随机过程,它包括自回归和移动平均两种成分,可以用来描述时间序列数据的趋势和随机波动。
ARIMA模型是在ARMA模型的基础上引入差分运算,用来处理非平稳的时间序列数据。
ARIMA模型包括自回归阶数p、差分阶数d和移动平均阶数q三个参数,可以较为灵活地适应不同时间序列的特征。
指数平滑模型是一种通过加权移动平均的方式对时间序列数据进行平滑处理,并据此预测未来的走势。
指数平滑模型有简单指数平滑、双指数平滑和三指数平滑等不同形式。
时间序列的预测时间序列分析的一个重要应用就是预测未来的走势。
对于经济金融领域来说,预测未来的通货膨胀率、利率和股票价格等具有重要的实际意义。
时间序列预测的方法主要包括基于统计模型的方法和基于机器学习的方法。
基于统计模型的方法是通过建立ARMA模型、ARIMA模型或指数平滑模型等,然后根据模型对未来的走势进行估计。
这种方法的优点是模型比较简单,容易理解和解释。
1.时间序列定义,一组数,连起来,分析有用信息,预测,控制(时间序列分析)2.时间序列构成要素,时间,指标值,时间是广义时间概念,但必须是递增的量,X轴从小到大递增(温度)3.时间学列分析方法:确定性,随机性。
观察值序列(了解),给一组数,对随机序列实现,在本质意义上能替代随机序列,现实中叶只能得到观察值序列4.时间序列分类,平稳序列,非平稳序列平稳:统计序列不随时间变化,特性,在常数值平衡上下波动非平稳:特性随时间不断变化时间序列预处理:对平稳性进行分析5.基本思想,有限长度,建立数学模型,对系统未来进行预测(了解)6.分析方法,季节性波动,长期趋势,循环变化(了解大意)7.随机型波动分析,混沌,有一定规律,分析其中规律8.确定性事件序列分析方法,描述性:直观,画图,时序图(稳定性预处理)9.统计时序分析,频域分析,分解成若干不同频率等时域分析,原理,目的,根据惯性用统计语言描述,相关关系,统计规律,拟合数学模型10. 时间序列分析步骤,了解区别11. 时间序列分析的目的和意义,预报分析,控制分析,诊断分析,~1.统计特征量,如何计算,平稳序列判别条件,白噪声序列,线性平稳序列,时间序列预处理,平稳性和随机性,检验2.统计量:均值,协方差,概率分布,联合概率分布—观察值序列,解释,一个随机变量的分布函数决定了所有特征。
自协方差函数,自相关系数。
3.平稳的时间序列,定义,随机特征不随时间变化而变化,为什么要进行平稳和非平稳。
严平稳和宽平稳(实际中一般用宽平稳代替),定义,关系,不能互推。
习题,平稳性判别,条件4.平稳时间序列统计性质,常数均值,延迟5.白噪声序列,条件,两个重要性质(纯随机性,方差相等),白噪声序列和独立同分布序列区别与联系(了解)6.时间序列的迟运算,时间序列预处理,平稳性检验,纯随机性检验7.时序图检验,平稳,均值方差为常数,常数值附近随机波动,波动范围有界,检验原则8.自相关图检验,画出自相关系数,判断原则,短期相关性,随着延迟增加,平稳序列的自相关系数会很快衰减到零(转九十度看图)9.纯随机性检验,白噪声序列定义,两个条件,纯随机性表明序列之间没有任何记忆,关系,1.差分运算,减一下2.延迟算子,指针向后延迟一定步,看清楚是用延迟算子还是直接用差分运算就好3.其次线性差分方程,特解,通解,不相等的实数根,相等的实数根4.AR MR 模型,具体英文表达式,。
通过定义日期变量
将新的日期变量选进“时间轴”
通常,时间序列经过两次差分变量就可以得到稳定了。
第一次差分结果,得到期望值不为零;
第二次差分结果期望值大致为零,于是序列得到了平稳。
那么就可以开始做自相关函数和偏自相关函数了。
当期和之后16期的相关系数图,原假设是否为相关系数都为零。
当期序列和滞后十六期的相关系数。
Box-ljung统计量(值、自由度、原假设成立的概率值)
在第一次结尾,不是依序衰减的。
(结合讲义)
Eg:这种情况就有两个K,2或者是4.具体代入哪一个,需要进行检验。
Eg:第2个和第3个都行。
3.互相关的步骤
先试一试,不加上任何对数变换和差分操作。
上图表示,最大互相关系数出现在滞后0处,为0.998.滞后0处的相关同简单的皮尔逊相关市一样的,说明两个变量之间按存在线性相关性。
而横轴上下的两根横
4.利用时间序列进行模型建立。
由于使用专家选项的属于系统自我识别,所以应该自行定义差分自相关(ARIMA条件),会得到可能更为精确合理的结果。
以上为自我手动做出的结果。
(怎样看出比较准确适合)
5.季节分析法
再通过加法模型进行分解
Err为随机误差项,SAS-1为季节校准(调整之后的)序列,SAF-1季节因素指数,季节趋势周期STC-1(STC-1趋势成分+ERR随机成分=季节校准序列SAS-1,SAS-1+SAF=实际的序列变量)。
如果使用的是乘法模型,则使得其更平滑但是加法模型更为直观。
(直接在该分析
界面改成乘法模型就可以了)
看原数据变化就可以知道预测的结果了。
课堂练习:
利用中经网2000-2013年中国GDP 及全社会固定资产投资年度及月度数据,预测2014-2015年中国GDP及全社会固定资产投资年度及月度数据。