油藏岩石的物理性质资料
- 格式:pptx
- 大小:20.78 MB
- 文档页数:19
油藏地球物理基本概念在石油工程中,油藏地球物理是指利用地球物理方法和技术研究和评估油气藏地下的物理性质、构造特征和流体分布情况。
以下是油藏地球物理的一些基本概念:1.重力法(Gravity method):重力法是一种测量地球重力场变化的方法。
通过测量地表或井下的重力场强度,可以推断地下岩石的密度变化,从而获得油气藏的结构和边界信息。
2.磁法(Magnetic method):磁法是一种利用地球磁场变化来研究地下构造和岩石性质的方法。
通过测量地表或井下的磁场数据,可以获得构造异常、断层、岩性变化等信息。
3.电法(Electrical method):电法是一种利用地下电阻率差异进行研究和勘探的方法。
通过测量地表或井下的电阻率数据,可以推断不同岩石的分布情况,判断地下是否存在油水分界面。
4.地震法(Seismic method):地震法是油藏地球物理中最常用的方法之一。
通过记录地震波在地下的传播和反射情况,可以得到岩层的速度和厚度信息,识别裂缝、孔隙和流体分布等。
5.孔隙度与渗透率(Porosity and permeability):孔隙度指岩石中的孔隙空间所占的比例,是油藏储集岩石的重要参数。
渗透率则指岩石中流体在孔隙中的流动性能,对油气运移和开采具有重要影响。
6.地下流体识别(Fluid identification):地球物理探测方法可以帮助识别地下流体的类型和分布状况。
通过分析地震波速度、声阻抗等数据,可以判断地下岩石中的油、气和水的存在与分布情况。
以上只是油藏地球物理的一些基本概念,实际上,油藏地球物理涉及到更多的技术和方法。
通过油藏地球物理的应用,可以提供油气储集层的性质及空间位置信息,为油气勘探、开采和管理决策提供重要依据。
第一章 油层岩石的物理特性1. .什么是油藏?油藏的沉积特点及其语言是特性之间的关系是什么?2. 积岩有几大类?各自有些什么特点?3. 油藏物性参数有些什么特点?通常的测定方式是什么?4. 什么是粒度组成?5. 粒度的分析方式有哪些?其大体原理是什么?6. 粒度分析的结果是如何表示的?各自有些什么特点?7. 如何计算岩石颗粒的直径,粒度组成,不均匀系数和分选系数?8. 岩石中一般有哪些胶结物?它们各自有些什么特点?对油田开发进程会发发生什么影响,如何克服或降低其影响程度?9. 通常的岩类学分析方式有哪些?10. 如何评价储层的敏感性(具体化,包括评价地层伤害的程度) 11. 如何划分胶结类型,其依据是什么?它与岩石物性的关系如何? 12. 什么是岩石的比面?通常的测试方式有哪些?其原理是什么/ 13. 推导岩石的比面与粒度组成之间的关系/ 14. 粒度及比面有何用途?15. 什么是岩石的间隙度,其一般的转变是什么?16. 按间隙体积的大小可把间隙度分为几类?各自有些什么特点及用途? 17. 间隙度的测定方式有哪些?各自有什么特点? 18. 间隙度有些什么影响因素,如何影响的? 19. 岩石的紧缩系数反映了岩石的什么性质?是如何概念的? 20. 综合弹性系数的意义是什么?其计算式为:φL f C C C +=*式中各物理量的含义是什么?21. 当油藏中同时含有油,气水三相时,试推导: C=()fo o w w f f CS C S C S C φ+++22. 试推导别离以岩石体积,岩石骨架体积和岩石间隙体积为基准的比面之间的关系S S v S φφϕ•=-=)1(S----以岩石体积为基准的比面,S φ---以岩石间隙体积为基准的比面。
Sv---以岩石骨架体积为基准的比面。
23. 什么是岩石的渗透性?什么是渗透率?焱是渗透率的“1达西”的物理意义是什么? 24. 什么是岩石的绝对渗透率?测定岩石绝对渗透率的限制条件是什么?如何实现这些条件?25. 达西定律及其适用范围是什么?26. 试从理论及实验研究两方面表现出它们之间的不同? 27. 渗透率可分为几大类,其依据是什么?28. 水测,油测及气测渗透率在哪些方面白哦现出它们之间的不同? 29. 从分子运动论的观点说明在什么条件下滑脱效应对渗透率无影响,这一结论在理论和实验工作中有什么用途?30. 影响渗透率的因素有哪些?是如何影响的?31. 什么是束缚水饱和度,原始含油饱和度及残余油饱和度,在地层中他们以什么方式存在?32. 流体饱和度是如何概念的?33. 对低渗岩芯,能用常压下的气测渗透率方式来测其绝对渗透率吗? 34. 测定饱和度的方式有哪些?它们各自由和好坏点?35. 什么是灯下渗流阻力原理?利用等效渗流阻力原理推导出岩石的渗透率,间隙度及孔道半径之间的关系。
石油勘探中的岩石物理技术石油是现代社会发展中不可或缺的能源,而石油勘探则是提取这一重要资源的关键步骤。
岩石物理技术在石油勘探过程中起着至关重要的作用。
本文将探讨岩石物理技术在石油勘探中的应用与意义。
岩石物理技术是一种基于地球物理学和岩石力学原理的技术,通过相关的测量和分析手段,以获取关于井口附近地层性质的信息。
这些信息对于判断石油藏区域的储层状况以及油气的分布情况至关重要。
岩石物理技术主要包括测井和地震勘探两大方面。
测井是在井下进行的一项技术,通过测量油井中不同深度的各项物理参数来判断地层的性质。
最常用的测井技术包括测井电阻率测量、自然伽马射线测量、声波测量以及密度测量等。
这些测井数据可以提供油气藏的储集层孔隙度、渗透率、岩性、含油气饱和度等关键参数。
通过对这些参数的评估,勘探人员能够对潜在油气藏的规模和质量进行初步判断,从而为后续工作提供重要参考。
而地震勘探是一种通过分析地震波在地下介质中传播和反射的特性来判断地下结构的技术。
地震勘探技术主要包括震源激发、接收地震波以及对地震数据的处理与解释等环节。
通过分析地震波在地下岩石中传播时所遇到的不同介质的反射、折射和散射等现象,可以推断出地下岩石的分布、类型、裂缝、孔隙度等重要信息。
地震勘探在判断石油藏区的边界、构造、油气运移通道等方面具有重要意义。
岩石物理技术的应用使得石油勘探能够更加准确地判断潜在油气藏的储量和质量。
通过测井和地震勘探技术,勘探人员可以获得地层的物理特征参数,如波速、电阻率、密度等,并结合岩性解释,以获取地层的渗透率、孔隙度和饱和度等关键信息。
这些信息对于评估油田的可开发性和经济性非常重要,为石油企业做出决策提供了可靠的科学依据。
岩石物理技术的发展也为石油勘探带来了更多的机遇。
随着技术的进步,岩石物理技术已经从传统的二维地震勘探发展到了三维地震勘探,为石油藏的细致勘探提供了重要手段。
同时,岩石物理技术在非常规油气资源的勘探开发中也发挥着重要作用。
油藏流体力学油藏流体力学是石油工程中的重要领域,研究油气藏中流体运动的行为及其影响因素。
在油藏开发和生产过程中,了解油藏流体力学的基本原理和特性对于优化采收率、提高产能至关重要。
一、油藏流体性质油藏中的流体主要包括油、水和天然气。
这些流体在岩石介质中的运动以及相互作用对于油藏的动态行为具有显著的影响。
以下是涉及到的一些重要性质:1. 渗透率:指的是岩石介质对流体运动的阻力程度,通常用单位面积上的流体通过速率来表示。
2. 孔隙度:指的是油气藏中矿物颗粒之间的孔隙空间占总体积的比例,决定流体的储存能力和流动性。
3. 饱和度:指的是岩石孔隙中的某种流体在孔隙总体积中的比例,如水饱和度、气饱和度和油饱和度等。
二、流体流动油藏中的流体流动遵循达西定律,即流体的速度与流体受到的压力梯度成正比。
在油藏开采过程中,常用的两种流动模式是线性流动和非线性流动。
1. 线性流动(Darcy流动):在低渗透率的油气藏中,当压力梯度较小、流动速度较慢时,流体流动符合达西定律,并且与孔隙介质的性质相关。
2. 非线性流动:在高渗透率的油气藏中,流体的速度和压力梯度之间的关系不再呈线性,流动模式更为复杂,例如油藏中的高速水环绕或气推驱动。
三、渗流方程油藏流体力学中的渗流方程是描述流体流动的基本方程,常用的有连续性方程和达西方程。
1. 连续性方程:用于描述油、水和气在油藏中的质量守恒关系,即流入等于流出。
2. 达西方程:描述油藏中流体速度与压力梯度之间的关系,是油藏流体力学中最重要的方程之一。
四、渗透率对油藏流体力学的影响渗透率是决定油气流体运动能力的重要参数,直接影响着油藏的开采效果和产能。
以下是渗透率对油藏流体力学的影响:1. 渗透率大小决定了流体在岩石介质中的运动能力,高渗透率油藏更容易获取更大的产量。
2. 渗透率对流体的渗流路径和分布具有重要影响,低渗透率油藏通常需要采用增产技术来提高产能。
3. 渗透率也影响着流体通过岩石孔隙的速度和温度分布,其中流体速度与渗透率成反比。
油藏储层物理性质与油藏含油性关系研究油藏是指地下含大量石油、天然气等沥青类物质的地质层,是人类能源资源的重要基地。
然而,要想获取油藏存储的能源,除了要进行地质勘探外,还需要对油藏的物理性质进行详细研究。
因为油藏储层物理性质如孔隙结构、渗透率、含水饱和度等对油藏含油性起着至关重要的作用。
本文将探讨油藏储层物理性质与油藏含油性之间的关系。
储层物理性质概述油藏储层物理性质主要分为孔隙结构、岩石物理、渗透率和含水饱和度等方面。
孔隙结构是指油藏储层所具有的孔隙度、孔隙尺寸、孔隙类型等等,它与油藏的后续开发息息相关。
孔隙度是指石油储集层中孔隙体积的比例,是衡量储集层存油能力的重要参数,一般情况下孔隙度大、存储油气的能力越强。
孔隙尺寸有大有小,油藏中的微孔、中孔和宏孔分别对应气体、液体和半固态物质的分布,并且对储集层物性、多孔介质流动特征起着重要的作用。
岩石物理指的是油藏储层本身的物理性质,包括密度、泊松比、弹性模量、声波速度等,这些物理性质可以获取到储层细微的变化,更准确地刻画储层内部的结构特点与含油性质。
渗透率是指油藏储层中油和水流动的难易程度。
油藏地层的渗透率一般较低,但是有许多因素会影响储层的渗透率,如油层厚度、岩屑占空分布状况、颗粒大小和形状分布等等。
含水饱和度是指油藏储层中水分子的含量,也是所谓“水油比”这个经济效益的高优先水平。
如果含水饱和度过高,会降低储层中的含油量,也就降低了油藏开发的经济性。
油藏物理性质与含油性质的关系油藏储层物理性质决定了油藏含油性能力,储层物理性质与含油性之间存在着密切的联系。
具体来说,在孔隙结构与渗透率方面,孔隙度、孔隙尺寸和渗透率对油藏的含油性质都有影响。
一般而言,孔隙度越大,蓄油能力也就越强。
与此相对,随着孔隙度的减小,岩相密度必然增大,流体的渗透能力必然受到限制,从而会降低含油性度。
此外,孔隙类型和孔隙壁面集总面积对储层与藏油性能也有着深刻的影响。
在岩石物理方面,压实度、弹性模量、泊松比和声波速度等都与储层中含油性相关。