第6章.核辐射应用技术
- 格式:ppt
- 大小:3.81 MB
- 文档页数:107
核辐射仪器原理及应用教案对于核辐射仪器的原理,需要先理解核辐射的性质。
核辐射是指原子核释放出的带电粒子或电磁辐射,包括α粒子、β粒子和γ射线。
核辐射仪器的原理是通过探测器将核辐射转化为电信号,然后根据这些信号进行测量和分析。
核辐射仪器的核心部分是探测器。
常见的核辐射探测器有闪烁体探测器、气体放大器和半导体探测器。
闪烁体探测器利用物质在受到核辐射时能够产生可见光的特性,通过光电倍增管等装置将光信号转化为电信号。
气体放大器则利用气体在电场作用下产生的电离效应来测量核辐射,而半导体探测器则是基于半导体材料对核辐射的响应。
核辐射仪器的应用非常广泛。
首先,核辐射仪器在核能领域起到至关重要的作用。
它们被广泛应用于核电站、核反应堆和核燃料加工厂等地,用于辐射监测、辐射防护和事故应对等方面。
其次,核辐射仪器也被用于核医学领域。
例如,放射性同位素检查常用于临床诊断,核医学影像技术如放射性核素断层扫描(SPECT)和正电子发射断层扫描(PET)也需要核辐射仪器进行辐射测量和影像重建。
此外,核辐射仪器还被应用于核材料的非破坏性检测、环境辐射监测和科研实验等领域。
除了应用于专业领域,核辐射仪器也被广泛应用于生活中的辐射检测。
在核事件事故、核事故应急演练等场合,核辐射仪器可以快速检测环境中的辐射水平,以及食物、水源、土壤等样本的辐射污染情况,为公众提供安全保障。
此外,在建筑工地、矿井、国际边境等辐射环境高的地方,核辐射仪器也可以用于监测辐射水平,保护劳动者和居民的健康安全。
总之,核辐射仪器作为一种专用仪器,在核能、核医学、环境监测和安全防护等领域发挥着重要作用。
它们的原理是通过将核辐射转化为电信号,然后根据这些信号进行测量和分析。
随着科学技术的不断进步,核辐射仪器的性能和应用领域还将不断拓展。
核辐射防护技术的发展与趋势分析引言核辐射防护技术是一门关乎人类生命安全的重要学科,随着核能的广泛应用和核事故的频繁发生,核辐射防护技术的研究和发展变得尤为重要。
本文将对核辐射防护技术的发展历程进行回顾,并分析未来的发展趋势。
一、核辐射防护技术的历史发展核辐射防护技术的发展可以追溯到20世纪初,当时人们开始意识到放射性物质的危险性。
随着核能的开发和利用,核辐射防护技术得到了迅速发展。
20世纪50年代,核能的广泛应用使得核辐射防护技术得到了进一步提升。
此后,核事故的发生使得人们对核辐射防护技术的研究和应用更加重视。
二、核辐射防护技术的现状目前,核辐射防护技术已经相对成熟,包括以下几个方面的内容:1. 辐射剂量监测技术:通过测量辐射剂量,可以及时了解辐射水平,为防护措施的制定提供依据。
目前,已经开发出多种辐射剂量监测仪器,如电离室、剂量仪等。
2. 辐射防护装备:为了保护人员免受辐射的伤害,科学家们研发了各种防护装备,如防护服、防护面具等。
这些装备可以有效地减少辐射对人体的伤害。
3. 辐射防护材料:为了降低辐射的强度,科学家们研发了各种辐射防护材料,如铅、混凝土等。
这些材料可以有效地吸收辐射,减少辐射对周围环境和人体的危害。
三、核辐射防护技术的发展趋势尽管核辐射防护技术已经取得了一定的成就,但仍然存在一些挑战和问题。
未来的发展趋势主要包括以下几个方面:1. 新材料的应用:随着科技的不断进步,新材料的研发和应用将推动核辐射防护技术的发展。
例如,纳米材料的出现可以提高辐射防护材料的效果,降低辐射对人体的伤害。
2. 智能化技术的应用:智能化技术的发展将为核辐射防护技术的研究和应用提供新的机遇。
例如,通过传感器和人工智能技术,可以实时监测辐射水平,提供准确的辐射剂量数据。
3. 多学科交叉研究:核辐射防护技术的研究需要多学科的合作与交叉。
未来,核辐射防护技术将与材料科学、生物医学等学科相结合,共同推动核辐射防护技术的发展。
核技术应用的辐射安全隐患及防护策略摘要:核技术在应用的阶段中难免会出现辐射问题,辐射给人身的安全造成的影响很大,因此为了能够全面避免核技术应用在实际产生中所产生的辐射影响,文章结合实际在探讨和辐射安全状况的同时,对核辐射技术应用出现的安全问题现状进行了探究,然后对提高核辐射安全控制的策略进行探讨,希望通过论述后能够给相关工作人员提供一定的参考。
关键词:核技术;辐射安全;隐患问题;防护策略0引言最近几年,我国核科学技术得到了快速的发展,推动了西部地区的社会经济发展。
作为现代化建设的能源助力,核技术从科学技术的发展角度来说,具有至关重要的作用和影响。
从当前的情况来看,应用核技术的过程中引起了许多方面的问题。
其中核辐射问题是无法避免的,并成为最近几年饱受争议的话题。
因此,在辐射安全管理工作开展环节,需要意识到辐射安全管理的重要性,要更新工作理念、更新工作方法,提升辐射安全工作管理水平。
1核辐射安全概况在科学技术快速发展的今天,核技术得到了全面的发展和推进。
由于涉及到不同领域的内容,这直接影响到了我国各行各业的建设效果,为不同行业的发展提供了有效的能源支撑。
比方说,医用加速器直接推动了医疗水平的提升。
工业探伤机避免出现严重的安全事故。
特别是在中子测井和辐射场内部,该项技术已经得到了广泛的应用,成为21世纪以来最为先进的技术。
考虑到核技术的相关特征性问题,在应用的环节中依旧存在巨大的安全隐患。
在这样的情况下,依旧难以避免辐射致死事件。
辐射安全管理成为当前日益尖锐的问题,也是威胁工作人员生命安全的一大因素。
所谓的核辐射安全管理,具体指的是要以核安全过程中的相关原则作为指导依据,按照科学合理的设计提升核技术水平。
在当前的阶段,核辐射安全的发展改善,且朝着综合化的发展目标的趋势。
从其中的原因来看,在核技术应用的过程中,需要有大量的化学与物理等知识作为辅助。
与此同时,在核设施设计、运行的过程中需要高度引起重视。
从多个部门进行着手,采取有效的措施进行预防,从源头上避免出现严重的核辐射问题,缓解当前日益严峻的辐射污染。
核科学技术术语辐射防护与辐射源安全一、概述核科学技术作为一门重要的科学技术,已经在各个领域得到广泛应用。
然而,核科学技术涉及到辐射的使用和防护,这就需要采取相应的措施来确保辐射的安全使用以及人员的健康防护。
本文将介绍核科学技术中的一些重要术语,包括辐射防护和辐射源安全的相关内容。
二、辐射防护1. 辐射的定义辐射是指从放射性物质、天体或人工辐射源传播出来的能量或颗粒。
辐射可以分为电离辐射和非电离辐射,其中电离辐射具有较高的能量,对人体的危害较大。
2. 辐射剂量辐射剂量是评估辐射对人体的影响程度的重要参数。
常见的辐射剂量单位包括西弗(Sv)和戈瑞(Gy)。
西弗用于评估辐射对人体造成的伤害,而戈瑞则用于评估物质或组织受到的辐射吸收剂量。
3. 辐射防护措施在核科学技术领域,人们会采取一系列措施来保护自身免受辐射的危害。
这些措施包括使用屏蔽材料、保持距离、减少接触时间和增加通风。
还有一些专门的防护设备,例如铅衣、防护眼镜等,用于阻挡辐射。
4. 辐射监测与评估为了确保辐射防护的有效性,人们需要对环境和工作场所的辐射水平进行监测和评估。
这包括对辐射源进行定期的检测和测量,以及对工作人员受到的辐射剂量进行监控和评估。
三、辐射源安全1. 辐射源的分类辐射源可以分为自然辐射源和人工辐射源。
自然辐射源包括地球和宇宙射线,而人工辐射源则包括放射性同位素、加速器、核反应堆等。
2. 辐射源的管理为了确保辐射源的安全使用,人们需要建立严格的辐射源管理制度。
这包括对辐射源的登记、核实、监控、审批和报告,以及对相关人员进行辐射安全培训和教育。
3. 废弃物处理和放射源追踪辐射源在使用过程中可能会产生放射性废弃物,这些废弃物需要得到安全处理和储存。
人们还需要建立放射源追踪系统,对辐射源的使用、流向和处置进行追踪和管理。
四、结论核科学技术术语辐射防护与辐射源安全是核科学技术领域中的重要内容,涉及到人们的生命安全和健康。
通过合理的辐射防护措施和辐射源管理制度的建立,可以确保辐射的安全使用,同时最大程度地减少辐射对人体和环境的危害。
核技术应用领域的核安全文化建设核安全文化是在总结前苏联切尔诺贝利严重事故中的人为因素的基础上为确保核电厂安全生产而提出的一套系统且完善的管理理念,现已在国内外核电站运行中得到了广泛重视和应用,并取得了良好效果。
然而,核安全文化在核技术应用领域却未得到应有的重视。
据统计,近十几年我国年均发生各类放射源事故约30起,其中责任事故约占事故总数的85%,安全意识淡漠引起的事故约占6.6%。
可见,切实加强核技术应用领域的核安全文化建设,全面提高相关领导和工作人员的安全文化素养,对于预防辐射事故的发生有重大意义。
一、核技术应用核技术应用是指国民经济各个领域利用放射性同位素或射线装置辐射射线(射线具有良好穿透性的性质)进行生产、研究、治疗等方面的活动。
如,核技术在医学上用于临床诊断与治疗;在工业上用于检测、控制、计量、分析用的各种核仪表、x射线机及工业计算机断层扫描ICT、工业辐照加速器、中子发生器等;在农业上主要利用射线进行辐射育种;在食品加工行业利用射线进行消毒杀菌、辐射保鲜,达到延长食用期的目的;在环境治理方面,利用辐射处理污泥、废水和其他生物弃物的技术。
上述核技术应用对促进国民经济和社会发展起到了积极作用。
但与此同时,核技术开发利用过程中的安全与放射性污染防治等问题亦日渐突出。
我国现有五万余枚放射源,用户多而分布广,政府监管难度较大,再加上有些单位自身管理不到位、安全意识淡漠,放射源使用不当或丢失而导致放射性污染的事故时有发生,有的甚至造成了重大的社会影响和经济损失。
因此,相关管理部门在加强对核技术应用单位外部监管的同时,还需提倡应用单位树立并弘扬核安全文化,增强企业全体员工的安全文化素养,最大限度地保障核技术利用过程中的辐射安全。
二、核安全文化核安全文化是从事核安全相关活动的全体工作人员的献身精神与责任心。
它的实质是价值观、标准、道德和可接受行为的规范的统一体。
(一)安全文化的特性安全第一的思想:员工要有发自内心的积极探索、谦虚谨慎、精益求精的态度,以及不断追求自我完善的品格;主动精神:员工除严格执行操作规程外,还要有高度的警惕性、丰富的知识以及正确的判断和高度的责任感来履行安全职责;有形导出:核安全文化无形的特性必然会导出有形的表现,如企业安全运营等,这些有形的导出将成为衡量核安全文化作用的指标。
第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
我国核医学分为临床核医学和实验核医学。
核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。
同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。
稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。
α粒子的电离能力极强,故重点防护内照射。
β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。
γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。
γ衰变只是能量状态改变,γ射线的本质是中性的光子流。
电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。
电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。
《原子核物理》课程教学大纲课程性质:专业基础课教学对象:核工程与核技术辐射化工专业本科学生学时学分:54学时 3学分编写单位:核工程与技术学院编写人:杜纪富审定人:编写时间:2011年5月一、课程说明1、课程简介本课程是原子物理学课程的姊妹篇,它以阐述原子及原子核的结构、特性为中心。
主要内容包括核结构模型、原子核的放射性、α衰变、β衰变、γ衰变、核反应及核能和放射性的应用等。
2、课程教学目标本课程是近代物理学中的一个重要领域。
通过该门课程的学习,使学生了解和掌握原子核的基本性质和结构、放射性现象及一般规律、原子核反应、射线与物质的相互作用、离子加速器、原子能的利用、核技术及应用、粒子物理的一些简单理论,为学生将来继续学习核工程与核技术的课程奠定理论基础和实验技术能力。
3、预修课程与后续课程大学物理、量子力学、原子物理学4、教学手段及教学方法建议原子核物理学是现代物理学的重要内容,作为应用物理专业的学生,原子核物理学的基础知识理论成为必要的学习内容。
因此本门课程首先把基础知识和基本技能教给学生,使得学生扎实地学好,然后再介绍相关现代科学技术的重要成果。
本课程以讲授为主,然后在课程中会介绍与核辐射相关的案例以及实验等。
5、考核方式平时成绩占30%(考勤、课堂表现和作业),闭卷考试成绩占70%。
6、指定教材杨福家等著,原子核物理(第一版)复旦大学出版社,19937、教学参考书[1] 卢希庭主编,原子核物理,原子能出版社,2000年[2] 王炎森、史福庭,原子核物理学,原子能出版社, 1998年8、教学环节及学时安排表1 课程学时分配表9、教学大纲修订说明二、教学内容第一章原子核物理(8学时)教学目标1、了解原子核物理的研究对象及其发展历史2、理解原子核是由核子(中子和质子)组成的,原子核半径的两种含义。
3、理解原子核的结合能及其与质量的关系。
4、了解原子核的自旋、磁矩、电四极矩、宇称的定义。
本章重点1、原子核半径的两种含义以及结合能与质量的关系。
核能的利用与核能的应用对于核能的利用与应用,我们首先要了解核能的概念及其特性。
核能是指原子核内部的能量,包括核裂变和核聚变。
在核子层面,核能是强大的,能够释放出比燃烧热和化学反应释放的能量更多的能量,但相应的,处理核能的过程也更加复杂和危险。
一、核能的利用1. 核电站核电站是利用核反应堆产生的热能发电的设施。
燃料棒中的铀核子裂变时释放出大量热能,通过热交换器转化为蒸汽,再驱动涡轮机发电。
与传统火力发电相比,核电更为清洁和高效,且燃料成本更低。
目前,全球有60多个国家拥有核电站,核电在全球电力供应中扮演着重要的角色。
2. 核医学核医学利用放射性同位素的物理特性来探测和治疗人类疾病。
与传统的X射线和CT相比,核医学能够提供更精确的图像和诊断,同时最大程度地减少对人体的伤害。
比如,甲状腺扫描、心肌灌注显像和PET扫描等都是核医学的应用。
3. 工业应用核技术可以用于原材料的分选、非破坏性检测、食品测量及杀菌、药品辐射杀菌和无损检测等领域。
比如,利用核技术可以对金属、塑料和玻璃等物料进行缺陷检查和质量控制;此外,核技术还可以被用于工业废水和废气的处理等环保措施。
二、核能的应用1. 核武器核武器是利用核裂变产生的能量制造的武器,具有极其容易破坏城市和伤亡人员的能力。
由于核武器的强大杀伤力,核武器被誉为最带有杀伤力的武器。
为此,国际社会已经实行了对核武器的禁止条约和控制措施,以避免核武器的使用。
2. 核辐射灾害核辐射是指核反应释放的能量或物质通过空气、水或土壤传播的过程,辐射波能够造成人体细胞的损伤。
因此,核辐射灾害成为一种非常危险的事故。
如1986年的切尔诺贝利核事故和2011年的福岛核事故,都给当地带来了极其严重的后果。
综上所述,虽然核能具有巨大的能量和广泛的应用,但同时也存在极大的危险性和不可回复性。
因此,我们必须谨慎而熟练地使用核能,同时加强核能的安全管理,以确保人类的安全和福祉。
习题答案核技术及应用概述1、核技术是以核物理、核武器物理、辐射物理、放射化学、辐射化学和辐射与物质相互作用为基础,以加速器、反应堆、核武器装置、核辐射探测器和核电子学为支撑而发展起来的综合性现代技术学科。
2、广义地说,核技术可分为六大类:核能利用与核武器、核分析技术、放射性示踪技术,辐射照射技术、核检测技术、核成像技术。
3、主要是利用核裂变和核聚变反应释放出能量的原理,开发出能源或动力装置和核武器,主要应用有:核电站、核潜艇、原子弹、氢弹和中子弹。
4、在痕量元素的含量和分布的分析研究中,利用核探测技术、粒子加速技术和核物理实验方法的一大类分析测试技术,统称为核分析技术。
特点:1.灵敏度高。
比如,可达百万分之一,即10-6,或记为1ppm;甚至可达十亿分之一,即10-9,或记为1ppb。
个别的灵敏度可能更高。
2.准确。
3.快速。
4.不破坏样品。
5.样品用量极少。
比如,可以少到微克数量级。
5、定义:应用放射性同位素对普通原子或分子加以标记,利用高灵敏,无干扰的放射性测量技术研究被标记物所显示的性质和运动规律,揭示用其他方法不能分辨的内在联系,此技术称放射性同位素示踪技术。
有三种示踪方式:1)用示踪原子标记待研究的物质,追踪其化学变化或在有机体内的运动规律。
2)将示踪原子与待研究物质完全混合。
3)将示踪原子加入待研究对象中,然后跟踪。
6、放射性示踪7、核检测技术: 是以核辐射与物质相互作用原理为基础而产生的辐射测量方法和仪器。
特点:1)非接触式测量;2)环境因素影响甚无;3)无破坏性:4)易于实现多个参数同时检测和自动化测量。
8、辐射照射技术:是利用射线与物质的相互作用,将物质置于辐射场中,使物质的性质发生有利改变的技术。
辐射交联的聚乙烯有什么优点:热收缩、耐热、机械强度大为提高、耐有机溶剂、不易被溶解、电绝缘性能很好,且不怕潮湿。
9、X射线断层扫描(XCT)、核磁共振显像仪(NMR-CT)、正电子发射显像仪(PECT),同位素单光子发射显像仪(SPECT)和康普顿散射显像仪(CST);10、核医学是当今产值最大、发展最快的核辐射设备。
核辐射加工
核辐射加工是指利用核能放射性射线对物质进行加工和改性的技术。
这种技术主要利用了两种类型的射线:电子束辐照和离子束辐照。
电子束辐照是利用电子束的高能量和较强透射能力对物质进行加工。
电子束可以穿透和改变物质的表面和体积特性,从而改善或调整物质的性能。
一些常见的电子束辐照应用包括:食品辐照杀菌、医疗器械无菌化、塑料射出成型和固化、材料表面改性等。
离子束辐照是利用离子束的高能量和较强穿透力对物质进行加工。
离子束会与物质内部原子发生相互作用,从而改变物质的结构和性质。
离子束辐照常用于材料表面改性、硬化和纳米颗粒的合成等应用。
它在半导体制造、薄膜涂层、材料硬化等领域具有广泛的应用。
核辐射加工的优点包括高效、环保和无污染。
它可以在不使用化学药品的情况下对物质进行加工,避免了传统加工过程中的污染和废弃物产生。
此外,核辐射加工还可以提高材料的性能,增加其硬度、耐热性和抗腐蚀性等特性。
然而,核辐射加工也存在一些挑战和风险。
首先,辐射源的安全和稳定性是关键问题,需要保证辐照过程的安全性。
其次,辐射加工设备的成本较高,需要大量的投资和维护费用。
此外,对辐射加工的产品需要进行辐射剂量的监测和控制,以确保符合安全标准。
总的来说,核辐射加工是一种应用核能射线进行材料加工和改性的技术。
它具有许多优点,但也需要面对一些挑战和风险。
随着科学技术的不断发展,核辐射加工有望在更广泛的领域得到应用。
核能技术的发展与应用人类一直在探索发现自然界的奥秘,而核能技术的发展就是其中的一个重要成果。
核能技术的应用涉及广泛,从医学、工业到能源领域都有着重要的作用。
但是,在核能技术的发展和应用中,也存在着一定的风险和争议。
本文将从核能技术的历史背景、应用现状、风险和前景等多个方面进行分析。
一、核能技术的历史背景核能技术的历史可以追溯到19世纪。
1896年,法国物理学家贝克利在研究射线现象时发现了放射性元素。
20世纪初,放射性的研究逐渐深入,人们开始从放射性中获取能量。
1928年,英国籍物理学家拉瑟福成功分裂了铯原子,由此揭开了核能技术的大门。
随着核能技术的发展,新型能源成为了人们关注的焦点。
二战期间,核能技术被用于制造原子弹,公众对核能技术的认识大幅提高。
此后,核能技术在各个领域得到了广泛应用。
二、核能技术的应用现状1.医学领域核能技术在医学领域中有着重要的应用。
核医学是利用放射性同位素进行医学诊断与治疗的科学,如放射性碘用于甲状腺癌治疗、正电子发射断层扫描(PET-CT)等技术被广泛应用于癌症的诊断和治疗。
2.工业领域核能技术在工业领域中也有广泛的应用。
例如,辐射源可用于消毒和食品加工。
辐射测量和核辐射探测技术可用于从钞票和药品到船只和飞机这样的大型运输工具的安全检查。
3.能源领域核能技术在能源领域中应用尤为广泛。
核反应堆利用核裂变产生的热能来产生蒸汽,进而产生电力。
核能的能源密度高、产电效率高、污染小,而且可维持较长时间。
三、核能技术的风险然而,核能技术在应用中也存在很大的风险。
核辐射是一种非常强的能量,如果人体被辐射,可能导致癌症、畸变等极为危险的后果。
福岛核事故和切尔诺贝利核电站事故等事件深刻地教育了人们应对核能风险的重要性。
在实践中,尽管核反应堆可以高效、可靠地产生电能,但运营管理和废物处置等问题也显得尤为重要。
四、核能技术的未来发展前景可以看出,核能技术在应用中存在风险,但是其应用也带来了很多好处。
核技术的应用与发展摘要:核技术是建立在核科学基础之上的一门现代技术,因而泛称核科学技术。
核科学技术为现代化科学技术的组成部分,其渊源可以追溯到1896年天然放射性的发现,至今已有100多年的历史。
带电粒子加速器的发现与核反应堆的建造为核科学技术的发展,奠定了雄厚的物质基础。
第二次世界大战期间核科学技术在军事领域的突破体现了核科学技术发展的时代特征,即技术的科学化与科学的技术化。
世界第一颗原子弹的爆炸显示了核能释放的巨大威力,开创了本世纪现代科学技术定向发展的新格局,即动用国家一级的权威,动员全社会的力量,精心规划部署,全面推进核技术的发展和实践。
关键词:核技术领域应用发展趋势一、核技术的前世今生自1895年伦琴发现了X射线,1896年贝克勒尔发现铀的天然放射性,随后居里夫妇发现“钋”和“镭”两种天然放射性核素,以及1899年至1900年α、β和γ射线的发现以来,人类对辐射进行了大量的研究并建立了核科学。
核技术在医学、生物、农业、材料科学等各个领域得到广泛的应用,核技术成为当今世界重要的高科技领域之一。
目前,我国已形成了基本配套的军民两用核动力与核燃料循环科研开发工业体系,具备了自主设计建造中小型核电站的能力和核电站燃料组件的生产能力,核技术(包括核供热、同位素和辐射技术等)在工业、农业、医学军事等多个领域得到广泛应用。
经过几十年的发展,我国在科研、设计、建设和运行等方面积累了许多宝贵经验,培养和造就了一支专业齐全、具有相当实力的科研、开发、设计和工程建设队伍。
我国的核能和平利用产业已经形成了一定的规模,在某些技术领域达到了世界先进水平。
二、核技术的应用(一)核技术在农业中的应用核技术在农业中的应用主要有同位素示踪技术与核辐射技术两个方面。
同位素示踪技术的应用,是直接将作为示踪剂的示踪原子的核素,利用其易于探测的核物理性质和同位素的物理、化学性质相同的原理,建立同位素示踪法和同位素分析法,将该方法作为研究T.具或实验手段,应用于农业科学中.的作物营养生理、土壤肥料、环境保护、植物保护和畜牧兽医等各个方面。
11-核技术应⽤作业答题要点第⼀篇X射线荧光分析1、什么是X荧光?试述XRF的⼯作原理。
2、吸收限的定义是什么?它对原⼦的激发和特征X射线的产⽣有何意义?3、在什么情况下必须使⽤滤⽚?滤⽚能否改善探测器的能量分辨率?说明平衡滤⽚对的⼯作原理。
4、室内研究和校正基体效应的⽅法有哪些?试归纳出它们的依据、特点和应⽤条件。
答题要点:1答:X荧光:原⼦近核轨道电⼦丢失造成电⼦跃迁⽽导致的各种闪光。
XRF的⼯作原理:利⽤外界辐射激发待分析样品中的原⼦,使原⼦发出特征X射线(荧光),通过测定这些特征X射线的能量和强度,可以确定样品中微量元素的种类和含量,这就是X射线荧光分析,也叫做源激发X荧光分析。
2答:射线从给定元素原⼦特定能级上逐出⼀个电⼦所需的最⼩能量(或最⼤波长),称为该元素该能级的吸收限,对应相应电⼦的结合能。
激发相应电⼦壳层的X射线,所⽤射线能量以略⼤于吸收限为宜,由此可以选择性地激发相应元素的原⼦产⽣特征X射线。
3答:在X射线荧光现场测量中,主要使⽤的闪烁计数器谱仪,其能量分辨率往往不能区别相邻元素的X 射线荧光,此时如不便于使⽤分辨率较好的半导体探测器,则必须使⽤滤⽚。
不能。
利⽤两种物质吸收限能量的差别形成能量通带,使能量通带内的吸收系数差别很⼤,能量通带外的吸收系数近似相等,以排除通带外能量(主要来⾃周围伴⽣元素)的⼲扰,使分辨率较差的探测器也能分别测定相邻元素X射线荧光照射量率。
第⼆章中⼦活化分析1、简述中⼦活化分析的⼯作原理;感⽣放射性核素的积累与衰变有何规律? 答题要点:(⽤⾃⼰的语⾔合理表述)⽤中⼦照射样品,使待测核素发⽣核反应,产⽣放射性核素,测定其放射性活度、射线能谱和半衰期根据活化反应截⾯、中⼦通量等,确定被测样品的元素成分和含量的分析⽅法。
积累:衰变:第三章放射性同位素⽰踪1、什么是放射性同位素⽰踪?其基本性质是什么?2、在不同领域应⽤放射性同位素⽰踪技术时,需要考虑那些基本问题?答题要点: 1答:放射性同位素⽰踪:利⽤放射性核素作为⽰踪剂对研究对象进⾏标记的微量分析技术。