五年级奥数分数大小的比较
- 格式:docx
- 大小:313.98 KB
- 文档页数:5
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.根据倒数比较大小。
3.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
分数混合运算式,要注意分数小数之间的互化,已达到简算的目的,同时考虑运算律的应用。
分数比较大小典型例题知识梳理【例1】★比较777773777778 和888884888889的大小。
【解析】这两个分数的分子与分母各不相同,不能直接比较大小,使用通分的方法又太麻烦。
由于这里的两个分数都接近1,所以我们可先用1分别减去以上分数,再比较所得差的大小,然后再判断原来分数的大小。
因为1-777773777778 =5777778 ,1-888884888889 =58888895777778 >5888889所以777773777778 <888884888889。
【小试牛刀】比较77777757777777 和66666616666663的大小。
【解析】77777757777777 >66666616666663【例2】★比较1111111 和111111111哪个分数大? 【解析】可以先用1分别除以这两个分数,再比较所得商的大小,最后判断原分数的大小。
小学五年级奥数培优——分数的问题【知识点梳理】1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
【教学重难、点】一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留三位小数。
)3、分数和小数比较大小:一般把分数变成小数后比较更简便。
六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。
1.8分数大小比较1.8.1母同看子法分母相同,分子大的分数比较大。
例如:1.8.2子同看母法分子相同,分母大的分数比较小。
例如:1.8.3与1比较法1.8.4半比法1.8.5等差比较法如果两个分数的分子分别比各自的分母小相同的数,分子、分母稍大的那个分数比较大。
例如:如果两个分数是假分数,而且分子、分母的差分别相同,那么,分母大的那个分数比较小。
1.8.6相减比较法如果一个分数的分子和分母都比另一个分数的分子和分母大,可把分子的差做分子、分母的差做分母,得到一个新的分数。
若新分数比原来分数中的任意一个分数大,则原来的两个分数中分母大的那个分数较大。
例如:1.8.7同加比较法如果一个真分数的分子和分母同时加上一个数(0除外),正好和另一个分数相等,那么,另一个分数比较小。
例如:如果一个假分数的分子和分母同时加上一个数(0除外),正好和另一个分数相等,那么,另一个分数比较小。
例如:1.8.8同减比较法如果一个真分数的分子和分母同时减去一个数(0除外),正好和另一个分数相等,那么,另一个分数比较小。
例如:如果一个假分数的分子和分母同时减去一个数(0除外),正好和另一个分数相等,那么另一个分数比较大。
例如:1.8.9化成整数比较用两个分母分别去乘两个分数,将分数化成整数,整数大的原分数较大。
例如:1.8.10化成小数比较1.8.11化一个分数为整数比较1.8.12两数相减比较法两个分数直接相减,所得之差大于0,则被减数大于减数。
例如:1.8.13两数相除比较法1.8.14倒数比较法倒数小的分数大。
例如:1.8.15化为百分数比较1.8.16分别除以一个数比较1.8.17分别加上一个数比较1.8.18分别减去一个数比较1.8.19由规律比较1.8.20十字相乘法一个分数的分子乘另一个分数的分母,用所乘的积比较分数的大小。
十字相乘法法则:如果对箭头所指的十字相乘积进行比较,那么靠近较大的积的分数较大。
∵ 13×7=91<5×19=95,由于221-13×17,209=11×19,学生对于分母的质因数分解就感到困难,所以通分法就显得很不方便,如果用十字相乘法显然是比较简便了。
4、分数大小比较一、填空题:1、把下列分数按照从大到小的顺序进行排列:32 97 1511 1813 127 > > > >2、这里有五个分数:73,136,2912,3715,6730,如果按从小到大排列,排在最中间的一个分数是 。
3、试比较11111111111和111111111这两个分数的大小。
4、对下列各组的两个分数,找出一个大小介于它们之间,且分母小于10的分数。
(1) 167 , 227(2) 215 , 2365、试比较443322.0112233.0和887766.0223344.0两个分数的大小。
>6、有10个分数,已知其中的六个分数是:175,72,103,4314,31,257。
如果把这10个分数从小到大排列第6个是72,那么按照从大到小的顺序进行排列第3个分数是 。
7、比较下列两个分数的大小。
(在横线上填上>、<或=)3333333316666666 55555555277777788、比较下列两个分数的大小。
(在横线上填上>、<或=)2222222111111110 8888888744444443二、解答题: 9、把4342,8785,128125三个分数按从大到小顺序排列。
10、下列六个分数算式中,哪一个答数最小?它的答数是多少?509111+ , 499121+ , 489131+, 479141+ , 469151+ , 459161+11、编号为1、2、3号的三只蚂蚁分别举起重量为127115克,333302克,488439克的重物。
那么金牌应发给几号蚂蚁,为什么?12、问1009987654321⨯⨯⨯⨯⨯ΛΛ与101相比,哪一个更大,为什么?4、 分数大小比较 解答一、填空题:1、 97 > 1511 > 1813 > 32 > 127通分之后这几个分数是180120,180140,180132,180130,180105。
2、 73把这五个分数通分之后可以得到:(通分子)14060,13060,14560,14860,13460。
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果. (2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】 如果a =20052006,b = 20062007,那么a ,b 中较大的数是 【考点】两个数的大小比较 【难度】2星 【题型】填空 【关键词】希望杯,五年级,一试 【解析】 方法一:<与1相减比较法>1- 20052006= 12006;1- 20062007= 12007.因为12006> 12007,所以b 较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b <; 方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b 大【答案】b 例题精讲知识点拨教学目标比较与估算【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是.【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<111111111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111< 【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
比较与估算(二)本讲主线1. 分数大小的比较. 1. 分数比较大小:通分母、通分子、通差值.例如,2. 估算中的放缩法. 7 5 1523⑴___ ;⑵___18 12 3155【例1】(★★★)(全国奥林匹克民族卷)24 80 7<<,在方框内填入一个整数,使两端的不等号成立,31 □9那么要填的整数是多少? 【例2】(★★☆)111 1111试比较和的大小.1111 111111【拓展】(★★★)(第四届希望杯一试)设a 11,b 111比较在a和b中,较大的数是_____。
34567 2.首尾放缩法:求某数(或某式)的整数部分,设法放大或缩小,使结果介于某两个接近数之间,从而估算出结果.原则:计算方便。
3.分段放缩法:⑴寻找分界点,方便计算为原则⑵向大数靠拢,上限.向小数靠拢,下限.【例3】(★★★)10101010100101102110求数a 的整数部分。
【例4】(★★★★)1已知:S ,求S整数部分。
111 119801981198219912【例5】(★★★★★)1 1 1 1 1 12 3 4 5 15 16算式1 计算结果的整数部分是多少?知识大总结1. 分数比较大小技巧通分母、通分子、通差值.(最小公倍数)2. 放缩法⑴首尾放缩,分段放缩.⑵范围过大,进行收缩.1 1 1 1 1 1 1例如,++++++2 3 4 5 8 9 10【今日讲题】例1,例3,例4【讲题心得】____________________________________________________________________________________________________________________________________________________.【家长评价】____________________________________________________________________________________________________________________________________________________.3。
小学奥数知识:分数大小比较的几种方法小学奥数知识:分数大小比较的几种方法在比较分数大小时,如果分母或分子相同,可以采用同分母或同分子的方法进行比较。
但如果两个分数的分母和分子都不相同,就需要先通分再比较大小。
实际上,比较分数大小的方法有很多种,可以根据分数的特点选择适当的方法。
下面介绍几种比较分数大小的方法。
一、化同分子法将分子不同的两个分数化成分子相同的两个分数,然后根据“分子相同的两个分数,分母小的分数比较大”的规律进行比较。
例如,比较1/3和2/5的大小,将它们化成同分子的形式:5/15和6/15.因为5/15<6/15,所以1/3<2/5.二、化成小数法将两个分数化成小数,再进行比较。
例如,比较1/3和2/5的大小,将它们化成小数形式:0.333和0.4.因为0.333<0.4,所以1/3<2/5.三、搭桥法在要比较的两个分数之间,找一个中间分数,根据这两个分数和中间分数的大小关系,比较这两个分数的大小。
例如,比较1/3和2/5的大小,可以找到中间分数4/11.因为4/11<1/3<2/5,所以1/3<2/5.四、差等规律法根据“分子与分母的差相等的两个真分数,分子加分母得到的和较大的分数比较大;分子与分母的差相等的两个假分数,分子加分母得到的和较大的分数比较小”比较两个分数的大小。
例如,比较1/2和3/4的大小。
它们都是真分数,分子与分母的差都是1.因为1/2+1/2=1>3/4+1/4=1,所以1/2>3/4.五、交叉相乘法将第一个分数的分子与第二个分数的分母相乘,作为第一个分数的相对值;将第二个分数的分子与第一个分数的分母相乘,作为第二个分数的相对值。
相对值较大的分数较大。
例如,比较1/3和2/5的大小。
1/3的相对值是5/9,2/5的相对值是6/15.因为5/9>6/15,所以1/3<2/5.六、比较倒数法通过比较两个分数的倒数大小,比较两个分数的大小。