数形结合中的解析几何模型
- 格式:ppt
- 大小:214.00 KB
- 文档页数:5
高中数学解析几何,数形结合。
二级结论学习笔记高考
一轮复习
知识点解析
一、高中数学解析几何:
1、椭圆定义:椭圆是由两个焦点和一个双曲线组成的,其最大截面与最小截面的比例称为离心率。
2、圆的定义:圆是一种特殊的椭圆,其最大截面等于最小截面,离心率为1.
3、正多边形的定义:正多边形是一种多边形,其边长相等,每一个内角都是同样的角度。
4、球的定义:球是一种立体图形,由一个圆心和一个半径组成,其表面上所有点距离圆心的距离都是相同的。
5、四棱锥的定义:四棱锥是一种立体图形,其底面是一个正方形,顶面是一个平行四边形,它有四条侧面,每一条侧面都是平行四边形。
6、三棱柱的定义:三棱柱是一种立体图形,其底面是一个正方形,顶面是一个平行六边形,它有三条侧面,每一条侧面都是平行三角形。
二、数形结合:
1、三角形内角和:三角形的内角和是180度。
2、圆的周长:圆的周长等于2πR,R为圆的半径。
3、正多边形的外角和:正多边形的外角和是180度减去(多边形的边数-2)乘以180度。
4、椭圆的面积:椭圆的面积等于πab,其中a、b分别为椭圆的长轴和短轴。
5、球的表面积:球的表面积等于4πR2,其中R是球的半径。
6、四棱锥的体积:四棱锥的体积等于1/3a2h,其中a为四。
“解析几何”中常用的数学思想方法数学思想是数学的灵魂,是将知识转化为能力的桥梁,也是解决问题的思维策略.《解析几何》内容中蕴含着丰富的数学思想,例谈如下:1.数形结合的思想数形结合是研究曲线与方程的最重要的思想方法.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.例1.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM =,试建立适当的坐标系,并求动点 P 的轨迹方程.思路分析:本题是解析几何中求轨迹方程问题,由题意建立坐标系,写出相关点的坐标,由几何关系式:PM=PN 2,即 PM2=2PN2,结合图形由勾股定理转化为:)1(212221-=-PO PO ,设P(x ,y ),由距离公式写出代数关系式,化简整理得出所求轨迹方程解:以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如图所示平面直角坐标系,则O 1(-2,0),O 2(2,0),由已知:PM=PN 2,即PM2=2PN2,因为两圆的半径都为1,所以有:)1(212221-=-PO PO ,设P (x ,y )则(x +2)2+y 2-1=2[(x -2)2+y 2-1],即33)6(22=+-y x综上所述,所求轨迹方程为:33)6(22=+-y x (或031222=+-+x y x ). 2.分类讨论的思想所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。
实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
例2.在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图5所示).将矩形折叠,使A点落在线段DC上.(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程; (Ⅱ)求折痕的长的最大值。
解析几何初步的数形结合一.关于数形结合数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。
我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
”数形结合在数学研究中有着不可忽视的作用。
二.课题背景高中数学不少问题都涉及数形结合,数形结合是高中数学新课程中所渗透的重要思想方法之一。
阶级初步这部分内容能很好的培养和发展学生的数形结合思想,特别是覆盖范围极广!一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。
函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。
五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。
从图形上找思路恰好就体现了数形结合思想的应用。
六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。
用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。
七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。
八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。
数形结合法解几何问题
数形结合法是一种解决几何问题的有效方法,它的基本思路是通过数学的知识和图形的特点相结合,从而推导出几何问题的解答。
具体说来,数形结合法通常包括以下步骤:
1. 对几何问题进行分析,明确所求的量以及已知的条件。
2. 结合图形的特点,运用数学知识,列出相应的方程或不等式。
3. 将方程或不等式进行化简和变形,得出所求的未知量或关系式。
4. 验证结果是否符合原问题的要求及已知条件。
例如,对于一个求解三角形面积的问题,我们可以先利用三角形的面积公式S=1/2×底×高,得到面积与底和高的关系,然后通过已知的条件列出方程,最后解出未知量即可得到答案。
除了数学知识和图形特点的结合,数形结合法还可以借助计算机软件进行模拟和验证,大大提高几何问题的解决效率和准确性。
因此,数形结合法在实际应用中具有广泛的应用前景,可以为许多领域的研究提供有力的工具和方法。
- 1 -。
利用数形结合解决解析几何一、数形结合思想的概念:所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.二、高考地位:数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。
若要更好运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.三、用数形结合思想解决最值问题:例1 已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点A (3,1),则MF MA +的最小值为( )A.3B.4C.5D.6变式 已知M 为抛物线x y 42=上一动点,过M 作准线的垂线交准线于点D ,定点A (1,3),则MD MA +的最小值为( )A.3B.4C.5D.6例2 若P 为椭圆2212x y +=上的一动点,则点P 到直线0x y +-=的最大距离为( )B. C.变式 已知点P 为椭圆2212x y +=在第一象限部分的点,则x y +的最大值为______。
小结:用数形结合可以解决圆锥曲线的最值问题,但解题时需让图象动起来,直到找出最符合题目的一种图象为止。
四、三.用数形结合解决直线与圆锥曲线的交点问题例3 已知抛物线x y 42=,过定点(2,1)P - 的直线l ,斜率为k ,则k 为何值时,直线l 与抛物线有且只有一个公共点?变式3 已知抛物线x y 42=,定点P(0,2),若过点P 的直线与抛物线有且只有一个交点,求该直线的方程。
小结:解决交点问题时需将图像转动或平移,观察图像交点情况进行转化,最后用代数解题。
提高:已知双曲线22194x y -=,斜率为k 的直线l 过定点(0,2),求下列情况下的k 的取值范围;(1)与双曲线有且只有一个公共点;(2)与双曲线没有公共点;(3)与双曲线有两个公共点;五.课后作业1.已知A (4,0),B(2,2),M 是椭圆221259x y +=上的动点,则MB MA +的最大值为( )A.10B.6C.10+10- 2.已知A(1,4),P 为双曲线22194x y -=右支上的一动点,12F F 、为双曲线的左右焦点,则1PF PA +的最小值为_______。
解析几何解题技巧之“数”“形”结合策略(一)份解析几何解题技巧之“数”“形”结合策略 1解析几何解题技巧之“数”“形”结合策略一、“数”“形”结合解题法的理论概述(一)方法释义首先,关于解析几何的释义,其泛指几何学上一个小分支,主要用代数方法研究集合对象之间的关系和性质,因此也称作“坐标几何”。
其包括平面解析几何和立体解析几何两部分,其中,平面解析几何是二维空间上的解析几何;立体解析几何是三维空间上的解析几何,而立体解析几何则比平面解析几何更加复杂、抽象。
其次,关于数形结合的.释义,即是把题目所给条件中的“数”与“形”一一对应,用简单的、直观的几何图形以及条件之间的位置关系把复杂的、抽象的数学语言以及条件之间的数量关系结合起来,通过形象思维与抽象思维之间的结合,以形助数,或以数解形,从而使复杂的问题简单化,抽象的问题具体化,以起到优化解题途径的目的。
(二)解题思路在遇到解析几何时,能清楚条件与问题之间的数量关系与位置关系,将“数”与“形”一一对应,便能够快速找到解题突破点。
事实上,当熟练掌握到数形结合方法,能够举一反三时,遇到的所有题目都将是同一题目了。
因此,掌握数形结合思,就必须厘清下列关系:第一点,复数、三角函数等以几何条件和几何元素为背景建立的概念;第二点,题目所给的等式或代数方程式的结构中所含明显的几何意义;第三点,函数与图象的对应关系;第四点曲线与方程的对应关系;第五点,实数与数轴上的点的对应关系。
二、“数”“形”结合法在几何解题中的实例解析(一)解析几何中圆类问题实践证明,数形结合对速解圆类问题的帮助很大,因为在一般解题过程中,解析几何圆类问题主要围绕求圆与圆之间的位置关系、圆与直线的位置关系、圆的标准方程等几方面展开。
比如在判断圆与直线的位置关系时,通过建立直角坐标系,便可以直观地观察到直线在圆外,但是答题需要写出确切的答题步骤才能得分。
这时就需要有“数”“形”结合解题思想的辅导——以数解形:通过计算圆心到直线的距离,距离比圆的半径大即表明直线在圆外。
高中数学:数形结合必考题型全梳理!(附例题)一、数形结合的三个原则一、等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.首先,由代数式、方程、不等式构造函数时一要注意变量(包括自变量和因变量)的取值范围。
二、双向性原则既要进行几何直观分析,又要进行相应的代数抽象探求,直观的几何说明不能代替严谨的代数推理.另一方面,仅用直观分析,有时反倒使问题变得复杂,比如在二次曲线中的最值问题,有时使用三角换元,反倒简单轻松.三、简单性原则不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,确定好主元;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线(直线中含有参数)与定二次曲线.二、数形结合的应用一、利用数轴、韦恩图求集合利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。
当所给问题的数量关系比较复杂,不好找线索时,用韦恩图法能达到事半功倍的效果。
二、数形结合在解析几何中的应用解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的.构建解析几何中的斜率、截距、距离等模型研究最值问题;如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的方法来解题,即所谓的几何法求解,比较常见的对应有:(一)与斜率有关的问题(二)与距离有关的问题三、数形结合在函数中的应用(一)利用数形结合解决与方程的根有关的问题【点拨】数形结合可用于解决方程的根的问题,准确合理地作出满足题意的图象是解决这类问题的前提.(二)利用数形结合解决函数的单调性问题(三)利用数形结合解决比较数值大小的问题(四)函数的最值问题(五)利用数形结合解决抽象函数问题四、运用数形结合思想解不等式(一)解不等式(二)求参数的取值范围五、运用数形结合思想解决三角函数问题时间,提高考试效率,起到事半功倍的效果.六、借助向量的图象解决几何问题利用向量可以解决线段相等,直线垂直,立体几何中空间角(异面直线的角、线面角、二面角)和空间距离(点线距、线线距、线面距、面面距),利用空间向量解决立体几何问题,将抽象的逻辑论证转化为代数计算,以数助形,大大降低了空间想象能力,是数形结合的深化。